Ausziige aus der Java Klassenbibliothek

Marcel Liithi
Departement Mathematik und Informatik

Agenda

e Collections
e Streams
e Weitere nitzliche Pakete.

Collections

Collections

Collections fassen Objekte (Elements) zusammen

e Beispiele:
m Schulklasse (Gruppe von Schiilern)
= Einkaufsliste (Sammlung von Lebensmitteln)

Auf Instanzen beliebiger Klassen anwendbar (Generic)

Wichtigste Collections

<<interface>>

Collection

<<interface>> <<interface>>
Set i Queue

LinkedHashSet <<‘“.te”a°‘°'>> .
Navigabie St | > implements
A

—— extends

Methoden von Collections

Method Summary

UL instance Methods | Abstract Methods | Default Methods

Modifier and Type Method and Description

boolean 2dd(E e)
Ensures that this collection contains the specified element (optional operation)

boolean addAll (Collection<? extends E> c)
Adds all of the elements in the specified collection to this collection (optional operation).

void clear()
Removes all of the elements from this collection (optional operation)

boolean contains (Object o)
Retumns true if this collection contains the specified element

boolean containsALl(Collection<?> c)
Returns true if this collection contains all of the elements in the specified collection.

boolean equals (object 0)
Compares the specified object with this collection for equality.

int hashCode ()
Returns the hash code value for this collection.

boolean isempry()
Returns true If this collection contains no elements.

Iterator<e> iterator()
Returns an iterator over the elements in this collection.

default Stream<e> parallelstrean()
Returns a possibly parallel Stream with this collection as its source.

boolean remove (Object o)
Removes a single instance of the specified element from this collection, if it is present (optional operation).

boolean removeAll(Collection<?> c)
Removes all of this collection's elements that are also contained in the specified collection (optional operation).

default boolean removelf (Predicate<? super E> filter)
Removes all of the elements of this collection that satisfy the given predicate.

boolean retainAll(Collection<?> c)
Retains only the elements in this collection that are contaied in the specified collection (optional operation)

int size()
Returns the number of elements in this collection.

default Spliterator<e> spliterator()
Creates a Spliterator over the elements in this collection.

default Stream<E> strean()
Returns a sequential Strean with this collection as its source.

Object(] toArray()
Returns an array containing all of the elements in this collection.

<> T[] toArray (T[] a)
Returns an array containing all of the elements in this collection; the runtime type of the returned array is that of the specified array.

(https://docs.oracle.com/javase/8/docs/api/index.html?java/util/Collection.html)

Interface List Interface Set

e Geordnet e Ungeordnet

e Erlaubt Duplikate e Enthalt jedes Element nur einmal
Beispiele Beispiele

e ArrayList e HashSet

e |LinkedList ¢ TreeSet

Beispiel: Unterschied List/Set

In [55]: sString[] fruits = {"Banana", "Apple", "Mango", "Apple"};

List<String> fruitlList = new ArraylList<>();
Set<String> fruitSet = new HashSet<>();

for (String fruit : fruits) {
fruitlList.add(fruit);
fruitSet.add(fruit);

}

System.out.println("fruitList: "+ fruitlList);

System.out.println("fruitSet: "+ fruitSet);

fruitList: [Banana, Apple, Mango, Apple]
fruitSet: [Apple, Mango, Banana]

lterable

e Alle Java collections implementieren das Iterable interface
e Wichtigste Methode: Gibt Iterator zurtick

public interface Iterable<T> {

Iterator<T> iterator();

Iterator interface

e Sequentielles Durchlaufen einer Kollektion
¢ Wichtigste Methoden:
= boolean hasNext()
= T next()
e Kreieren eines neuen ltearators: collection.iterator()

Beispiel

In [56]: TIterator<String> it = fruitlList.iterator();
while (it.hasNext()) {
System.out.println(it.next());
}

Banana
Apple
Mango
Apple

Iterator form des For loops

Implementation von I'terable erlaubt die nutzen der Iterator
form des For loops

In [59]: for (String s : fruitList) {
System.out.println(s);
¥

Banana
Apple
Mango
Apple

Maps
Map ist ahnlich wie Set, aber:
e Verlinkt zwei Objekte: Key und Value (z.B. Produkte mit ihren Preisen)

e Stammt nicht vom Collection Interface ab (z.B. put statt add)
e get eines Elements via Key

Maps - Hierarchie

........... > implementS
—, extends

o’.
-

Hashtable

<<interface>>
Map

LinkedHashMap

<<interface>>
SortedMap

<<interface>>
NavigableMap
4

Anwendungsbeispiel Map

In [60]: Map<String, Double> prices = new HashMap<>();

prices.put("Banana", 1.5);
prices.put("Apple", 1.09);
prices.put("Mango", 2.5);

System.out.println("Price of a Mango " +prices.get("Apple"));

Price of a Mango 1.0

In [60]:

Anwendungsbeispiel Map

Map<String, Double> prices = new HashMap<>();

prices.put("Banana", 1.5);
prices.put("Apple", 1.09);
prices.put("Mango", 2.5);

System.out.println("Price of a Mango " +prices.get("Apple"));

Price of a Mango 1.0

Ubungen

e \Was passiert wenn man einen Schliissel zweimal (mit unterschiedlichem Wert)
einfugt
e Schreiben Sie einen for-loop, der alle Preise ausgibt.
= Tip: Die Schlissel erhalten Sie via der Methode keySet
e Wie andert sich die Ausgabe, wenn Sie eine TreeMap verwenden?

Kollektionen: Beispiel

¢ Mogliche Modellierung eines "Friichteladens"

import java.util.¥*;
class Fruit {
String name;
}
public class FruitShop {
Set<Fruit> products = new HashSet<Fruit>();
Map<Fruit, Double> priceForFruit = new HashMap<Fruit, Double>();

Queue<Person> customers = new LinkedList<Person>();

Streams

Streams

Funktionaler Ansatz um Elemente zu prozessieren

e Aus allen Collection kann mit Methode streamein Stream Objekt erzeugt
werden

¢ Wichtige Methoden

" map
m filter
" preduce

map Methode

Signatur (in Interface Stream<T>)

<R> Stream<R> map(Function<T,R> mapper)

¢ Fuhrt Funktion auf jedem Element vom Stream aus
= produziert neue Liste

Beispiel: map-Methode

In [62]: import java.util.stream.Stream;

Stream<String> newFruitStream = fruitList.stream().map(f -> f.toUpperCase());
newFruitStream.forEach(f -> System.out.println(f));

BANANA
APPLE
MANGO
APPLE

In [62]:

In [64]:

Beispiel: map-Methode

import java.util.stream.Stream;

Stream<String> newFruitStream = fruitList.stream().map(f -> f.toUpperCase());
newFruitStream.forEach(f -> System.out.println(f));

BANANA
APPLE
MANGO
APPLE

Ubung;

e Erzeugen Sie einen Stream von den Zahlen 1, 2 und 3, indem Sie die statische

Methode of von Streams nutzen
¢ Nutzen Sie die Methode map um diese in einen String umzuwandlen.

e Geben Siedie Elemente des Streams aus.

import java.util.stream.IntStream;

Stream<String> s = Stream.of(1,2,3).map(n -> Integer.valueOf(n).toString());
s.forEach(f -> System.out.println(f));

1
2
3

filter-Methode

Signatur (in Interface Stream<T>)

™ Stream filter(Predicate filter) =™

¢ Gibt Stream mit allen Elementen e zurlick flr die gilt filter(e) == true

Beispiel: filter-Methode

In [65]: Stream<String> newFruitStream = fruitlList.stream().filter(f -> f.contains("n"));
newFruitStream.forEach(f -> System.out.println(f));

Banana
Mango

reduce-Methode

Signatur (in Interface Stream<T>)
<R> Stream<R> Reduce(T identity, BinaryOperator<T> accumulator)

e Zieht Element zusammen, durch ausfiihren von accumulator
e BinaryOperatorist FunctionalInterface mit zwei Argumenten vom selben

Typ

Beispiel: reduce

In [66]: import java.util.function.BinaryOperator;

BinaryOperator<String> concat = (s, t) -> s + t;
fruitlList.stream().reduce("", concat);

out[66]: BananaAppleMangoApple

