
Page 1

Arrays

Eindimensionale Arrays

Array = Tabelle gleichartiger Elemente

a[0] a[1] a[2] a[3]

a

• Name a bezeichnet das gesamte Array.

• Elemente werden über Indizes angesprochen (z. B. a[3]).

• Indizierung beginnt bei 0.

• Elemente sind namenlose Variablen.

• Deklariert ein Array namens a (bzw. b).

• Seine Elemente sind vom Typ int (bzw. float).

• Seine Länge ist noch unbekannt.

Deklaration

int[] a;
float[] b;

• Legt ein neues int- Array mit 5 Elementen an

(aus dem Heap- Speicher).

• Weist seine Adresse a zu.

Erzeugung

a = new int[5];

b = new float[10];

a a[0] a[1] a[2] a[3] a[4] Array- Variablen enthalten Zeiger auf Arrays!

(Zeiger = Speicheradresse)

Page 2

Arbeiten mit Arrays

Zugriff auf Arrayelemente

a[3] = 0;

int i =1;

a[3* i+ 1] = a[3];

• Arrayelemente werden wie Variablen benutzt.

• Index kann ein ganzzahliger Ausdruck sein.

• Laufzeitfehler, falls Array noch nicht erzeugt wurde.

• Laufzeitfehler, falls Index < 0 oder  Arraylänge.

• length ist Standardoperator, der auf alle Arrays

angewendet werden kann.

• Liefert Anzahl der Elemente (hier 5).

Arraylänge abfragen

int len = a. length;

Beispiele

for (int i = 0; i < a. length; i++) // Array einlesen

a[i] = In. readInt();

int sum = 0; // Elemente aufaddieren

for (int i = 0; i < a. length; i++)

sum += a[i];

a= new int[4];

a[0] a[1] a[2]

a 0 0 0b = a;

b

Arrayzuweisung

Arrayelemente werden in Java

standardmäßig mit 0 initialisiert .

a[0] a[1] a[2]

a 0 0 0

int[] a, b;

a = new int[3];

b bekommt denselben Wert wie a.

Arrayzuweisung ist in Java Zeigerzuweisung!

b[0] b[1] b[2]

a[0] = 17;
Ändert in diesem Fall auch b[0]

a[0] a[1] a[2]

a 17 0 0

b[0] b[1] b[2]
b

b = null;

a 0 0 0 0

b 17 0 0

a zeigt jetzt auf neues Array.

a 0 0 0 0

b 17 0 0

null: Spezialwert, der auf kein Objekt zeigt;

kann jeder Arrayvariablen zugewiesen

werden.

Page 3

Freigeben von Arrayspeicher

static void P() {

int[] a = new int[3];

int[] b = new int[4];

int[] c = new int[2];

...

...

b = a;

...

...

c = null;

...

...

...

}

a

b

c

Kein Zeiger mehr auf dieses Objekt

wird eingesammelt.

a

b

c

Am Methodenende werden lokale Variablen

freigegeben, Zeiger a, b, c fallen weg,

Objekt wird eingesammelt.

a

b

c

Garbage Collection (Automatische Speicherbereinigung)

Objekte, auf die kein Zeiger mehr verweist, werden automatisch eingesammelt.

Ihr Speicher steht für neue Objekte zur Verfügung

a

b

c

Kein Zeiger mehr auf dieses Objekt wird

eingesammelt.

Initialisieren von Arrays

identisch zu

int[] primes = new int[5];
primes[0] = 2;
primes[1] = 3;
primes[2] = 5;
primes[3] = 7;
primes[4] = 11;

Initialisierung kann auch bei der Erzeugung erfolgen.

int[] primes ;

primes = new int[] {2, 3, 5, 7, 11};

primes
int[] primes = {2, 3, 5, 7, 11}; 2 3 5 7 11

Page 4

Kopieren von Arrays

Typumwandlung nötig, da clone etwas vom Typ Object[] liefert.

int[] a = {1,2,3,4,5 }; a 1 2 3 4 5

int[] b; b

b = (int[]) a. clone() ; a 1 2 3 4 5

b 1 2 3 4 5

Kommandozeilenparameter

Programmaufruf mit Parametern

java Programmname par1 par2 ... parn

Parameter werden als String- Array an main- Methode übergeben

class Sample {

public static void main (String[] arg) {

for (int i = 0; i < arg. length; i++)

System.out.println(arg[i]);

...

}

}

Aufruf z. B. : java Sample Anton /a 10

Ausgabe : Anton

/a

10

Page 5

Interaktives Programmieren

Notebook: Arrays.ipynb

Beispiel: sequentielles Suchen

Suchen eines Werts x in einem Array mit 100 Einträgen

falls gefunden falls nicht gefunden

0 17 99 0 99

pos=17 ; pos=-1 ;

a[pos]==x ;

static int search (int[] a, int x) {

int pos = a. length - 1;

while (pos >= 0 && a[pos] != x) pos--;

return pos; // pos == -1 || a[pos] == x

}

Achtung: int[] a wird nur als Zeiger übergeben.

Würde search etwas in a ändern (z. B. a[3] = 0;), würde sich diese Änderung auch

auf das Array im Rufer auswirken.

Page 6

Beispiel: binäres Suchen

• Schneller als sequentielles Suchen.

• Array muß allerdings sortiert sein.

z. B. Suche von 13

0 1 2 3 4 5 6 7

a 2 3 5 7 11 13 17 19

low m high

• Index des mittleren Elements bestimmen (m = (low + high) / 2)

• 13 > a[m] zwischen a[m+ 1] und a[high] weitersuchen

0 1 2 3 4 5 6 7

a 2 3 5 7 11 13 17 19

low m high

Binäres Suchen

2 3 3 5 7 7 8 10 11 15 16 17

2 3 3 5 7 7 8 10 11 15 16 17

2 3 3 5 7 7 8 10 11 15 16 17

2 3 3 5 7 7 8 10 11 15 16 17

static int binarySearch (int[] a, int x) {

int low = 0;

int high = a. length - 1;

while (low <= high) {

int m = (low + high) / 2;

if (a[m] == x) return m;

else if (x > a[m]) low = m + 1;

else high = m - 1; /* x < a[m] */

} /* low > high */

return -1;

}

• Suchraum wird in jedem Schritt halbiert.

• Bei n Arrayelementen sind höchstens log2(n) Schritte nötig, um jedes Element zu finden

n seq. Suchen bin. Suchen

10 10 4

100 100 7

1000 1000 10

10000 10000 14

Page 7

Primzahlenberechnung: Sieb des Erathostenes

1. "Sieb" wird mit den natürlichen Zahlen ab 2 gefüllt.

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, ...

2. Erste Zahl im Sieb ist Primzahl. Entferne sie und alle ihre Vielfachen.

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, ...

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, ...

3. Wiederhole Schritt 2

3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, ...

5, 7, 11, 13, 17, 19, 23, 25, ...

... Wiederhole Schritt 2

5, 7, 11, 13, 17, 19, 23, 25, ...

7, 11, 13, 17, 19, 23, ...

Implementierung

Sieb = boolean- Array, Zahl i im Sieb  sieve[i] == true

0 1 2 3 4 5 6 7 8 9

false false true true true true true true true true

Zahl i entfernen: sieve[i] = false

0 1 2 3 4 5 6 7 8 9

false false false true false true false true false true

static void printPrimes (int max) {

boolean[] sieve = new boolean[max + 1];

for (int i = 2; i <= max; i++) sieve[i] = true;

}

for (int i = 2; i <= max;) {

System.out.print(i + " "); // i is prime

for (int j = i; j <= max; j = j + i) sieve[j] = false;

while (i <= max && !sieve[i]) i++;

}

Page 8

Mehrdimensionale Arrays
Zweidimensionales Array = Matrix

a[0][0] a[0][2]

a[0]

a[1]

a[2]

a[3]

Deklaration und Erzeugung

int[][] a;

a = new int[4][3];

Zugriff

a[i][j] = a[i][j+ 1];

In Java als Array von Arrays implementiert

a a[0][0] a[0][1] a[0][2]

a[0]

a[1][0] a[1][1] a[1][2]

a[1]

a[2][0] a[2][1] a[2][2]

a[2]

a[3][0] a[3][1] a[3][2]

a[3]

Mehrdimensionale Arrays

int[][] a = new int[3][];

a[0] = new int[4];

a[1] = new int[2];

a[2] = new int[3];

Zeilen können unterschiedlich lang sein (das ist aber selten sinnvoll)

a a[0][0] a[0][1] a[0][2] a[0][3]

a[0]

a[1][0] a[1][1]

a[1]

a[2][0] a[2][1] a[2][2]

a[2]

Initialisierung

int[][] a = {{ 1, 2, 3},{ 4, 5, 6}};

a a[0][0] a[0][1] a[0][2]

a[1][0] a[1][1] a[1][2]

Page 9

Beispiel: Matrixmultiplikation

static float[][] matrixMult (float[][] a, float[][] b) {

float[][] c = new float[a. length][b[0]. length];

return c;

}

a b c
i k i

x =

j
j

for (int i = 0; i < a. length; i++)

for (int j = 0; j < b[0]. length; j++) {

float sum = 0;

for (int k = 0; k < b. length; k++)

sum += a[i][k] * b[k][j];

c[i][j] = sum;

}

Iterator-Form der for-Anweisung Java5

In einer Schleife sollen alle Werte eines Arrays verwendet werden.

……

int[] primes ={2,3,5,7,11,13,17}

for(int p: primes) System.out.println(p);

……

Seit Java 1.5

gibt es hierzu eine spezielle äquivalente Form der for-Anweisung.

……

int[] primes ={2,3,5,7,11,13,17}

for(int i=0;i<primes.length;i++) System.out.println(primes[i]);

……

Page 10

Methoden mit variabler Parameterzahl

static int sum(int[] values){

int result =0;

for (int i =0; i < values.length; i++) result += values[i];

return result;

}

int res = sum(new int[] {1,2,5,9}) // Anwenden der Methode sum

Es hierzu eine äquivalente Form.

static int sum2(int… values){

int result =0;

for (int i =0; i < values.length; i++) result += values[i];

return result;

}

int res = sum2(1,2,5,9) // Anwenden der Methode sum2

Wird vom Compiler automatisch in obige Form umgewandelt!

Interaktives Programmieren

Notebook: Arrays.ipynb

