Lambda Ausdriicke und funktionale Programmierung

Marcel Liithi
Departement Mathematik und Informatik

Agenda

¢ Geschichte: Objektorientierte und Funktionale Programmierung
¢ Funktionen als Objekte

e Lambda Audriicke in Java

¢ Funktionsobjekte in Java Standardbibliothek

Geschichte: Objektorientierte und Funktionale
Programmierung

Erste Programmierung

assembly

SUMDIGIN CSECT

LOOPK

LOOPJ

USING
B

DC
STM
ST
ST
LR
LA
LA
CH
BH
SR
LA
CH
BH
LR
BCTR
AR
MVC

SUMDIGIN,R13
72 (R15)
17F'0"
R14,R12,12 (R13)
R13, 4 (R15)
R15, 8 (R13)
R13,R15

R11, NUMBERS
RS, 1

RS, =H'4"
ELOOPK
R10,R10

R7,1
R7,=H'S"
ELOOPJ
R4,R11

R4, 0

R4, R7

D, 0 (R4)

Erste Hochsprachen
Program SumOFDigits;

function SumOfDigitBase(n:UInt64;base:LongWord): LongWord;
var

tmp: Uint64;

digit,sum : LongWord;

Begin
digit := ©;
sum = 0;
While n > @ do
Begin
tmp := n div base;
digit := n-base*tmp;
n := tmp;
inc(sum,digit);
end;
SumOfDigitBase := sum;
end;
Begin

writeln(' 1 sums to ', SumOfDigitBase(1,10));
writeln('1234 sums to ', SumOfDigitBase(1234,10));
writeln(' $FE sums to ', SumOfDigitBase($FE,16));
writeln('$FOE sums to ', SumOfDigitBase($FOE,16));

writeln('18446744073709551615 sums to ', SumOfDigitBase(High(Uint64),10));

end.

Wichtige Frage

Wie kann man Programme besser strukturieren?

Funktionale Programmierung Objektorientierte Programmiereung

¢ |dee: Komposition von ¢ |dee: Organisation von Code in
(mathematischen) Funktionen um "selbstorganisierende" Module
aus einfachen Teilen komplexe (Objekte)
Funktionalitat zu bauen e Management von Zustand durch
¢ Mathematische Grundlage: Kapselung
Lambdakalkadil e Objekte im Zentrum
e Aktionen/Berechnungenim
Zentrum

Konzepte entwickelt in 60 und 70er Jahren

Funktionale Konstrukte in Java

Moderne Programmiersprachen integrieren Konzepte von
Funktionalen Sprachen:

e Funktionen als Argumente
¢ Anonyme Funktionen
e (Closures)

Funktionen und Objekte

Funktionsobjekte

Idee: Funktionen sind (seiteneffektfreie) Objekte mit nur einer
Methode

Funktionsobjekte: Implementationsstrategie

1. Deklaration: Interface fir Funktionen definieren

interface Function {
int apply(int x);
}

2. Definition der Funktion: Anonymes Objekt erstellen

Function square = new Function() {
public int apply(int x) { return x * x; }
}

Diskutieren Sie:

e Wie viele verschiedene Interfaces fur Funktionen brauchen wir, wenn wir alle
Kombinationen von Funktion T' — R implementieren wollen, wobei T'und R
jeweilsString, Integer und Double sein kénnen?

e Wie konnten wir elegant ein allgemeines Funktionsinterface definieren?

Generische Funktionsobjekte

e Java Generics helfen uns die Funktion nur einmal zu definieren

In [40]: interface Function<T, R> {
R apply(T x);
}

Beispielanwendung

In [44]: Function<Double, Double> square = new Function<>() {
public Double apply(Double x) {
return x * x;
}

Anwendungsbeispiel: Transformation von Listenelementen

Gegeben: Liste von Zahlen

In [49]: LinkedList<Double> numbers@Tol® = new LinkedList<>();

for (int i = 0; i < 10; i++) {
numbers@Tol10.add(new Double(i));
}

Aufgabe: Fiihre mathematische Funktion auf Elementen aus

e Bestehende Listenelement diirfen nicht verandert werden
¢ Essoll neue Liste ausgegeben werden

Lésung: Die map Methode

In [51]: static LinkedList<Double> map(LinkedList<Double> list, Function<Double, Double> f) {
LinkedList<Double> newlList = new LinkedList<>();
for (Double v : list) {
newList.add(f.apply(v));
}

return newlList;

Lésung: Die map Methode

In [51]: static LinkedList<Double> map(LinkedList<Double> list, Function<Double, Double> f) {
LinkedList<Double> newlList = new LinkedList<>();
for (Double v : list) {
newList.add(f.apply(v));

}

return newlList;
}
Anwendung

In [53]: LinkedList<Double> newList = map(numbers@Tol®, square);
System.out.println(newlList);

[6.0, 1.0, 4.0, 9.0, 16.0, 25.0, 36.0, 49.0, 64.0, 81.0]

Ubung

e Konnen Sie die map Methode so umschreiben, dass als Ausgabe nicht mehr ein
Double verlangt wird, sondern ein beliebiger Typ angegeben werden kann?

e Konnen Sie die map Methode so umschreiben, dass diese nicht mehr nur auf
Listen von Double, sondern allgemeinen Listen arbeitet?

In [50]: // Ihr Code

Lambda Ausdriicke

Lambda Ausdriicke

e Java hat eine spezielle Syntax definiert um Funktionsobjekte zu erstellen.
e Bekannt als lambda Ausdriicke

Parameter -> Ausdruck

Beispiel
X -> X * X

Lambda Syntax

lambda = ArglList "->

ArglList = Identifier
| "(" [Type] Identifier { "," [Type] Identifier } ")"
| n()n

Body = Expression | "{" [Statement ";"]+ "}"

Body

Functional Interface

e Ein Functional Interface ist ein Interface oder Abstrakte Klasse mit genau eine
Methode
= Methode entspricht "Berechnung" der Funktion

Beispiel:

interface Function<T, R> {
R apply(T t);

}

Functional Interface

e Ein Functional Interface ist ein Interface oder Abstrakte Klasse mit genau eine
Methode
= Methode entspricht "Berechnung" der Funktion

Beispiel:

interface Function<T, R> {
R apply(T t);

}

¢ | ambda Ausdriicke kdnnen an ein Functional Interface zugewiesen werden.

= |ambdas bekommen einen Namen
Function<Double, Double> f = (Double d) -> d * d;

In [25]:

Out[25]:

Lambdas als Methodenargumente

e Erlaubt einfache Funktionen mit wenig Code zu erstellen

Beispiel

LinkedList<Double> 11 = new LinkedList<>();
for (int i = 0; i < 10; i++) {

11.add(new Double(i));
}

// oben definierte Map Methode jetzt mit Lambdas
map(1ll, (Double d) -> d * 2);

[6.0, 2.0, 4.0, 6.0, 8.0, 10.0, 12.0, 14.0, 16.0, 18.0]

Lambdas als Riickgabewerte

¢ Methoden kénnen Funktionen zurtickgeben.

Function<Double, Double> doubleFun (Double x) {
return x -> 2 * Xx;

}

Ubung;

e Schreiben Sie eine Methode applyTwice, die eine Funktion f vom Typ
Function<Double, Double> als Argument nimmt, und eine Funktion zurtckgibt,

die diese zwei mal hintereinander anwendet, also der Funktion xz — f(f(x))
entspricht

e Konnen Sie diese als generische Funktion schreiben?

In [54]: // Ihr Code

Lambdas mit Anweisungsblock

e Rechte Seite von Lambda Ausdruck kann beliebiger Block sein
» Block muss den richtigen Typ zurickliefern

Function<T, R> f = (T t) -> {
Statementl;
Statment2;
return r; // r ist vom Type R

Lambdas mit Anweisungsblock

Folgendes funktioniert:

In [55]: Function<String, Integer> f = (String s) -> {
System.out.println(s);
return Integer.parselnt(s);

s
f.apply("5");
5

Out[55]: 2

In [55]:

Out[55]:

In [56]:

Lambdas mit Anweisungsblock

Folgendes funktioniert:

Function<String, Integer> f = (String s) -> {
System.out.println(s);
return Integer.parselnt(s);

}s

f.apply("5");

5

5

Aber hier gibt es einen Typfehler

Function<String, Integer> f = (String s) -> {
System.out.println(s);
return s;

}

| return s;
incompatible types: bad return type in lambda expression
java.lang.String cannot be converted to java.lang.Integer

Methodenreferenzen

¢ Wir konnen Methoden Functional Interfaces zuweisen:
Function<Double, Double> f = AClass::aMethod;

Beispiel

In [36]: Function<Double, Double> cos = Math::cos;
map (numbers@Tol0, cos)

out[36]: [1.0, ©.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.65364362086361

19, 0.28366218546322625, 0.960170286650366, 0.7539022543433046, -0.14550003380861354,
-0.9111302618846769]

Methodenreferenzen

¢ Wir konnen Methoden Functional Interfaces zuweisen:
Function<Double, Double> f = AClass::aMethod;

Beispiel

In [36]: Function<Double, Double> cos = Math::cos;

map (numbers@Tol0, cos)

out[36]: [1.0, ©.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.65364362086361

19, 0.28366218546322625, 0.960170286650366, 0.7539022543433046, -0.14550003380861354,
-0.9111302618846769]

oder kiirzer

In [57]: map(numbers@Tol0, Math::cos)

Out[57]: [1.0, ©.5403023058681398, -0.4161468365471424, -0.9899924966004454, -0.65364362086361

19, 0.28366218546322625, 0.960170286650366, 0.7539022543433046, -0.14550003380861354,
-0.9111302618846769]

Funktionsobjekte mit mehreren Argumenten

¢ |dee funktioniert fir Funktionen mit beliebig vielen Argumenten

In [58]: interface Function2<S, T, R> {
R apply(S s, T t);
}
Function2<Double, Double, Double> sum = (X, y) -> X + y;

Function2<Double, Double, String> sumAsString = (X, y) -> new Double(x + y).toString();

sumAsString.apply(3.0, 5.0)

out[58]: 8-9

Pradikate

Prddikat: Ein Funktionsobjekt das True oder False zurtickgibt

interface Predicate<T>
boolean test (T x);

}

Pradikat: Beispiel

In [38]: interface Predicate<T> {
boolean test(T x);
}

double[] array = {0.1, 0.7, -0.5, 1.0};

// returns the number of elements, which have the property specified by Predicate pred
int count(double[] array, Predicate<Double> pred) {

int counter = 0;
for (int i = @; i < array.length; ++i) {

if (pred.test(array[i]) == true) {
counter += 1;
}

}

return counter;

}

count(array, x -> x > 0.0);

out[38]: 3

Ubung:

¢ |Implementieren Sie die Methode
e Testen Sie diese mit verschiedenen Pradikaten

Funktionsobjekte in der Java Standardbibliothek

e Standard Funktionstypen sind in Java API Dokumentation

(https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/packa

summary.html) definiert:

oradecom

SUMMARY: NESTED | FIELD | CONSTR | METHOD DETAL: FELD | CONSTR | METHOD

compact1, compact2, compact3
javauti function

Interface Predicate<T>

Type Parameters:
T - the type of the input to the predicate

Functional Interface:

erunctionalInterface
public interface Predicate<ts

Represents a predicate (boolean-valued function) of one argument
This 1 a functional interface whose functional method is test (0bject)
18

Method Summary

fecauunll ocecic Momoas | inscance Macnods | Abstract Hewoas |
Wodiforand Type

detautt predicatecrs

static <T> predicetecs>

detant predicatects

default Predicate<t

bootean

Method Detail

boolean test(T)

Evaluates this predicate on the given argument
Parameters:

t - the input argument

Returns:

true 1f the input argument matches the predicate, otherwise false

default Predicate<t> and(Predicate<? super T> other
. AT HighightAl Matgh Cese Whle W

- o rmno@
> vt A
overview acxace [EEEE use Teee pemecareD moex Hele eerie’s
PREV CLASS NEXT ClASE FRAMES. 0 FANES

This is a functional interface and can therefore be used as the assignent target for a lasbda expression or method reference

Method and Description
and(Predicate<? super T> other)

Returns a composed predicate that represents a short.circuiting logical AND of this predicate and another.
isEqual (Object targetRef)
Returns a predicate that tests if

e equal according to 0b; Object).
negate()

Retums a predicate that represents the logical negation of this predicate.

or(Predicate<? super T> other)

Returns a composed predicate that represents a shortcirculting logical OR of this predicate and another.
Test(T 1)

Evaluates this predicate on the given argument

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/util/function/package-summary.html

Sourcecode vom Java Funktionsinterface

In [59]: public interface Function<T, R> {
R apply(T t);

default <V> Function<V, R> compose(Function<? super V, ? extends T> before) {
Objects.requireNonNull(before);
return (V v) -> apply(before.apply(v));

}

default <V> Function<T, V> andThen(Function<? super R, ? extends V> after) {
Objects.requireNonNull(after);
return (T t) -> after.apply(apply(t));

}

static <T> Function<T, T> identity() {
return t -> t;
}

Komposition und Identitat

Ubung;

e Versuchen Sie verschiedene Funktionen mit compose zu kombinieren

Sourcecode vom Java Predicate

In [60]: public interface Predicate<T> {
boolean test(T t);

default Predicate<T> and(Predicate<? super T> other) {
Objects.requireNonNull(other);
return (t) -> test(t) && other.test(t);

}

default Predicate<T> negate() {

natiinn /+\ ~ l+Ac+/7+\

