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Multiple Views: CCA

@ Consider paired samples from different views.
@ What is the dependency structure between the views 7

@ Standard approach: global linear dependency detected by CCA.
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Canonical Correlation Analysis [Hotelling, 1936]

Often, each data point consists of two views:
@ Image retrieval: for each image, have the following:
» X: Pixels (or other visual features) Y: Text around the image
o Time series:

» X: Signal at time t
» Y: Signal at time t + 1

@ Two-view learning: divide features into two sets

» X: Features of a word/object, etc.
» Y': Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly.
Find projections such that projected views are maximally correlated.
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CCA vs PCA

separate PCA separate PCA

&

CCA
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CCA vs PCA

Volker Roth (University of Basel) Machine Learning 5/25



CCA: Setting

@ Let X be a random vector € RP< and Y be a random vector € RPy
Consider the combined (p := px + py)-dimensional random vector
Z = (X,Y) Letits (p x p) covariance matrix be partitioned into
blocks according to:

ZXX € RPxXPx | ZXY c RPxXPy

Zyx € RPy*Px ’ Zyy € RPy*py

@ Assuming centered data, the blocks in the covariance matrix can be
estimated from observed data sets X € R"*Px Y ¢ R"Py:

XX | Xty

YIX | Y'Y

1
l~=
n
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CCA: Setting

covariance(x,y)
standard deviation(x)- standard deviation(y)

o Correlation(x,y) =

cov(x, y)
p=cor(x,y) = ————.
a(x)o(y)
@ Sample correlation:
Zi(Xf - )_() ()/i - }_/)t centered cgservations xty

=R - 7P Vxix Ty

Want to find maximally correlated 1D-projections x*a and y'b.

. . Zero means
Projected covariance: cov(x'a,y'b) ™ = a'Xxyb.

1 1
o Define c =Yjya d=1X3b.

_1

_1
CthX2 ZXYzYYQ d

VcteVdtd

Thus, the projected correlation coefficient is: p =
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CCA: Setting

o By the Cauchy-Schwarz inequality (x'y < ||x] - ||y]|), we have

2
_1 _1 _1 _1 1
Tt Ty Tye | d < | e Ty T T Taic | (d'd)?,
—_———
H G:=HH?
1
f 2
p= (eGe)® GC)1
(cte)?

, c'Gc
P =

)

ctc '

o Equality: vectors d and Z_§ZYXZ;)%<C are collinear.

° MaX|mum C is the elgenvector with the maximum eigenvalue of
G = T Txy Tyh Ivx k.

Subsequent pairs ~ using eigenvalues of decreasing magnitudes.
1

~1 ~1

o Collinearity: d oc Xy X yx¥yxC
_1 ~1

@ Transform back to original variables a = ¥ ,3c, b=1%,yd.
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Efficient computation of separate PCAs and joint CCA

@ Separate SVD of X and Y: X = U, S V!, Y = UySyVy1t
~> separate PCAs for both views.

o Consider sample covariance matrix
Yxx =1/n- XX =1/n- V,SULU, S, V! =1/n- V,S2VE.

@ Substitute in matrix G:

G = 57 Yy D 3w Yy Y2
= (VWSTTVO(VASULU, S V) (VL S, 2 VIV, Sy U Uk S V) (Vi SV

= VLULU, VLUV
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Efficient computation of separate PCAs and joint CCA

@ c is an eigenvector of G

= & = Vcis an eigenvector of Uy U, Uj Uy with the same e.vals:

Gc

V, Ut U, Uyt UxVic
U;Uy Uyt UxVic
U)ny U}f U.c

@ In matrix form (the columns of matrix C are the eigenvectors c;)

GC
ULU, UL Uy (VEC)
ULU, U U C

o Columns of C are the columns of U in SVD of UtU, = USV*

Volker Roth (University of Basel)

AcC
Ac,
AVie,
AC.

CA,
(VEO)A,
CA.

10/25



Efficient computation of separate PCAs and joint CCA

@ Now recover C from C: C = VX(N_' = VXD
= A=507C= AV, SV (VD) = Lv, 510

e B= %VyS},_l\N/ analogous.

@ Joint CCA: correlation is maximized between pairs of projections
Xa; and Yb;, with a;, b; are the i-th columns of A, B.
The corresponding correlations are p; = 3;,-.

@ In summary:
» Compute individual SVDs of X an Y ~ Vi, Sx, V,, S,

d
» Compute “joint” SVD of ULU, = USV.
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Pixels That Sound [Kidron, Schechner, Elad, 2005]

“People and animals fuse auditory and visual information to obtain robust
perception. A particular benefit of such cross-modal analysis is the ability
to localize visual events associated with sound sources. We aim to achieve
this using computer-vision aided by a single microphone”.

https://webee.technion.ac.il/ yoav/research/pixels-that-sound.html
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Probabilistic CCA
(Bach and Jordan 2005): With Gaussian priors

p(z) = N(2°(0, )N'(z¥|0, HN (2710, 1),

the MLE in the two-view FA model is equivalent to classical CCA
(up to rotation and scaling).

Wx Wl/

z

~

B, | T v NJ B,

From figure 12.19 in K. Murphy
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Further connections

o If y is a discrete class label ~~ CCA is (essentially) equivalent to
Linear Discriminant Analysis (LDA), see (Hastie et al. 1994).
o Arbitrary y ~~ CCA is (essentially) equivalent to the
Gaussian Information Bottleneck (Chechik et al. 2005)
» Basic idea: compress x into compact latent representation while
preserving information about y.
> Information theoretic motivation:
Find encoding distribution p(z|x) by minimizing
I(x;2) — Bl(z:y)
where 3 > 0 is some parameter controlling the trade-off between
compression and predictive accuracy.

o Arbitrary y, discrete shared latent z°
~» dependency-seeking clustering (Klami and Kaski 2008): find
clusters that “explain” the dependency between the two views.
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The Information Bottleneck (Tishby et al., 1999)

FA is powerful, but still limited (Gaussian assumptions etc.). Alternatives?

min I(x;z)
Encoder

Latent
space

max I(z;y)
Decoder
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Mutual Information

@ A measure of mutual dependence between two random variables:
reduction of uncertainty by knowing one variable.

@ For continuous RVs:

iy = [ [ plxy)ios ((i)’p{))) dxdy
Die(p(x. ¥)Ip(x) P(¥))

/ p(x) / p(y|x) |0g< p{}’j?) dxdy

= Ep)Dre(p(ylx)lp(y)).

@ x and y independent ~~ knowing x does not give any information
about y ~~ I(x;y) = 0.
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Information Bottleneck

@ The IB principle: compress x into z, keep information about y.

@ Assume y and z are conditionally independent given x an solve:

@ The original IB formulation is not a generative model, nor do we
actually condition: x,y are only used for estimating p(x,y).

Co,
"’ﬁre '
s o
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minp(z|x)l(x; z) - pl(z;y).

S

“\3\.\0‘\

min I(x;z)
Encoder

Latent
space

max I(z;y)
Decoder
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IB as a latent variable model
Assume z = f(x) + & captures all relevant information about y

= x 1 y|z

~~ latent version IB (2  basically an asymmetric CCA model.

CCA: p(x|z)p(y|z)p(2)

xllylz

S
Z;

L L Y

N

J

1B(0): p(z]x)p(ylz)p(x)

x1llylz
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Gaussian 1B (Chechnik et al. 2003)

@ Assume x and y are jointly Gaussian-distributed.

Y, ¥
) ~ N 07 x yX b

@ The optimal z is a noisy projection of x:
z=Ax+€, &€~N(0,1) = z|x ~ N(Ax,I), z ~ N(0, AL A" +]).

@ Analytic form of mutual information:
I(x; z) = L log |AZ At + 1],
(z;y) = I(x; z) — 5 log |AX ), A" + .

o general y: rows of A are eigenvectors of Z;lsz, ~» CCA
@ one-dimensional y: ~~ least squares regression

@ y is noisy version of x: ~~ PCA
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Sparse Gaussian IB

Recall: z=Ax+ &, = z|x ~ N(Ax, 1), z ~ N(0, AL, A" + |).
Note that |AX A" + /| = |[ZA'A + I| ~ only A'A identifiable.

Sparse version: assume that A®A is diagonal.

e 6 o o

Intuition: for RVs x, x’, any full-rank projection Ax’ of x’ would lead
to the same mutual information since /(x, x") = I(x; Ax’), and a
reduction can only be achieved by a rank-deficient matrix A.

o If we compress X, A cannot have full rank ~ A'A diagonal implies
that A can be non-zero only in some subspace, AP = ( A0 )

@ The mean p = Ax is a sparse compression of x.

@ Basically an information-theoretic lasso variant.
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Sparse Gaussian IB: Experiments

Prognosis of cutaneous malignant melanoma (MM) using biomarkers
(Fuchs & Buhmann, 2011; Rey & R. 2014).

o Goal: identify biomarkers relevant to the disease evolution.
@ Crucial for cost-effective prognosis and therapy optimization
Data:

e Variable to compress, x: immunohistochemical (IHC) expressions
of 70 candidate biomarkers measured for 364 patients.

@ Relevance variable, y: 9 different clinical observations about the
stage of the tumor & survival times.
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Sparse Gaussian IB: Experiments

Sparse MMGIB Signature

Sparse MMGIB Signature: external test cohort
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Multiple Views: Dependency Seeking Clustering
o Consider paired samples from different views.
@ What is the dependency structure between the views ?
@ Standard approach: global linear dependence detected by CCA.
@ Generalization — dependency-seeking clustering.
@ The cluster structure captures dependencies.

Volker Roth (University of Basel) 23/25



Dependency Seeking Clustering

view 1 view 2

X2
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Dependency Seeking Clustering

view 1 view 2

X2

-5

T T T T T 1
-6 -2 0 2 4 6

Volker Roth (University of Basel) Machine Learning 25/25



