
Lambda Ausdrücke und funktionale ProgrammierungLambda Ausdrücke und funktionale Programmierung
Marcel Lüthi Marcel Lüthi
Departement Mathematik und InformatikDepartement Mathematik und Informatik

AgendaAgenda
Geschichte: Objektorientierte und Funktionale Programmierung
Funktionen als Objekte
Lambda Audrücke in Java
Funktionsobjekte in Java Standardbibliothek

Geschichte: Geschichte: Objektorientierte und FunktionaleObjektorientierte und Funktionale
ProgrammierungProgrammierung

Erste ProgrammierungErste Programmierung
assembly
SUMDIGIN CSECT
 USING SUMDIGIN,R13
 B 72(R15)
 DC 17F'0'
 STM R14,R12,12(R13)
 ST R13,4(R15)
 ST R15,8(R13)
 LR R13,R15
 LA R11,NUMBERS
 LA R8,1
LOOPK CH R8,=H'4'
 BH ELOOPK
 SR R10,R10
 LA R7,1
LOOPJ CH R7,=H'8'
 BH ELOOPJ
 LR R4,R11
 BCTR R4,0
 AR R4,R7
 MVC D,0(R4)

Erste HochsprachenErste Hochsprachen
Program SumOFDigits;

function SumOfDigitBase(n:UInt64;base:LongWord): LongWord;
var
 tmp: Uint64;
 digit,sum : LongWord;
Begin
 digit := 0;
 sum := 0;
 While n > 0 do
 Begin
 tmp := n div base;
 digit := n-base*tmp;
 n := tmp;
 inc(sum,digit);
 end;
 SumOfDigitBase := sum;
end;
Begin
 writeln(' 1 sums to ', SumOfDigitBase(1,10));
 writeln('1234 sums to ', SumOfDigitBase(1234,10));
 writeln(' $FE sums to ', SumOfDigitBase($FE,16));
 writeln('$FOE sums to ', SumOfDigitBase($F0E,16));

 writeln('18446744073709551615 sums to ', SumOfDigitBase(High(Uint64),10));

end.

Wichtige FrageWichtige Frage

Wie kann man Programme besser strukturieren?

Funktionale ProgrammierungFunktionale Programmierung
Idee: Komposition von
(mathematischen) Funktionen um
aus einfachen Teilen komplexe
Funktionalität zu bauen
Mathematische Grundlage:
Lambdakalkül
Aktionen / Berechnungen im
Zentrum

Objektorientierte ProgrammiereungObjektorientierte Programmiereung
Idee: Organisation von Code in
"selbstorganisierende" Module
(Objekte)
Management von Zustand durch
Kapselung
Objekte im Zentrum

Konzepte entwickelt in 60 und 70er Jahren

Funktionale Konstrukte in JavaFunktionale Konstrukte in Java

Funktionen als Argumente
Anonyme Funktionen
(Closures)

Moderne Programmiersprachen integrieren Konzepte von
Funktionalen Sprachen:

Funktionen und ObjekteFunktionen und Objekte

FunktionsobjekteFunktionsobjekte

Idee: Funktionen sind (seiteneffektfreie) Objekte mit nur einer
Methode

Funktionsobjekte: ImplementationsstrategieFunktionsobjekte: Implementationsstrategie

1. Deklaration: Interface für Funktionen de�nieren

2. De�nition der Funktion: Anonymes Objekt erstellen

interface Function {
 int apply(int x);
}

Function square = new Function() {
 public int apply(int x) { return x * x; }
}

Diskutieren Sie:Diskutieren Sie:
Wie viele verschiedene Interfaces fur Funktionen brauchen wir, wenn wir alle
Kombinationen von Funktion implementieren wollen, wobei und
jeweilsString, Integer und Double sein können?

Wie könnten wir elegant ein allgemeines Funktionsinterface de�nieren?

T → R T R

Generische FunktionsobjekteGenerische Funktionsobjekte
Java Generics helfen uns die Funktion nur einmal zu de�nieren

In [40]:

BeispielanwendungBeispielanwendung

In [44]:

interface Function<T, R> {
 R apply(T x);
}

Function<Double, Double> square = new Function<>() {
 public Double apply(Double x) {
 return x * x;
 }
}

Anwendungsbeispiel: Transformation von ListenelementenAnwendungsbeispiel: Transformation von Listenelementen

Gegeben: Liste von ZahlenGegeben: Liste von Zahlen

In [49]:

Aufgabe: Führe mathematische Funktion auf Elementen ausAufgabe: Führe mathematische Funktion auf Elementen aus

Bestehende Listenelement dürfen nicht verändert werden
Es soll neue Liste ausgegeben werden

LinkedList<Double> numbers0To10 = new LinkedList<>();
for (int i = 0; i < 10; i++) {
 numbers0To10.add(new Double(i));
}

Lösung: Die map MethodeLösung: Die map Methode
In [51]: static LinkedList<Double> map(LinkedList<Double> list, Function<Double, Double> f) {

 LinkedList<Double> newList = new LinkedList<>();
 for (Double v : list) {
 newList.add(f.apply(v));
 }
 return newList;
}

Lösung: Die map MethodeLösung: Die map Methode
In [51]:

AnwendungAnwendung

In [53]:

static LinkedList<Double> map(LinkedList<Double> list, Function<Double, Double> f) {
 LinkedList<Double> newList = new LinkedList<>();
 for (Double v : list) {
 newList.add(f.apply(v));
 }
 return newList;
}

LinkedList<Double> newList = map(numbers0To10, square);
System.out.println(newList);

[0.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0]

ÜbungÜbung
Können Sie die map Methode so umschreiben, dass als Ausgabe nicht mehr ein
Double verlangt wird, sondern ein beliebiger Typ angegeben werden kann?
Können Sie die map Methode so umschreiben, dass diese nicht mehr nur auf
Listen von Double, sondern allgemeinen Listen arbeitet?

In [50]: // Ihr Code

Lambda AusdrückeLambda Ausdrücke

Lambda AusdrückeLambda Ausdrücke
Java hat eine spezielle Syntax de�niert um Funktionsobjekte zu erstellen.
Bekannt als lambda Ausdrücke

BeispielBeispiel

Parameter -> Ausdruck

x -> x * x

Lambda SyntaxLambda Syntax

lambda = ArgList "->" Body
ArgList = Identifier
 | "(" [Type] Identifier { "," [Type] Identifier } ")"
 | "()"
Body = Expression | "{" [Statement ";"]+ "}"

Functional InterfaceFunctional Interface
Ein Functional Interface ist ein Interface oder Abstrakte Klasse mit genau eine
Methode

Methode entspricht "Berechnung" der Funktion

Beispiel:Beispiel:
interface Function<T, R> {
 R apply(T t);
}

Functional InterfaceFunctional Interface
Ein Functional Interface ist ein Interface oder Abstrakte Klasse mit genau eine
Methode

Methode entspricht "Berechnung" der Funktion

Beispiel:Beispiel:

Lambda Ausdrücke können an ein Functional Interface zugewiesen werden.
Lambdas bekommen einen Namen

interface Function<T, R> {
 R apply(T t);
}

Function<Double, Double> f = (Double d) -> d * d;

Lambdas als MethodenargumenteLambdas als Methodenargumente

Erlaubt einfache Funktionen mit wenig Code zu erstellen

BeispielBeispiel

In [25]: LinkedList<Double> ll = new LinkedList<>();
for (int i = 0; i < 10; i++) {
 ll.add(new Double(i));
}

// oben definierte Map Methode jetzt mit Lambdas
map(ll, (Double d) -> d * 2);

Out[25]: [0.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0]

Lambdas als RückgabewerteLambdas als Rückgabewerte

Methoden können Funktionen zurückgeben.
Function<Double, Double> doubleFun(Double x) {
 return x -> 2 * x;
}

Übung:Übung:

Schreiben Sie eine Methode applyTwice, die eine Funktion f vom Typ

Function<Double, Double> als Argument nimmt, und eine Funktion zurückgibt,
die diese zwei mal hintereinander anwendet, also der Funktion

entspricht
Können Sie diese als generische Funktion schreiben?

In [54]:

x ↦ f(f(x))

// Ihr Code

Lambdas mit AnweisungsblockLambdas mit Anweisungsblock
Rechte Seite von Lambda Ausdruck kann beliebiger Block sein

Block muss den richtigen Typ zurückliefern
Function<T, R> f = (T t) -> {
 Statement1;
 Statment2;
 return r; // r ist vom Type R
}

Lambdas mit AnweisungsblockLambdas mit Anweisungsblock
Folgendes funktioniert:

In [55]: Function<String, Integer> f = (String s) -> {
 System.out.println(s);
 return Integer.parseInt(s);
};
f.apply("5");

Out[55]:

5

5

Lambdas mit AnweisungsblockLambdas mit Anweisungsblock
Folgendes funktioniert:

In [55]:

Aber hier gibt es einen Typfehler

In [56]:

Function<String, Integer> f = (String s) -> {
 System.out.println(s);
 return Integer.parseInt(s);
};
f.apply("5");

Function<String, Integer> f = (String s) -> {
 System.out.println(s);
 return s;
}

Out[55]:

5

5

| return s;
incompatible types: bad return type in lambda expression
 java.lang.String cannot be converted to java.lang.Integer

MethodenreferenzenMethodenreferenzen
Wir können Methoden Functional Interfaces zuweisen:

BeispielBeispiel

In [36]:

Function<Double, Double> f = AClass::aMethod;

Function<Double, Double> cos = Math::cos;
map(numbers0To10, cos)

Out[36]: [1.0, 0.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.65364362086361
19, 0.28366218546322625, 0.960170286650366, 0.7539022543433046, -0.14550003380861354,
-0.9111302618846769]

MethodenreferenzenMethodenreferenzen
Wir können Methoden Functional Interfaces zuweisen:

BeispielBeispiel

In [36]:

oder kürzer

In [57]:

Function<Double, Double> f = AClass::aMethod;

Function<Double, Double> cos = Math::cos;
map(numbers0To10, cos)

map(numbers0To10, Math::cos)

Out[36]: [1.0, 0.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.65364362086361
19, 0.28366218546322625, 0.960170286650366, 0.7539022543433046, -0.14550003380861354,
-0.9111302618846769]

Out[57]: [1.0, 0.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.65364362086361
19, 0.28366218546322625, 0.960170286650366, 0.7539022543433046, -0.14550003380861354,
-0.9111302618846769]

Funktionsobjekte mit mehreren ArgumentenFunktionsobjekte mit mehreren Argumenten
Idee funktioniert für Funktionen mit beliebig vielen Argumenten

In [58]: interface Function2<S, T, R> {
 R apply(S s, T t);
}

Function2<Double, Double, Double> sum = (x, y) -> x + y;

Function2<Double, Double, String> sumAsString = (x, y) -> new Double(x + y).toString();

sumAsString.apply(3.0, 5.0)

Out[58]: 8.0

PrädikatePrädikate

Prädikat: Ein Funktionsobjekt das True oder False zurückgibt

interface Predicate<T>
 boolean test(T x);
}

Prädikat: BeispielPrädikat: Beispiel
In [38]: interface Predicate<T> {

 boolean test(T x);
}

double[] array = {0.1, 0.7, -0.5, 1.0};

// returns the number of elements, which have the property specified by Predicate pred
int count(double[] array, Predicate<Double> pred) {

 int counter = 0;

 for (int i = 0; i < array.length; ++i) {
 if (pred.test(array[i]) == true) {
 counter += 1;
 }
 }

 return counter;
}

count(array, x -> x > 0.0);

Out[38]: 3

Übung:Übung:
Implementieren Sie die Methode
Testen Sie diese mit verschiedenen Prädikaten

Funktionsobjekte in der Java StandardbibliothekFunktionsobjekte in der Java Standardbibliothek

Standard Funktionstypen sind in

 de�niert:

Java API Dokumentation
(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/packa
summary.html)

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/package-summary.html

Sourcecode vom Java FunktionsinterfaceSourcecode vom Java Funktionsinterface
In [59]: public interface Function<T, R> {

 R apply(T t);

 default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
 Objects.requireNonNull(before);
 return (V v) -> apply(before.apply(v));
 }

 default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
 Objects.requireNonNull(after);
 return (T t) -> after.apply(apply(t));
 }

 static <T> Function<T, T> identity() {
 return t -> t;
 }
}

Komposition und IdentitätKomposition und Identität

Übung:Übung:

Versuchen Sie verschiedene Funktionen mit compose zu kombinieren

Sourcecode vom Java PredicateSourcecode vom Java Predicate

In [60]: public interface Predicate<T> {

 boolean test(T t);

 default Predicate<T> and(Predicate<? super T> other) {
 Objects.requireNonNull(other);
 return (t) -> test(t) && other.test(t);
 }

 default Predicate<T> negate() {
return (t) -> !test(t);

