
Multimedia Retrieval – HS 2019

Task 1: Vector Space Retrieval (theoretical)

In the script, we have used the inner vector product and the cosine measure to

sort documents by their similarity to the query. In this task, we study the

“semantics” of these functions from a geometrical perspective. To simplify

matters, consider a query with only one term and two terms, and then generalize

to higher dimensions.

Exercise 2: Text Retrieval Deadline: 22.10.2019

a) Consider first a query with two terms and define a similarity threshold 𝛼. For

both measures, identify the sub-space of documents that have a similarity

score beyond 𝛼. Describe the space in geometrical terms.

b) Based on the geometrical semantics from a), identify the documents that are

preferred by the measures. Construct an example document that “wins” the

search (has highest scores). Generalize to queries with more than two terms.

c) In web search, queries are often very short. What happens if you only select

one query term? Are the measures working in this extreme case?

We want to perform similarity search for texts (e.g., find pages that have stolen

my content). We can use the bag-of-words model and compare the two texts by

a Euclidean distance measure. Assume that 𝒒 denotes the term vector for the

Query 𝑄, and 𝒅 is the term vector of a document 𝐷. Then:

𝛿 𝑄, 𝐷 = ෍

𝑖

𝑞𝑖 − 𝑑𝑖
2

In contrast to the inner vector product and the cosine measure, small distances

are better (more relevant) than large distances (less relevant).

d) Similar to a), describe the sub space of documents that have at most a

distance of 𝛽 to the query 𝑄. What documents rank highest with this distance

measure? Does this work in our scenario (finding similar pages) and why?

Exercise-2-1

Multimedia Retrieval – HS 2019

Task 2: Probabilistic Retrieval (theoretical)

In this task, we study the binary independence retrieval (BIR) model and use

simple examples to run through the approach.

a) For a query 𝑄, the BIR method yields the following list of documents after the

initialization step:

In the table above, the row 𝑥1 and 𝑥2 contain the binary representation of the

20 retrieved documents. The last row denotes the relevance assessment of

the user for each document (R denotes relevant, N denotes non-relevant).

Compute the new 𝑐𝑗-values given the feedback and compute the ordering.

b) The BIR model makes three assumptions. We now test whether these

assumptions hold true. To this end, we compute the probability 𝑃(𝑅|𝒙) with

the example data from a) in two ways: 1) count how often a document with

representation 𝒙 is relevant/non-relevant and compute the probability. 2)

derive a formula for 𝑃(𝑅|𝒙) depending on 𝑟𝑗 and 𝑛𝑗 similarly to the script.

Start with the following statement

𝑠𝑖𝑚 𝑄, 𝐷𝑖 =
𝑃(𝑅|𝐷𝑖)

𝑃 𝑁𝑅 𝐷𝑖)
=

𝑃(𝑅|𝐷𝑖)

1 − 𝑃(𝑅|𝐷𝑖)
=

𝑃(𝑅|𝒙)

1 − 𝑃(𝑅|𝒙)
= ⋯

and solve for 𝑃(𝑅|𝒙). What do you observe? Which assumption fails?

c) Consider the documents below (c1-c5, m1-m4) and the query “human

computer interaction”. Conduct two iterations with the BIR model

(initialization step, one feedback step) and assume that documents c1-c5 are

relevant and m1-m4 are non-relevant. Does the feedback step help? What

can we do to significantly improve retrieval performance with the feedback?

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑥1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

𝑥2 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

relevance R R R R N R R R R N N R R R N N N R N N

Exercise-2-2

Exercise 2: Text Retrieval Deadline: 22.10.2019

c1 Human machine interface for Lab ABC computer applications

c2 A survey of user opinion of computer system response time

c3 The EPS user interface management system

c4 System and human system engineering testing of EPS

c5 Relation of user-perceived response time to error measurement

m1 The generation of random, binary, unordered trees

m2 The intersection graph of paths in trees

m3 Graph minors IV: Widths of trees and well-quasi-ordering

m4 Graph minors: A survey

Multimedia Retrieval – HS 2019

Task 3: NLTK and Python (practical)

In this task, we use the NLTK library for Python to run a number of interesting
text analytics. The next page contains a few hints how to setup NLTK (takes at
most 5 minutes) and how to get started. You can either create your own classes
and methods in Python, or simply collect the commands in a text file and copy
paste to the interpreter.

a) [easy] Use NLTK to guess the language of an input text. Download an
Italian, German, and English (or any other Language, preferably all in the
same encoding to simplify matters). Use the stop word lists in NLTK to
identify the language of the text. Try some harder text examples with mixed
languages and return probabilities for the languages.
Hint: limit your analysis to a few fixed languages only

b) [intermediate] Assume we are using a service like https://www.clarifai.com
to annotate images. Given a picture, we obtain a list of trained keywords
associated with that picture. In order to broaden the keyword list, we want to
extend each term with a set of related terms using WordNet. Use the online
version of WordNet (http://wordnetweb.princeton.edu/perl/webwn) to get an
idea how to do this cleverly. Then implement your idea with the NLTK
corpus nltk.corpus.wordnet. See online documentation: Chapter 5 in
http://www.nltk.org/book/ch02.html

c) [difficult] When translating from one language to another, a common
problem is the wrong usage of words in the target language due to
overlapping word semantics. For instance, the German word “stark” can
have a number of English counterparts, namely: strong, intense, powerful,
massive, potent, robust, vigorous, severe, heavy, thick, deep, and so on.
Obviously, not all English counterparts are correct in a given context.
Consider the following example:

• es regnet stark → it is raining hard / heavily (maybe: intensely / thickly)
But not: it is raining strongly / powerfully / deeply / robustly / hardly

• der Mann ist stark → the man is strong / powerful
But not: the man is robust / potent / heavy / thick / deep / hard
(some combinations are possible but have different meaning)

n-grams (within windows) provide a simple way to identify the right word
combinations (and also the right inflection, e.g., is it thick or thickly?). If we
analyze an entire corpora of English books, we may find that the
combination “rain, powerful” is less frequent than “rain, hard”. From that, we
may infer the right word in the context. To simulate that process, write a
Python script that takes the beginning of a sentence and completes it with
the most frequent n-grams it finds in an example text (e.g., the Sherlock
Holmes book referred to below). Use 3-grams and 4-grams, and match all
but the last terms with the end of the sentence and extend the sentence
with the most frequent matching n-gram. Repeat until you run into a
punctuation (don’t eliminate punctuations). Look at the results!

Exercise 2: Text Retrieval Deadline: 22.10.2019

Exercise-2-3

https://www.clarifai.com/
http://wordnetweb.princeton.edu/perl/webwn
http://www.nltk.org/book/ch02.html

Multimedia Retrieval – HS 2019

Task 3: NLTK and Python (practical)

Getting started with NLTK (see also: http://www.nltk.org/install.html)

1. Install Python (https://www.python.org)

• Ubuntu: sudo apt-get install -y python3-pip python3-dev

• Windows: install python version (including pip)

2. Install Python packages with pip (or pip3) – use PowerShell on Windows

• pip install --upgrade pip

• pip install -U numpy

• pip install -U nltk

• python -m nltk.downloader all (alternative data download below)

3. Run python (or python3) – use PowerShell on Windows

• import nltk

• Alternative data download: nltk.download() [select all in dialog]

• …write your commands (see below)

References:

• NLTK: http://www.nltk.org

• NLTK Book: http://www.nltk.org/book/

• best source to find snippets of Python code for NLTK

• Python: https://www.python.org/doc/

How to get started with the exercise: (don’t forget to import nltk)

• Read file from local folder (e.g., http://www.gutenberg.org/files/244/244-0.txt)

• f=open('stud.txt’)

• text=f.read()

• f.close()

• A few lines from the demo during the course:

Exercise 2: Text Retrieval Deadline: 22.10.2019

import nltk

sentences=nltk.sent_tokenize(text)

tokens=nltk.word_tokenize(text)

words=[word.lower() for word in tokens if word.isalpha()]

bigram_measures=nltk.collocations.BigramAssocMeasures()

finder=nltk.collocations.BigramCollocationFinder.from_words(words)

finder.nbest(bigram_measures.pmi, 20)

finder.score_ngrams(bigram_measures.pmi)

nltk.pos_tag(tokens)

nltk.FreqDist(tag for (word, tag) in nltk.pos_tag(tokens)).most_common()

porter=nltk.PorterStemmer()

porter.stem(“house”)

nltk.corpus.wordnet.synsets(“dog”)

nltk.corpus.stopwords.words(“English”)

nltk.corpus.stopwords.words(“german”)

nltk.corpus.stopwords.words(“Italian”)

Exercise-2-4

http://www.nltk.org/install.html
https://www.python.org/
http://www.nltk.org/
http://www.nltk.org/book/
https://www.python.org/doc/
http://www.gutenberg.org/files/244/244-0.txt

