# Machine Learning

Volker Roth

Department of Mathematics & Computer Science University of Basel

Э

ヘロア 人間 アメヨア 人間 アー

# Multiple Views: CCA

- Consider paired samples from different views.
- What is the dependency structure between the views ?
- Standard approach: global linear dependency detected by CCA.



# Canonical Correlation Analysis [Hotelling, 1936]

Often, each data point consists of two views:

- Image retrieval: for each image, have the following:
  - ▶ X: Pixels (or other visual features) Y: Text around the image
- Time series:
  - X: Signal at time t
  - Y: Signal at time t + 1
- Two-view learning: divide features into two sets
  - ► X: Features of a word/object, etc.
  - Y: Features of the context in which it appears

Goal: reduce the dimensionality of the two views jointly.

Find projections such that projected views are maximally correlated.

・ 同 ト ・ ヨ ト ・ ヨ ト

## CCA vs PCA



E

・ロト ・四ト ・ヨト ・ヨト

## CCA vs PCA



# CCA: Setting

 Let X be a random vector ∈ ℝ<sup>p<sub>x</sub></sup> and Y be a random vector ∈ ℝ<sup>p<sub>y</sub></sup> Consider the combined (p := p<sub>x</sub> + p<sub>y</sub>)-dimensional random vector Z = (X, Y)<sup>t</sup>. Let its (p × p) covariance matrix be partitioned into blocks according to:

$$\boldsymbol{Z} = \begin{bmatrix} \boldsymbol{\Sigma}_{XX} \in \mathbb{R}^{p_X \times p_X} & | & \boldsymbol{\Sigma}_{XY} \in \mathbb{R}^{p_X \times p_y} \\ \boldsymbol{\Sigma}_{YX} \in \mathbb{R}^{p_y \times p_x} & | & \boldsymbol{\Sigma}_{YY} \in \mathbb{R}^{p_y \times p_y} \end{bmatrix}$$

• Assuming centered data, the blocks in the covariance matrix can be estimated from observed data sets  $X \in \mathbb{R}^{n \times p_x}$ ,  $Y \in \mathbb{R}^{n \times p_y}$ :

$$\mathsf{Z} \approx \frac{1}{n} \begin{bmatrix} X^t X & | & X^t Y \\ Y^t X & | & Y^t Y \end{bmatrix}$$

# CCA: Setting

• Correlation $(x, y) = \frac{\text{covariance}(x, y)}{\text{standard deviation}(x) \cdot \text{standard deviation}(y)}$ 

$$\rho = cor(x, y) = \frac{cov(x, y)}{\sigma(x)\sigma(y)}$$

Sample correlation:

$$\rho = \frac{\sum_{i} (x_{i} - \bar{x}) (y_{i} - \bar{y})^{t}}{\sqrt{\sum_{i} (x_{i} - \bar{x})^{2}} \sqrt{\sum_{i} (y_{i} - \bar{y})^{2}}} \stackrel{\text{centered observations}}{=} \frac{\boldsymbol{x}^{t} \boldsymbol{y}}{\sqrt{\boldsymbol{x}^{t} \boldsymbol{x}} \sqrt{\boldsymbol{y}^{t} \boldsymbol{y}}}.$$

- Want to find maximally correlated 1D-projections  $x^t a$  and  $y^t b$ .
- Projected covariance:  $cov(\mathbf{x}^t \mathbf{a}, \mathbf{y}^t \mathbf{b}) \stackrel{\text{zero means}}{=} \mathbf{a}^t \Sigma_{XY} \mathbf{b}$ .

• Define 
$$\boldsymbol{c} = \Sigma_{XX}^{\frac{1}{2}} \boldsymbol{a}, \ \boldsymbol{d} = \Sigma_{YY}^{\frac{1}{2}} \boldsymbol{b}.$$

• Thus, the projected correlation coefficient is:  $\rho = \frac{c^t \Sigma_{XX}^{-\frac{1}{2}} \Sigma_{XY} \Sigma_{YY}^{-\frac{1}{2}} d}{\sqrt{c^t c} \sqrt{d^t d}}.$ 

・ロト ・御 ト ・ ヨト ・ ヨト ・ ヨ

# CCA: Setting

• By the Cauchy-Schwarz inequality  $(\mathbf{x}^t \mathbf{y} \le \|\mathbf{x}\| \cdot \|\mathbf{y}\|)$ , we have

$$\begin{pmatrix} \boldsymbol{c}^{t} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}}^{-\frac{1}{2}}}_{\boldsymbol{H}} \end{pmatrix} \boldsymbol{d} \leq \begin{pmatrix} \boldsymbol{c}^{t} \underbrace{\boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{Y}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{Y}}^{-\frac{1}{2}} \boldsymbol{\Sigma}_{\boldsymbol{Y}\boldsymbol{X}} \boldsymbol{\Sigma}_{\boldsymbol{X}\boldsymbol{X}}^{-\frac{1}{2}}}_{\boldsymbol{G}:=\boldsymbol{H}\boldsymbol{H}^{t}} \boldsymbol{c} \end{pmatrix}^{\frac{1}{2}} (\boldsymbol{d}^{t}\boldsymbol{d})^{\frac{1}{2}}, \\ \rho \leq \frac{(\boldsymbol{c}^{t}\boldsymbol{G}\boldsymbol{c})^{\frac{1}{2}}}{(\boldsymbol{c}^{t}\boldsymbol{c})^{\frac{1}{2}}}, \\ \rho^{2} \leq \frac{\boldsymbol{c}^{t}\boldsymbol{G}\boldsymbol{c}}{\boldsymbol{c}^{t}\boldsymbol{c}}. \end{cases}$$

- Equality: vectors **d** and  $\sum_{YY}^{-\frac{1}{2}} \sum_{YX} \sum_{XX}^{-\frac{1}{2}} c$  are collinear.
- Maximum: c is the eigenvector with the maximum eigenvalue of  $G := \sum_{XX}^{-\frac{1}{2}} \sum_{XY} \sum_{YY}^{-1} \sum_{YX} \sum_{XX}^{-\frac{1}{2}}$ . Subsequent pairs  $\rightsquigarrow$  using eigenvalues of decreasing magnitudes.

• Collinearity: 
$$\boldsymbol{d} \propto \Sigma_{YY}^{-\frac{1}{2}} \Sigma_{YX} \Sigma_{XX}^{-\frac{1}{2}} \boldsymbol{c}$$

• Transform back to original variables  $\boldsymbol{a} = \sum_{XX}^{-\frac{1}{2}} \boldsymbol{c}, \ \boldsymbol{b} = \sum_{YY}^{-\frac{1}{2}} \boldsymbol{d}.$ 

Efficient computation of separate PCAs and joint CCA

- Separate SVD of X and Y:  $X = U_x S_x V_x^t$ ,  $Y = U_y S_y V_y^t$  $\rightsquigarrow$  separate PCAs for both views.
- Consider sample covariance matrix

 $\Sigma_{XX} = 1/n \cdot X^t X = 1/n \cdot V_x S_x U_x^t U_x S_x V_x^t = 1/n \cdot V_x S_x^2 V_x^t.$ 

• Substitute in matrix G:

$$G = \Sigma_{XX}^{-1/2} \cdot \Sigma_{XY} \cdot \Sigma_{YY}^{-1} \cdot \Sigma_{YX} \cdot \Sigma_{XX}^{-1/2} = (V_x S_x^{-1} V_x^t) (V_x S_x U_x^t U_y S_y V_y^t) (V_y S_y^{-2} V_y^t) (V_y S_y U_y^t U_x S_x V_x^t) (V_x S_x^{-1} V_x^t) = V_x U_x^t U_y U_y^t U_x V_x^t.$$

イロト イポト イヨト イヨト 二日

## Efficient computation of separate PCAs and joint CCA

• **c** is an eigenvector of **G** 

 $\Rightarrow \tilde{\boldsymbol{c}} = V_x^t \boldsymbol{c}$  is an eigenvector of  $U_x^t U_y U_y^t U_x$  with the same e.vals:

$$G\boldsymbol{c} = \lambda \boldsymbol{c}$$

$$V_{x} U_{x}^{t} U_{y} U_{y}^{t} U_{x} V_{x}^{t} \boldsymbol{c} = \lambda \boldsymbol{c},$$

$$U_{x}^{t} U_{y} U_{y}^{t} U_{x} V_{x}^{t} \boldsymbol{c} = \lambda V_{x}^{t} \boldsymbol{c},$$

$$U_{x}^{t} U_{y} U_{y}^{t} U_{x} \boldsymbol{\lambda}_{x}^{t} \boldsymbol{c} = \lambda \tilde{\boldsymbol{c}}.$$

• In matrix form (the columns of matrix C are the eigenvectors  $c_j$ )

 $GC = C\Lambda,$   $U_x^t U_y U_y^t U_x (V_x^t C) = (V_x^t C)\Lambda,$  $U_x^t U_y U_y^t U_x \tilde{C} = \tilde{C}\Lambda.$ 

• Columns of  $\tilde{C}$  are the columns of  $\tilde{U}$  in SVD of  $U_x^t U_y = \tilde{U} \tilde{S} \tilde{V}^t$ 

・ロト ・四ト ・ヨト ・ ヨト

## Efficient computation of separate PCAs and joint CCA

- Now recover C from  $\tilde{C}$ :  $C = V_x \tilde{C} = V_x \tilde{U}$  $\Rightarrow A = \sum_{XX}^{-1/2} C = (\frac{1}{n} V_x S_x^{-1} V_x^t) (V_x \tilde{U}) = \frac{1}{n} V_x S_x^{-1} \tilde{U}.$
- $B = \frac{1}{n} V_y S_y^{-1} \tilde{V}$  analogous.
- Joint CCA: correlation is maximized between pairs of projections Xa<sub>i</sub> and Yb<sub>i</sub>, with a<sub>i</sub>, b<sub>i</sub> are the *i*-th columns of A, B. The corresponding correlations are ρ<sub>i</sub> = S̃<sub>ii</sub>.
- In summary:
  - Compute individual SVDs of X and  $Y \rightsquigarrow V_x, S_X, V_y, S_y$
  - Compute "joint" SVD of  $U_x^t U_y = \tilde{U}\tilde{S}\tilde{V}^t$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

# Pixels That Sound [Kidron, Schechner, Elad, 2005]

"People and animals fuse auditory and visual information to obtain robust perception. A particular benefit of such cross-modal analysis is the ability to localize visual events associated with sound sources. We aim to achieve this using computer-vision aided by a single microphone".



https://webee.technion.ac.il/ yoav/research/pixels-that-sound.html

・ロト ・ 一 マ ・ コ ト ・ 日 ト

# Probabilistic CCA

(Bach and Jordan 2005): With Gaussian priors

 $p(\mathbf{z}) = \mathcal{N}(\mathbf{z}^{s}|\mathbf{0}, I) \mathcal{N}(\mathbf{z}^{x}|\mathbf{0}, I) \mathcal{N}(\mathbf{z}^{y}|\mathbf{0}, I),$ 

the MLE in the two-view FA model is equivalent to classical CCA (up to rotation and scaling).



From figure 12.19 in K. Murphy

< ロ > < 同 > < 三 > < 三 >

## Further connections

- If y is a discrete class label → CCA is (essentially) equivalent to Linear Discriminant Analysis (LDA), see (Hastie et al. 1994).
- Arbitrary y ~>> CCA is (essentially) equivalent to the Gaussian Information Bottleneck (Chechik et al. 2005)
  - Basic idea: compress x into compact latent representation while preserving information about y.
  - Information theoretic motivation:
     Find encoding distribution p(z|x) by minimizing

 $l(\mathbf{x}; \mathbf{z}) - \beta l(\mathbf{z}; \mathbf{y})$ 

where  $\beta \ge 0$  is some parameter controlling the trade-off between compression and predictive accuracy.

Arbitrary y, discrete shared latent z<sup>s</sup>
 → dependency-seeking clustering (Klami and Kaski 2008): find clusters that "explain" the dependency between the two views.

イロト イポト イヨト イヨト 三日

# The Information Bottleneck (Tishby et al., 1999)

FA is powerful, but still limited (Gaussian assumptions etc.). Alternatives?



# Mutual Information

- A measure of **mutual dependence** between two random variables: reduction of uncertainty by knowing one variable.
- For continuous RVs:

$$\begin{split} l(\mathbf{x}; \mathbf{y}) &= \int \int p(\mathbf{x}, \mathbf{y}) \log \left( \frac{p(\mathbf{x}, \mathbf{y})}{p(\mathbf{x}) p(\mathbf{y})} \right) d\mathbf{x} d\mathbf{y} \\ &= D_{KL}(p(\mathbf{x}, \mathbf{y}) \| p(\mathbf{x}) p(\mathbf{y})) \\ &= \int p(\mathbf{x}) \int p(\mathbf{y} | \mathbf{x}) \log \left( \frac{p(\mathbf{y} | \mathbf{x})}{p(\mathbf{y})} \right) d\mathbf{x} d\mathbf{y} \\ &= E_{p(\mathbf{x})} D_{KL}(p(\mathbf{y} | \mathbf{x}) \| p(\mathbf{y})). \end{split}$$

• **x** and **y** independent  $\rightsquigarrow$  knowing **x** does not give any information about  $\mathbf{y} \rightsquigarrow l(\mathbf{x}; \mathbf{y}) = 0$ .

イロト イボト イヨト 一日

#### Information Bottleneck

- The IB principle: compress x into z, keep information about y.
- Assume y and z are conditionally independent given x an solve:

$$\min_{p(\boldsymbol{z}|\boldsymbol{x})} I(\boldsymbol{x}; \boldsymbol{z}) - \beta I(\boldsymbol{z}; \boldsymbol{y}).$$

The original IB formulation is not a generative model, nor do we actually condition: x, y are only used for estimating p(x, y).



#### IB as a latent variable model

Assume  $\mathbf{z} = f(\mathbf{x}) + \boldsymbol{\xi}$  captures all relevant information about  $\mathbf{y}$  $\Rightarrow \mathbf{x} \perp \mathbf{y} | \mathbf{z}$ 

 $\sim$  latent version IB <sup>(lat)</sup>, basically an asymmetric CCA model.

CCA: 
$$p(x|z)p(y|z)p(z)$$
  
 $x \perp y \mid z$ 

$$\begin{array}{c} \mathsf{IB}^{(\mathsf{lat})} \colon p(z|x)p(y|z)p(x) \\ x \perp y \mid z \end{array}$$





- 4 同 ト 4 ヨ ト

# Gaussian IB (Chechnik et al. 2003)

• Assume x and y are jointly Gaussian-distributed.

$$(\mathbf{x}, \mathbf{y}) \sim \mathcal{N}\left(\mathbf{0}, \begin{pmatrix} \Sigma_x & \Sigma_{yx} \\ \Sigma_{xy} & \Sigma_y \end{pmatrix}\right),$$

• The optimal z is a noisy projection of x:

 $\boldsymbol{z} = A\boldsymbol{x} + \boldsymbol{\xi}, \quad \boldsymbol{\xi} \sim \mathcal{N}(\boldsymbol{0}, \boldsymbol{I}) \Rightarrow \boldsymbol{z} | \boldsymbol{x} \sim \mathcal{N}(A\boldsymbol{x}, \boldsymbol{I}), \ \boldsymbol{z} \sim \mathcal{N}(\boldsymbol{0}, A\Sigma_{x}A^{t} + \boldsymbol{I}).$ 

- Analytic form of mutual information:  $l(\mathbf{x}; \mathbf{z}) = \frac{1}{2} \log |A\Sigma_x A^t + I|,$  $l(\mathbf{z}; \mathbf{y}) = l(\mathbf{x}; \mathbf{z}) - \frac{1}{2} \log |A\Sigma_{x|y} A^t + I|.$
- general y: rows of A are eigenvectors of  $\Sigma_x^{-1}\Sigma_{x|y} \rightsquigarrow \mathbb{CCA}$
- one-dimensional y: ~> least squares regression
- y is noisy version of x:  $\rightsquigarrow$  PCA

## Sparse Gaussian IB

- Recall:  $\mathbf{z} = A\mathbf{x} + \boldsymbol{\xi}$ ,  $\Rightarrow \mathbf{z} | \mathbf{x} \sim \mathcal{N}(A\mathbf{x}, I), \mathbf{z} \sim \mathcal{N}(\mathbf{0}, A\Sigma_{\mathbf{x}}A^t + I)$ .
- Note that  $|A\Sigma A^t + I| = |\Sigma A^t A + I| \rightsquigarrow$  only  $A^t A$  identifiable.
- **Sparse version:** assume that  $A^t A$  is diagonal.
- Intuition: for RVs x, x', any full-rank projection Ax' of x' would lead to the same mutual information since I(x, x') = I(x; Ax'), and a reduction can only be achieved by a rank-deficient matrix A.
- If we compress X, A cannot have full rank  $\rightsquigarrow A^t A$  diagonal implies that A can be non-zero only in some subspace,  $AP = \begin{pmatrix} A' & 0 \end{pmatrix}$ .
- The mean  $\mu = Ax$  is a sparse compression of x.
- Basically an information-theoretic lasso variant.

イロト イボト イヨト 一日

# Sparse Gaussian IB: Experiments

Prognosis of cutaneous **malignant melanoma** (MM) using biomarkers (Fuchs & Buhmann, 2011; Rey & R. 2014).

- **Goal: identify biomarkers** relevant to the disease evolution.
- Crucial for cost-effective prognosis and therapy optimization

#### Data:

- Variable to compress, *x*: **immunohistochemical (IHC) expressions** of 70 candidate biomarkers measured for 364 patients.
- Relevance variable, **y**: 9 different clinical observations about the stage of the tumor & survival times.

## Sparse Gaussian IB: Experiments



# Multiple Views: Dependency Seeking Clustering

- Consider paired samples from different views.
- What is the dependency structure between the views ?
- Standard approach: global linear dependence detected by CCA.
- $\bullet~$  Generalization  $\rightarrow$  dependency-seeking clustering.
- The cluster structure captures dependencies.



# Dependency Seeking Clustering



Volker Roth (University of Basel)

24 / 25

Э

< ∃ →

# Dependency Seeking Clustering



Volker Roth (University of Basel)

25 / 25