Research Group Artificial Intelligence Bachelor Theses

Malte Helmert

University of Basel

December 17, 2024

Al Research Group

Research Group Artificial Intelligence

Malte Helmert

Gabi Röger

Florian Pommerening

Salomé Eriksson

Claudia Grundke

Clemens Büchner

Tanja Schindler

Remo Christen

David Speck

Simon Dold

Travis Rivera Petit

Al Research Group	Teaching	Theses	The End
00●	000	000000	O
Research Focus			

our main research areas:

- classical action planning
- heuristic search

Al Research Group	Teaching	Theses	The End
	●00	000000	○

Teaching

Teaching

autumn semester 2024:

- Discrete Mathematics in CS (Bachelor, 1st semester)
- Planning and Optimization (Master, 1st semester)

spring semester 2025:

- Algorithms and Data Structures (Bachelor, 2nd semester)
- Theory of Computer Science (Bachelor, 4th semester)
- Foundations of Artificial Intelligence (Bachelor, 6th semester)

Al Research Group	Teaching	Theses	The End
	○○●	000000	O
Lecture:	Foundations of Artificial	Intelligence ((Spring 2025)

- lecture, Bachelor, 8 CP
- lecturers: Malte Helmert
- target audience: Bachelor students in 6th semester

contents:

- introduction and historical development of AI
- rational agents
- problem solving and search
- constraint satisfaction problems
- formal logic
- automated planning
- board games

Al Research Group Teaching Theses	The End O
-----------------------------------	--------------

Theses

Theses 0●0000

Bachelor and Master's Theses

- completed: 72 Bachelor theses, 40 Master's theses ~> https://ai.dmi.unibas.ch/theses.html
- ongoing: 4 Bachelor theses, 3 Master's theses
- interested? get in touch!
 - \rightsquigarrow email to malte.helmert@unibas.ch or talk to me

Al Research Group	Teaching	Theses	The End
000	000	00●000	○

Thesis Life Cycle

- T_0 : you contact me about interest in B.Sc. thesis
- $T_0 + 1$ week: initial meeting
 - you, me and potential supervisor
 - we suggest 3 topics to choose from
 - discuss possible starting date for thesis
- $T_0 + 3$ weeks: topic decision
 - you select a topic (or decline)
 - $\bullet\,$ set up learning contract with official starting date $\,{\cal T}_1\,$
- $[T_1, T_1 + 3 \text{ months}]$: work on thesis
 - 4 months possible if other commitments exist
 - weekly meetings with supervisor
 - ends with submission of thesis
- $\bullet\ {\sim}2$ weeks later: thesis presentation
 - you are done, congratulations!

Theses 000●00

Bachelor's Thesis Example

Sebastian Schlachter (2022)

Encoding Diverse Sudoku Variants as SAT Problems

(supervised by Augusto Blaas Corrêa)

- Study Sudoku variants from YouTube channel "Cracking the Cryptic"
- Model complex problem constraints as logical formulas
- Compare efficiency of solvers on resulting models

Theses 0000●0

Bachelor's Thesis Example

Esther Mugdan (2022)

Optimality Certificates for Classical Planning

(supervised by Salomé Eriksson and Remo Christen)

- Theoretical framework for computer-verifiable proofs of optimality for solutions to shortest-path problems
- Integration with classical planning algorithms
- Implementation in the Fast Downward planner
- Evaluation of different algorithm variants and parameters

Theses

Bachelor's Thesis Example

Benedikt Heuser (2024)

Solving the Sliding Tile Puzzle with Post-Hoc Optimization

(supervised by Florian Pommerening)

- Adapting a general idea for state-space search heuristics to a specific problem
- Implementation in HOG2 codebase (University of Alberta)
- Evaluation of different algorithm variants and parameters

AI	Research	Group

Teaching

Theses

The End