
Auszüge aus der Java KlassenbibliothekAuszüge aus der Java Klassenbibliothek
Marcel Lüthi Marcel Lüthi
Departement Mathematik und InformatikDepartement Mathematik und Informatik

AgendaAgenda
Collections
Streams
Weitere nützliche Pakete.

CollectionsCollections

CollectionsCollections
Collections fassen Objekte (Elements) zusammen

Beispiele:
Schulklasse (Gruppe von Schülern)
Einkaufsliste (Sammlung von Lebensmitteln)

Auf Instanzen beliebiger Klassen anwendbar (Generic)

Wichtigste CollectionsWichtigste Collections

Methoden von CollectionsMethoden von Collections

(https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html)

Interface ListInterface List
Geordnet
Erlaubt Duplikate

BeispieleBeispiele

ArrayList
LinkedList

Interface SetInterface Set
Ungeordnet
Enthält jedes Element nur einmal

BeispieleBeispiele

HashSet
TreeSet

Beispiel: Unterschied List/SetBeispiel: Unterschied List/Set
In [55]: String[] fruits = {"Banana", "Apple", "Mango", "Apple"};

List<String> fruitList = new ArrayList<>();
Set<String> fruitSet = new HashSet<>();

for (String fruit : fruits) {
 fruitList.add(fruit);
 fruitSet.add(fruit);
}
System.out.println("fruitList: "+ fruitList);
System.out.println("fruitSet: "+ fruitSet);

fruitList: [Banana, Apple, Mango, Apple]
fruitSet: [Apple, Mango, Banana]

IterableIterable
Alle Java collections implementieren das Iterable interface
Wichtigste Methode: Gibt Iterator zurück

public interface Iterable<T> {

 Iterator<T> iterator();

 ...
}

Iterator interfaceIterator interface
Sequentielles Durchlaufen einer Kollektion
Wichtigste Methoden:

boolean hasNext()
T next()

Kreieren eines neuen Itearators: collection.iterator()

BeispielBeispiel

In [56]: Iterator<String> it = fruitList.iterator();
while (it.hasNext()) {
 System.out.println(it.next());
}

Banana
Apple
Mango
Apple

Iterator form des For loopsIterator form des For loops

In [59]:

Implementation von Iterable erlaubt die nutzen der Iterator
form des For loops

for (String s : fruitList) {
 System.out.println(s);
}

Banana
Apple
Mango
Apple

MapsMaps
Map ist ähnlich wie Set, aber:

Verlinkt zwei Objekte: Key und Value (z.B. Produkte mit ihren Preisen)
Stammt nicht vom Collection Interface ab (z.B. put statt add)
get eines Elements via Key

Maps - HierarchieMaps - Hierarchie

Anwendungsbeispiel MapAnwendungsbeispiel Map
In [60]: Map<String, Double> prices = new HashMap<>();

prices.put("Banana", 1.5);
prices.put("Apple", 1.0);
prices.put("Mango", 2.5);

System.out.println("Price of a Mango " +prices.get("Apple"));

Price of a Mango 1.0

Anwendungsbeispiel MapAnwendungsbeispiel Map
In [60]:

ÜbungenÜbungen

Was passiert wenn man einen Schlüssel zweimal (mit unterschiedlichem Wert)
einfügt
Schreiben Sie einen for-loop, der alle Preise ausgibt.

Tip: Die Schlüssel erhalten Sie via der Methode keySet
Wie ändert sich die Ausgabe, wenn Sie eine TreeMap verwenden?

Map<String, Double> prices = new HashMap<>();

prices.put("Banana", 1.5);
prices.put("Apple", 1.0);
prices.put("Mango", 2.5);

System.out.println("Price of a Mango " +prices.get("Apple"));

Price of a Mango 1.0

Kollektionen: BeispielKollektionen: Beispiel
Mögliche Modellierung eines "Früchteladens"

import java.util.*;

class Fruit {
 String name;
}

public class FruitShop {

 Set<Fruit> products = new HashSet<Fruit>();

 Map<Fruit, Double> priceForFruit = new HashMap<Fruit, Double>();

 Queue<Person> customers = new LinkedList<Person>();
}

StreamsStreams

StreamsStreams

Aus allen Collection kann mit Methode stream ein Stream Objekt erzeugt

werden

Wichtige Methoden

map
filter
reduce
...

Funktionaler Ansatz um Elemente zu prozessieren

map Methodemap Methode
Signatur (in Interface Stream<T>)

<R> Stream<R> map(Function<T,R> mapper)

Führt Funktion auf jedem Element vom Stream aus
produziert neue Liste

Beispiel: map-MethodeBeispiel: map-Methode
In [62]: import java.util.stream.Stream;

Stream<String> newFruitStream = fruitList.stream().map(f -> f.toUpperCase());
newFruitStream.forEach(f -> System.out.println(f));

BANANA
APPLE
MANGO
APPLE

Beispiel: map-MethodeBeispiel: map-Methode
In [62]:

Übung:Übung:

Erzeugen Sie einen Stream von den Zahlen 1, 2 und 3, indem Sie die statische

Methode of von Streams nutzen

Nutzen Sie die Methode map um diese in einen String umzuwandlen.

Geben Sie die Elemente des Streams aus.

In [64]:

import java.util.stream.Stream;

Stream<String> newFruitStream = fruitList.stream().map(f -> f.toUpperCase());
newFruitStream.forEach(f -> System.out.println(f));

import java.util.stream.IntStream;

Stream<String> s = Stream.of(1,2,3).map(n -> Integer.valueOf(n).toString());
s.forEach(f -> System.out.println(f));

BANANA
APPLE
MANGO
APPLE

1
2
3

�lter-Methode�lter-Methode
Signatur (in Interface Stream<T>)

``` Stream �lter(Predicate �lter) ````

Gibt Stream mit allen Elementen e zurück für die gilt filter(e) == true

Beispiel: �lter-MethodeBeispiel: �lter-Methode
In [65]: Stream<String> newFruitStream = fruitList.stream().filter(f -> f.contains("n"));

newFruitStream.forEach(f -> System.out.println(f));

Banana 
Mango 



reduce-Methodereduce-Methode
Signatur (in Interface Stream<T>)

<R> Stream<R>  Reduce(T identity, BinaryOperator<T> accumulator)

Zieht Element zusammen, durch ausführen von accumulator
BinaryOperator ist FunctionalInterface mit zwei Argumenten vom selben

Typ



Beispiel: reduceBeispiel: reduce
In [66]: import java.util.function.BinaryOperator; 

BinaryOperator<String> concat = (s, t) -> s + t;
fruitList.stream().reduce("", concat);

Out[66]: BananaAppleMangoApple




































