

Research Group Artificial Intelligence
Bachelor Theses

Malte Helmert

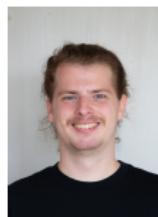
University of Basel

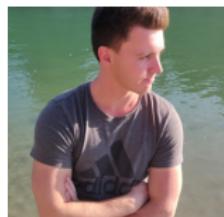
December 16, 2025

AI Research Group

Research Group Artificial Intelligence

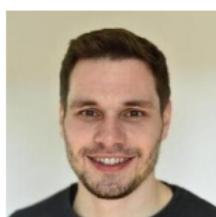
Malte Helmert


Gabi Röger


Florian Pommerening

Clemens Büchner

Remo Christen


Simon Dold

Claudia Grundke

Tanja Schindler

David Speck

Travis Rivera Petit

Esther Mugdan

Gustavo Delazeri

Research Focus

our main research areas:

- classical action planning
- heuristic search

Teaching

Teaching

autumn semester 2025:

- Discrete Mathematics in CS (Bachelor, 1st semester)
- Planning and Optimization (Master, 1st semester)

spring semester 2026:

- Algorithms and Data Structures (Bachelor, 2nd semester)
- Theory of Computer Science (Bachelor, 4th semester)
- Foundations of Artificial Intelligence (Bachelor, 6th semester)
- Seminar Knowledge, Reasoning and Planning
(Master, 2nd semester)

Lecture: Foundations of Artificial Intelligence (Spring 2026)

- lecture, Bachelor, 8 CP
- lecturers: Malte Helmert
- target audience: Bachelor students in 6th semester

contents:

- introduction and historical development of AI
- rational agents
- problem solving and search
- constraint satisfaction problems
- formal logic
- automated planning
- board games

AI Research Group
○○○

Teaching
○○○

Theses
●○○○○○

The End
○

Theses

Bachelor and Master's Theses

- completed: 85 Bachelor theses, 44 Master's theses
~~~ <https://ai.dmi.unibas.ch/theses.html>
- ongoing: 2 Bachelor theses
- interested? **get in touch!**  
~~~ email to `malte.helmert@unibas.ch` or talk to me

Thesis Life Cycle

- T_0 : you contact me about interest in B.Sc. thesis
- $T_0 + 1$ week: initial meeting
 - you, me and potential supervisor
 - we suggest 3 topics to choose from
 - discuss possible starting date for thesis
- $T_0 + 3$ weeks: topic decision
 - you select a topic (or decline)
 - set up learning contract with official starting date T_1
- $[T_1, T_1 + 3$ months]: work on thesis
 - 4 months possible if other commitments exist
 - weekly meetings with supervisor
 - ends with submission of thesis
- ~ 2 weeks later: thesis presentation
 - you are done, congratulations!

Bachelor's Thesis Example

Esther Mugdan (2022)

Optimality Certificates for Classical Planning

(supervised by Salomé Eriksson and Remo Christen)

- Theoretical framework for computer-verifiable proofs of optimality for solutions to shortest-path problems
- Integration with classical planning algorithms
- Implementation in the Fast Downward planner
- Evaluation of different algorithm variants and parameters

Bachelor's Thesis Example

Benedikt Heuser (2024)

Solving the Sliding Tile Puzzle with Post-Hoc Optimization

(supervised by Florian Pommerening)

- Adapting a general idea for state-space search heuristics to a specific problem
- Implementation in HOG2 codebase (University of Alberta)
- Evaluation of different algorithm variants and parameters

Bachelor's Thesis Example

Maria Desteffani (2025)

Encoding Delete-Free Planning Tasks in Domain-Independent
Dynamic Programming

(supervised by Florian Pommerening)

- Encode a standard AI problem in a new optimization framework (collaboration with University of Toronto)
- Compare efficiency to traditional solvers

The End