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Multiple Views: CCA

Consider paired samples from different views.
What is the dependency structure between the views ?
Standard approach: global linear dependency detected by CCA.
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Canonical Correlation Analysis [Hotelling, 1936]

Often, each data point consists of two views:
Image retrieval: for each image, have the following:

I X : Pixels (or other visual features) Y : Text around the image
Time series:

I X : Signal at time t
I Y : Signal at time t + 1

Two-view learning: divide features into two sets
I X : Features of a word/object, etc.
I Y : Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly.
Find projections such that projected views are maximally correlated.
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CCA vs PCA

separate PCA separate PCA

CCA
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CCA vs PCA
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CCA: Setting

Let X be a random vector ∈ Rpx and Y be a random vector ∈ Rpy

Consider the combined (p := px + py )-dimensional random vector
Z = (X ,Y )t . Let its (p × p) covariance matrix be partitioned into
blocks according to:

Z =
[

ΣXX ∈ Rpx×px | ΣXY ∈ Rpx×py

ΣYX ∈ Rpy×px | ΣYY ∈ Rpy×py

]
Assuming centered data, the blocks in the covariance matrix can be
estimated from observed data sets X ∈ Rn×px ,Y ∈ Rn×py :

Z ≈ 1
n

[
X tX | X tY
Y tX | Y tY

]
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CCA: Setting

Correlation(x , y) = covariance(x ,y)
standard deviation(x)· standard deviation(y)

ρ = cor(x , y) = cov(x , y)
σ(x)σ(y) .

Sample correlation:

ρ =
∑

i (xi − x̄)(yi − ȳ)t√∑
i (xi − x̄)2

√∑
i (yi − ȳ)2

centered observations= xty√
xtx
√

y ty
.

Want to find maximally correlated 1D-projections xta and y tb.
Projected covariance: cov(xta, y tb) zero means= atΣXY b.

Define c = Σ
1
2
XX a, d = Σ

1
2
YY b.

Thus, the projected correlation coefficient is: ρ = ct Σ
− 1

2
XX ΣXY Σ

− 1
2

YY d√
ctc
√

d td
.
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CCA: Setting
By the Cauchy-Schwarz inequality (xty ≤ ‖x‖ · ‖y‖), we havec tΣ− 1

2
XX ΣXY Σ− 1

2
YY︸ ︷︷ ︸

H

d ≤

c tΣ− 1
2

XX ΣXY Σ−1
YY ΣYX Σ− 1

2
XX︸ ︷︷ ︸

G:=HHt

c


1
2 (

d td
) 1

2 ,

ρ ≤ (c tGc)
1
2

(c tc)
1
2
,

ρ2 ≤ c tGc
c tc .

Equality: vectors d and Σ−
1
2

YY ΣYX Σ−
1
2

XX c are collinear.
Maximum: c is the eigenvector with the maximum eigenvalue of
G := Σ−

1
2

XX ΣXY Σ−1
YY ΣYX Σ−

1
2

XX .
Subsequent pairs  using eigenvalues of decreasing magnitudes.

Collinearity: d ∝ Σ−
1
2

YY ΣYX Σ−
1
2

XX c

Transform back to original variables a = Σ−
1
2

XX c, b = Σ−
1
2

YY d .
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Efficient computation of separate PCAs and joint CCA

Separate SVD of X and Y : X = UxSxV t
x , Y = Uy Sy V t

y
 separate PCAs for both views.
Consider sample covariance matrix

ΣXX = 1/n · X tX = 1/n · VxSxUt
xUxSxV t

x = 1/n · VxS2
x V t

x .

Substitute in matrix G :

G = Σ−1/2
XX · ΣXY · Σ−1

YY · ΣYX · Σ−1/2
XX

= (Vx S−1
x V t

x )(Vx Sx U t
x Uy Sy V t

y )(Vy S−2
y V t

y )(Vy Sy U t
y Ux Sx V t

x )(Vx S−1
x V t

x )
= Vx U t

x Uy U t
y Ux V t

x .
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Efficient computation of separate PCAs and joint CCA

c is an eigenvector of G
⇒ c̃ = V t

x c is an eigenvector of Ut
xUy Ut

y Ux with the same e.vals:

Gc = λc
VxUt

xUy Ut
y UxV t

x c = λc,
Ut

xUy Ut
y UxV t

x c = λV t
x c,

Ut
xUy Ut

y Ux c̃ = λc̃.
In matrix form (the columns of matrix C are the eigenvectors c j)

GC = CΛ,
Ut

xUy Ut
y Ux (V t

x C) = (V t
x C)Λ,

Ut
xUy Ut

y Ux C̃ = C̃Λ.
Columns of C̃ are the columns of Ũ in SVD of Ut

xUy = ŨS̃Ṽ t
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Efficient computation of separate PCAs and joint CCA

Now recover C from C̃ : C = Vx C̃ = Vx Ũ
⇒ A = Σ−1/2

XX C = ( 1
nVxS−1

x V t
x )(Vx Ũ) = 1

nVxS−1
x Ũ.

B = 1
nVy S−1

y Ṽ analogous.
Joint CCA: correlation is maximized between pairs of projections
Xai and Y bi , with ai ,bi are the i-th columns of A,B.
The corresponding correlations are ρi = S̃ii .
In summary:

I Compute individual SVDs of X and Y  Vx ,SX ,Vy ,Sy
I Compute “joint” SVD of U t

x Uy = ŨS̃Ṽ t .
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Pixels That Sound [Kidron, Schechner, Elad, 2005]
“People and animals fuse auditory and visual information to obtain robust
perception. A particular benefit of such cross-modal analysis is the ability
to localize visual events associated with sound sources. We aim to achieve
this using computer-vision aided by a single microphone”.

https://webee.technion.ac.il/ yoav/research/pixels-that-sound.html
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Probabilistic CCA
(Bach and Jordan 2005): With Gaussian priors

p(z) = N (zs |0, I)N (zx |0, I)N (zy |0, I),

the MLE in the two-view FA model is equivalent to classical CCA
(up to rotation and scaling).

xi yi

zs
izx

i zy
i

Bx By

W x W y

N

From figure 12.19 in K. Murphy
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Further connections

If y is a discrete class label  CCA is (essentially) equivalent to
Linear Discriminant Analysis (LDA), see (Hastie et al. 1994).
Arbitrary y  CCA is (essentially) equivalent to the
Gaussian Information Bottleneck (Chechik et al. 2005)

I Basic idea: compress x into compact latent representation while
preserving information about y .

I Information theoretic motivation:
Find encoding distribution p(z|x) by minimizing

I(x; z)− βI(z; y)
where β ≥ 0 is some parameter controlling the trade-off between
compression and predictive accuracy.

Arbitrary y , discrete shared latent zs

 dependency-seeking clustering (Klami and Kaski 2008): find
clusters that “explain” the dependency between the two views.
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The Information Bottleneck (Tishby et al., 1999)
FA is powerful, but still limited (Gaussian assumptions etc.). Alternatives?

compress
preserve information

yx

max I(z;y)
Decoder

z

space
Latentmin I(x;z)

Encoder
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Mutual Information

A measure of mutual dependence between two random variables:
reduction of uncertainty by knowing one variable.
For continuous RVs:

I(x; y) =
∫ ∫

p(x, y) log
( p(x, y)

p(x) p(y)

)
dx dy

= DKL(p(x, y)‖p(x) p(y))

=
∫

p(x)
∫

p(y |x) log
(p(y |x)

p(y)

)
dx dy

= Ep(x)DKL(p(y |x)‖p(y)).
x and y independent  knowing x does not give any information
about y  I(x; y) = 0.
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Information Bottleneck

The IB principle: compress x into z, keep information about y .
Assume y and z are conditionally independent given x an solve:

minp(z|x)I(x; z)− βI(z; y).

The original IB formulation is not a generative model, nor do we
actually condition: x, y are only used for estimating p(x, y).

compress
preserve information

yx

max I(z;y)
Decoder

z

space
Latentmin I(x;z)

Encoder
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IB as a latent variable model
Assume z = f (x) + ξ captures all relevant information about y
⇒ x ⊥⊥ y |z
 latent version IB (lat) , basically an asymmetric CCA model.

CCA: p(x|z)p(y |z)p(z)
x ⊥⊥ y | z

xi yi

zs
i

N

IB(lat): p(z|x)p(y |z)p(x)
x ⊥⊥ y | z

xi yi

zi

N
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Gaussian IB (Chechnik et al. 2003)

Assume x and y are jointly Gaussian-distributed.

(x, y) ∼ N
(

0,
(

Σx Σyx
Σxy Σy

))
,

The optimal z is a noisy projection of x:

z = Ax +ξ, ξ ∼ N (0, I) ⇒ z|x ∼ N (Ax, I) , z ∼ N (0,AΣxAt +I).

Analytic form of mutual information:
I(x; z) = 1

2 log |AΣxAt + I|,
I(z; y) = I(x; z)− 1

2 log |AΣx |y At + I|.
general y : rows of A are eigenvectors of Σ−1

x Σx |y  CCA
one-dimensional y :  least squares regression
y is noisy version of x:  PCA
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Sparse Gaussian IB

Recall: z = Ax + ξ, ⇒ z|x ∼ N (Ax, I), z ∼ N (0,AΣxAt + I).
Note that |AΣAt + I| = |ΣAtA + I|  only AtA identifiable.
Sparse version: assume that AtA is diagonal.
Intuition: for RVs x, x ′, any full-rank projection Ax ′ of x ′ would lead
to the same mutual information since I(x, x ′) = I(x; Ax ′), and a
reduction can only be achieved by a rank-deficient matrix A.
If we compress X , A cannot have full rank  AtA diagonal implies
that A can be non-zero only in some subspace, AP =

(
A′ 0

)
.

The mean µ = Ax is a sparse compression of x.
Basically an information-theoretic lasso variant.
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Sparse Gaussian IB: Experiments

Prognosis of cutaneous malignant melanoma (MM) using biomarkers
(Fuchs & Buhmann, 2011; Rey & R. 2014).

Goal: identify biomarkers relevant to the disease evolution.
Crucial for cost-effective prognosis and therapy optimization

Data:
Variable to compress, x: immunohistochemical (IHC) expressions
of 70 candidate biomarkers measured for 364 patients.
Relevance variable, y : 9 different clinical observations about the
stage of the tumor & survival times.
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Sparse Gaussian IB: Experiments
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Multiple Views: Dependency Seeking Clustering
Consider paired samples from different views.
What is the dependency structure between the views ?
Standard approach: global linear dependence detected by CCA.
Generalization → dependency-seeking clustering.
The cluster structure captures dependencies.

Volker Roth (University of Basel) Machine Learning 23 / 25



Dependency Seeking Clustering
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Dependency Seeking Clustering
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