L/
UNIVERSITAT BASEL e Computer Science / 15731-01/ 2019

Multimedia Retrieval

Chapter 2: Text Retrieval

2.1 Overview and Motivation

2.2 Feature Extraction

2.3 Text Retrieval Models

2.4 Indexing Structures

2.5 Lucene - Open Source Text Search
Dr. Roger Weber, roger.weber@ubs.com 2.6 Literature and Links

AW
) f)/ /:f

/ ;
~ \},‘»L\‘ &‘ o -o " " » .:i
] ek

F . = B

3 = ey <)°.’
UNIVERSITAT Blsja.

2.1 Overview and Motivation

* Managing and retrieving information remains a challenging problem despite the impressive
advances in computer science. The first generation of computers used punch cards to store and
retrieve information, and memory and compute was precious. Many early algorithms hence have
used Boolean models and brute-force approaches that quickly decide whether something is relevant
or not. Today, memory and compute are extremely cheap, and we have more elaborated retrieval
techniques to accelerate searches. Only recently, map-reduce and deep learning have gone back to
the brute-force methods of the early days.

» Typical types of information retrieval:
— Database: information is maintained in a structured way. Queries refer to the structure of the

data and define constraints on the values (SQL as query language). Being structured, however,
does not allow for quick retrieval across all data items with something like this:

SELECT * FROM * WHERE * like ‘%house%"‘

— Boolean Retrieval Systems: Boolean models simplified matters: while scanning the data, we
can decide whether an entry is relevant or not. There is no need to keep track and sort results
later on. This was a huge advantage for early information systems (those with the punch cards
and later with tapes) as they only had to filter out which data items were relevant based on a
Boolean outcome. Even though rather simple, it is still a dominant retrieval model.

— Retrieval System with Ranking: Basic Boolean retrieval suffers from the lack of a ranked list. A
user is typically interested in a few, good answers but has not the time to go through all of the
potential thousands of relevant documents. If you search a book in an online store, you expect
the best matches to be at the top. Newer models, hence, try to determine how relevant a
document is for the user (in his given context) given the query.

Multimedia Retrieval — 2019 Page 2-2

— Vague Queries against Database: this search type allows the user to specify soft constraints,
l.e., vague query parts. For instance, if you want to buy a new computer, you may specify an
“Intel Core i7" CPU, 32GB of memory, 1TB of SSD, and at least GTX-980 graphics card. And of
course, you don’t want to pay more than $1000. As you walk through the options, you may
realize that you can’t satisfy all constraints and you compromise on some of them (e.g., replace
SSD with HDD but now with 4TB). Vague queries are best executed with “fuzzy” retrieval models
with a cost function that needs to be optimized (to satisfy the user's demand as far as possible)

— Natural Language Processing (NLP): Consider a database with industrial parts for machines. A
complex query may look as follows:

» “Find bolts made of steel with a radius of 2.5 mm, a length of 10 cm implementing DIN 4711.
The bolts should have a polished surface and can be used within an electronic engine.”

The challenge of the above query is that we are not actually looking for the keywords “radius”,
“DIN”, or “polished”. Rather, the keywords refer to constraints and to a context expressed by the
user. Recent improvements in Natural Language Processing (NLP) enabled systems to
“decipher” such queries. Modern recommendation systems can chat with the user to obtain the
context and then perform a search to answer the information need. We will, however, not look at
such systems in this course, but lay a few foundations here and there.

— Web Retrieval: early (text) retrieval systems focused on searches over managed and controlled
document collections. With the Web, search engines were faced with spamming, bad quality,
aggressive advertisements, fraud, malware, and click baits. Many retrieval models failed
completely in this uncontrolled environment. Web retrieval addresses many of these concerns
and tries to find, among trillions of possible answers, the best few pages for your query. The
sheer volume of information is a challenge in its own.

Multimedia Retrieval — 2019 Page 2-3

— Multimedia Content: with cheap storage and the digital transformation of enterprises and
consumers, enormous amounts of multimedia data gets created every day (images, audio files,
videos). The methods of text retrieval only work on the meta data but not on the signal
information of the content. We still have a large semantic gap when searching for multimedia
content, but recent improvements in deep learning techniques rapidly closed that gap. These
techniques automatically label multimedia content to allow for simpler text (or speech) search
over multimedia content and thereby bridging the semantic gap between the signal information
and the user’s intent.

— Heterogeneous, Distributed, Autonomous Information Sources: meta search is a generic
problem: the user does not want to repeat a query against all information sources, but rather
search once against all systems. In more complex setups, each system may hold the answer to a
part of the query and only the combination of all parts yields the best results. We will consider
more complex searches in later chapters.

Multimedia Retrieval — 2019 2.1 Overview and Motivation Page 2-4

2.1.1 Text Retrieval — Overview
Offline

uu\ uuh IADEE \\\

. 6

insert g :
cle =y
\.\/.;f‘;
document

feature
extraction

doclID =doc10

dog —» word 10, word 25
cat > word 13 _
home — word 2, word 27 Mex

Text retrieval encompasses two modes:

— an offline mode, that allows us to add
documents and to analyze them, and

— an online mode, that retrieves relevant
documents for queries given by users

Obviously, we do not want to apply text
search on the native documents. Rather we
extract so-called features which represent
characteristic pieces of information about the
content of the document. The features also
should support fast retrieval afterwards.

In more detail, the following steps occur
during the offline mode:

a) We add a new document (or we find a
new document by scanning/crawling)

b) Each addition triggers an event to extract
features and update search indexes

c) We extract features that best describe
the content and analyze & reason on the
context and higher-level features

d) We pass the features to an index that
accelerates searches given a query

Multimedia Retrieval — 2019

2.1.1 Text Retrieval — Overview Page 2-5

« In the online mode, users can search for Online

documents. The query is analyzed similarly
to the documents in the offline mode, but @ @ W
often we apply additional processing to »| ,Dogs at home”
correct spelling mistakes or to broaden the E
search with synonyms. The retrieval, finally, N
is a comparison at the feature level. We doc10 query @
assume that two documents that have doca transformation
similar features also are similar in content. result doc1
Hence, if the features of the query are close
to the ones of the document, the document @
is considered a good match. : Q= {dog,
* In more detail, the following steps occur relevance ranking dogs,
during the offline mode: sim(Q,docl) =.2 / hound,
1) User enters a query (or speech/ sim(Q,doc4) = .4 retrieval home}
handwriting recognition) sim(Q,doc10) = .6 @
2) We extract features like for the
documents, and transform the query as
necessary (e.g., spelling mistakes) inverted file:
3) We use the query features to search the dog — doc3,doc4,docl10
index for document with similar features index | sat - docl10
4) We rank the documents (retrieval status home — docl,doc7,doc10
value, RSV) and return best documents

Multimedia Retrieval — 2019 2.1.1 Text Retrieval — Overview Page 2-6

2.1.2 The Retrieval Problem

Given
— N text documents D = (Dy, ..., Dy) and the Query Q of the user
Problem

— find ranked list of documents which match the query well; ranking with respect to
relevance of document to the query

« We will consider the following parts of the problem in this chapter:
— Feature extraction (words, phrases, n-grams, stemming, stop words, thesaurus)
— Retrieval model (Boolean retrieval, vector space retrieval, probabilistic retrieval)
— Index structures (inverted list, relational database)
— Ranking of retrieved documents (RSV)

 We also look at a concrete implementation. Lucene is an open source project that
provides reach text retrieval for many languages and environments.

Multimedia Retrieval — 2019 2.1.2 The Retrieval Problem Page 2-7

2.2 Feature Extraction

Normally, we do not search through documents with string operations. Rather, we extract
characteristic features that describe the essence of the document in a concise way, and operate on
these features only. In this chapter, we first look at lower level features that relate directly to the
character sequence. Later on, we extract higher level features, for instance, classifiers, that describe
the content with more abstract concepts.

Feature extraction comprises of several steps which we subsequently analyze in more details:

Cleanse document and reduce to sequence of characters
Create tokens from sequence

Tag token stream with additional information
Lemmatization, spell checking, and linguistic transformation
Summarize to feature vector (given a vocabulary)

A A

We are also looking into the python package NLTK which is a good starting point for advanced text
processing. To get ready, ensure (as required for your Python environment):

sudo pip install -U nltk # or pip3
sudo pip install -U numpy # or pip3
python # or python3

import nltk
nltk.download () # select: popular or all-nltk

Apache OpenNLP is a good package for the Java world (also available through Lucene)

Multimedia Retrieval — 2019 2.2 Feature Extraction Page 2-8

« Example of Feature Extraction

I THE YEAR 1878 T1ook n

cleanse

(YEAR, 10)
(MEDICINE, 20)
(HOLMES, 203)
(SURGEON, 20)
(LONDON, 109)
(ATTACH, 80)
(UNIVERSITY, 53)
(DULY, 200)
(FIFTH, 19)
(NETLEY, 7)
(WATSON,107)
(DOCTOR, 83)
PRESCRIBE, 17)
(NORTHUMBERLAND, 1)

summarize

vocabulary

In the year 1878 | took my degree of
Doctor of Medicine of the University of
London, and proceeded to Netley to go
through the course prescribed for
surgeons in the army. Having completed
my studies there, | was duly attached to
the Fifth Northumberland Fusiliers as
Assistant Surgeon. The regiment was
stationed in India at the time, and before
| could join it, the second Afghan war
had broken out. On landing at Bombay,
| learned that my corps had advanced
through the passes, and was already
deep in the enemy's country. | ...

UN;2,<IN>) (FHE 2 <DT>) (YEAR,3,<NN>)
(1878,4,<CD>) {;5,<PRP>) (TAKE,6,<VBD>)
{MY-7.<PRP$>) (DEGREE,8,<NN>) (OF;9;<iN>)
(DOCTOR,10,<NNP>) {OF11;<IN>)
(MEDICINE,12,<NNP>) {OF;13,<IN>)

{FHE 14.<DT>) (UNIVERSITY,15,<NNP>)
{OF16,<IN>) (LONDON,17,<TOWN>) {,-18,<>)
{AND;19,<CC>) (PROCEED,20,<VBD>)
{F0,;21,<F0>) (NETLEY,22,<NNP>)
{FO;23,<FO>) (GO,24,<VB>)

(THROUGH, 25,<IN>) {FHE,26,<DF>)
(COURSE,27,<NN>) (PRESCRIBE,28,<VBD>)
{FOR;29,<IN>) (SURGEON,30,<NNS>)

tokenize

lemmatize

(IN,1) (THE,2) (YEAR,3) (1878,4) (1,5) (TOOK,6)
(MY,7) (DEGREE,8) (OF,9) (DOCTOR,10)
(OF,11) (MEDICINE,12) (OF,13) (THE,14)
(UNIVERSITY, 15) (OF,16) (LONDON,17) (*,,18)
(AND,19) (PROCEEDED,?20) (TO,21)
(NETLEY,22) (TO,23) (GO,24) (THROUGH, 25)
(THE,26) (COURSE,27) (PRESCRIBED,28)
(FOR,29) (SURGEONS,30) (IN,31) (THE,32)
(ARMY,33) (*.",34) (HAVING,35)
(COMPLETED,36) (MY,37) (STUDIES, 38)
(THERE, 39) (*,,40) (1,41) (WAS,42) (DULY,43)
(ATTACHED,44) (TO,45) (THE, 46) (FIFTH,47)
(NORTHUMBERLAND,48) (FUSILIERS,49)
(AS,50) (ASSISTANT,51) (SURGEON,52) ...

(IN,1,<IN>) (THE,2,<DT>) (YEAR,3,<NN>)
(1878,4,<CD>) (I,5,<PRP>) (TOOK,6,<VBD>)
(MY,7,<PRP$>) (DEGREE,8,<NN>) (OF,9,<IN>)
(DOCTOR,10,<NNP>) (OF,11,<IN>)
(MEDICINE,12,<NNP>) (OF,13,<IN>)
(THE,14,<DT>) (UNIVERSITY,15,<NNP>)
(OF,16,<IN>) (LONDON,17,<NNP>) (‘,’,18,<,>)
(AND,19,<CC>) (PROCEEDED,20,<VBD>)
(TO,21,<TO>) (NETLEY,22,<NNP>)
(TO,23,<TO>) (GO,24,<VB>)
(THROUGH,25,<IN>) (THE,26,<DT>)
(COURSE,27,<NN>) (PRESCRIBED,28,<VBD>)
(FOR,29,<IN>) (SURGEONS,30,<NNS>)
(IN,31,<IN>) (THE,32,<DT>) ...

Multimedia Retrieval — 2019

2.2 Feature Extraction

Page 2-9

2.2.1 Step 1: Cleanse Document (with the example of HTML)

» Text documents come in various formats like HTML, PDF, EPUB, or plain text. The initial step is to
extract meta information and the sequence of characters that make up the text stream. This may
include structural analysis of the document, encoding adjustments, and the identification of relevant
information for the feature extraction. We do not want to index control sequences!

» Let us look at a simple example in HTML. The following snippet contains the rough structure of a
web page. The first step is to identify which parts contain meaningful information. The header has
rich meta information, the body contains the main text parts. Even though HTML is a well-defined
standard, extracting information (so-called scraping) requires analysis of the data structure used for
the pages. A web search engine simply considers everything.

<html>
<head>) Header:
<title> MMIR - SS01 </title> Contains meta-information ab_out
SR eSO L nformation both for acding
content=,multimedia, information,
, relevant features as well as
</haad> retrieval, course®>) cataloguing the document.
ea
<body> Body:
Contains the main content
L enriched with markups. The flow
of the document is not always
</h;{fl><>>dy> obvious and may look differ)(;nt on

screen than in the file

Multimedia Retrieval — 2019 Page 2-10

 Meta data: the Web standards provide ways to define meta-information such as:
— URI of page: (may contain concise key words)
http://www-dbs.ethz.ch/~mmir/

— Title of document: (concise summary of what to expect)
<title>Multimedia Retrieval - Homepage</title>

— Meta information in header section: (enriched information provided by author)
<meta name=“keywords” content=“"MMIR, information,retrieval,”>
<meta name=“description” content=“"This will change your life..”>

The typical approach is to use the meta data for both the catalogue entry of the document and the
text sequence. If we know the context of web pages, we can extract more accurate information.

 Body Text: the body subsumes all text blocks and tags them to control presentation. The flow on
the page must not necessarily follow the order in the HTML file, but its typical a good enough
approximation. Some of the tags provide useful additional information on the text pieces:

— Headlines: <hl>2. Information Retrieval </hl>
— Emphasized: Please read carefully!
or<i>Information Retrieval</i>

A typical approach is to add meta information into the text stream based on the HTML tags. For
instance, we could assign heigher weights to bold-faced terms.

 Encoding: most formats provide escape sequences or special characters, that need to be
normalized. Furthermore, each document may use a different encoding which may lead to
difficulties when searching for terms due to differences in representations

— ->space, ü -> 1
— Transformation to Unicode, ASCII or other character set

Multimedia Retrieval — 2019 Page 2-11

* Web pages contain links. How do we handle them best? They describe relationships between
documents and can add to the description of the current document. But more importantly, they also
describe the referenced document. As authors of web pages keep link texts rather small, the set of
keywords in links is an excellent source for additional keywords for the referenced document.

SOl ccount login~
Top 10 Investment Banks in the World 2015 list -
Ran| Founded Headquarter levenue
1 Goldman Sachs 2000 200 West Street, New York, New York, U.S. Us$28.81 billion
2 Morgan Stanley 2009 Morgan Stanley Building, New York City, New York, U.S. | US$ 32.40 billion
3 J.P. Morgan & Co. 1869 270 Park Avenue, Manhattan, New York, New York, US. US$ 9723 billion | . | 'f
4 Credit Suisse 1935 Paradeplatz 8 Zurich, Switzerland US$ 27.05 Billio P a n WI Se y O r
5 Bank of America Merrill 1812 Bank of America Tower, New York City, U.S US$ 94.42 billion t ‘t
oo - retremen

6 Barclays Capital 1870 Canary Wharf] London, United Kingdom US $ 50.2 billion < And win a dream trip worth 15,000 CHF
7 Citigroup 1856 399 Park Aveque, Manhattan, New York City, New York, uss

us. 78.35 billion
8 Deutsche Bank 1690 Frankfurt, Gernany US $4299 B EEF.

billion BN
e

9 UBS AG 1852 Bahnhofstrasse 45 Zdrich, Switzerland US$ 29 58 billion o -
10 Wells Fargo 1854 an Francisco, California, US $86.08

) Lotest Group news: 1 frst infrasructure debt fund s & continues o grow s EUR 5 8 billon nfrastructire mestment plaform 14 USS Aset Management "
billion L %

— Embedded objects (image, plug-ins):
<IMG SRC=, img/MeAndMyCar.jpeg"
ALT="picture of me in front of my car">

— Links to external references:

read this important note

— Approach: Usually, the link text is associated with both the embedding and the linked document.
Typically, we weigh keywords much higher for the referenced document. Be aware of the
effectiveness of this approach, e.g., when considering click baits (promises much more than the
referenced documents reveal) or navigational hints (“click here”, “back to main page”). We will
address this in the Web Retrieval chapter in more details.

Multimedia Retrieval — 2019 2.2.1 Step 1: Cleanse Document (with the example of HTML) Page 2-12

2.2.2 Step 2: Create Tokens

« Segmentation: consider a book with several chapters, sections, paragraphs, and sentences. The
goal of segmentation is to extract this meta structure from the text (often with the information
provided by the previous step). While the broader segmentations (e.g., chapters) require control
information from the document, sentence segmentation is possible on the text stream alone:

— If we observe a ? or a !, a sentence ends (quite unambiguous, but this line is an exception)

— The observation of a . (period) is rather ambiguous: it is not only used for sentence boundaries,
but also in abbreviations, numbers, and ellipses that do not terminate a sentence

— Some language specifics like ¢, in Spanish
— Sentence-final particles that do not carry content information but add an effect to the sentence
« Japanese: M ka: question. It turns a declarative sentence into a question.
2 [T kke: doubt. Used when one is unsure of something.
7% na: emotion. Used when one wants to express a personal feeling.
» English: Don't do it, man. The blue one, right? The plate isn't broken, is it?
« Spanish: Te gustan los libros, ¢verdad? Le toca pasar la aspiradora, ¢no?

— A good heuristic works as follows (95% accuracy with English):
1. Ifitisa ‘“? or /', the sentence terminates
2. Ifitisa‘’, then

a. If the word before is a known abbreviation, then the sentence continues
b. if the word afterwards starts with capital letter, then the sentence terminates

— The approach in NLTK uses a trained method (Punkt) to determine sentence boundary.

Multimedia Retrieval — 2019 Page 2-13

« Token Generation: There are different ways to create tokens: a) Fragments of words, b) Words,
and c) Phrases (also known a n-grams).

— Fragments of words: an interesting approach in fuzzy retrieval is to split words into sequences
of characters (so-called k-grams). For example:

street - str, tre, ree, eet
streets - str, tre, ree, eet, ets
strets - str, tre, ret, ets

An obvious advantage is that different inflections still appear similar at the fragment level. It also
compensates for simple misspellings or bad recognition (OCR, speech analysis). Further, no
language specific lemmatization is required afterwards. An early example was EuroSpider a
search engine that used 3-grams to index OCR texts. However, while the technology was
compelling, it has become superficial with the increased recognition and correction capabilities. In
other retrieval scenarios, the method is still of interest. Music retrieval, DNA retrieval, and Protein
Sequencing use fragments to model characteristic features. In linguistic analysis, n-grams of
words also play an important role for colocation analysis.

— Words: using words as terms is the usual approach. But there are some subtle issues to deal
with. For instance, how do you tokenize the following sequences?

Finland’s capital - Finland, Finlands, or Finland’s?
what’re, I'm, isn’t - What are, | am, is not?
'ensemble - le ensemble?

San Francisco - one token or two?

m.p.h., PhD. - ??

$380.2, 20% > ??

Leuchtrakete - one word or composite word?

Multimedia Retrieval — 2019 Page 2-14

— Words (contd): In most languages, tokenization can use (space) separators between words. In
Japanese and Chinese, words are not separated by spaces. For example:

SRR EEEEEAREESIHEZER -
SHRLRYE e BiE £ B FREEl M HESEXR
Sharapova now livesin US southeastern Florida
In Japanese, texts can use different formats and alphabets mixed together.

« The conventional approach for tokenization is based on a regular expression to split words.
One way to do so is as follows:

1. Match abbreviations with all upper case characters (e.g., U.S.A.)

2. Match sequences of word characters including hyphens (-) and apostrophes (‘)
3. Match numbers, currencies, percentage, and similar ($2.3, 20%, 0.345)

4. Match special characters and sequences (e.g., ... ; " " () [1)

« In addition, we want to consider special expressions/controls in the environment like hashtags
(#blowsyourmind), user references (@thebigone), emoticons (©), or control sequences in the
format (e.g., wiki).

 NLTK uses the Treebank tokenizer and the Punkt tokenizer depending on the language. There
are a few simpler methods that split sequences on whitespaces or regular expression.

» For Japanese and Chinese, we can identify token boundaries with longest matches in the
sequences that form a known word from the dictionary. This approach does not work in other
languages.

Multimedia Retrieval — 2019 Page 2-15

Phrases: we have seen some examples, where it seems more appropriate to consider subsequent
words as a singular term (e.g., New York, San Francisco, Sherlock Holmes). In other examples, the
combinations of two or more words can change or add to the meaning beyond the words. Examples
include express lane, crystal clear, middle management, thai food, Prime Minister, and other
compounds. To capture them, we can extract so-called n-grams from the text stream:

1. Extract the base terms (as discussed before)
2. lterate through the term sequence
« Add 2-grams, 3-grams, ..., n-grams over subsequent terms at a given position

”» 1] ”» 13

However, this leads to many meaningless compounds such as “the house”, “| am”, “we are”, or “it is”
which are clearly not interesting to us. More over, we generate thousands of new term groups that
are just accidentally together (like “meaningless compounds” or “better control” in this paragraph).
To better control the selection of n-grams, various methods have been proposed. We consider here
only two simple and intuitive measures:

— Afirst approach is to reject n-grams that contain at least one so-called stop word. A stop word is
a linguistic element that bears little information in itself. Examples include: a, the, I, me, your, by,
at, for, not, ... Although very simple, this already eliminates vast amounts of useless n-grams.

— Pointwise Mutual Information (PMI). For simplicity, we consider only the case of 2-grams but
generalization to n-grams is straightforward. The general idea is that the 2-gram is interesting
only if it occurs more frequently than the individual distributions of the two terms would suggest
(and assuming they are independent). To this end, we can compute the Pointwise Mutual
Information pmi for two terms t; and t, as follows; p(t) is that probability that term t occurs:

. p(ty, t2) p(t,[t;) p(tz1t1)
mi(ty, t,) = lo =log——= 1o = logp(t,, t,) — logp(ty) — logp(t,)
pmi(ty, t3) 8 p&) - B o &0t gp(ty, & gp(ty gp(t;

Multimedia Retrieval — 2019 Page 2-16

— Pointwise Mutual Information (contd): Let p(tj) be the probability that we observe the term ¢; in
the text. We compute this probability with a maximum likelihood approach. Let M be the number
of different terms in the collection, tf(tj) be the so-called term frequency of term ¢; (number of

its occurrences), and N be the total occurrences of all terms in the text. We then obtain p(t;) as:

o(t) = tf(t) - _tf (1, t)

Viil<j<M similarly: p(ty,t;) = N
Now, assume we have two terms t; and t,. If they are independent from each other, then the
probability p(t,,t,) of their co-occurrence is the product of their individual probabilities p(t]-) and
the pmi becomes 0. If t, always follows t,, then p(t,|t;) = 1 and the pmi is positive and large. If
t, never follows t,, then p(t,|t;) = 0 and pmi = —oo. So, we keep 2-grams if their pmi is positive
and large, and dismiss them otherwise. In addition, we dismiss infrequent 2-grams with
tf(t;,t,) < threshold to avoid accidental co-occurrences with high pmi (seldom words):

salt lake 11.94
halliday private 5 12 5 11.81
scotland yard 8 9 6 11.81
lake city 10 23 9 10.72
private hotel 12 14 6 10.59
baker street 6 29 6 10.54
brixton road 15 28 13 10.38
jefferson hope 37 56 34 9.47
joseph stangerson 13 47 10 9.46
enoch drebber 8 62 8 9.44
old farmer 39 9 5 9.26
john rance 39 10 5 9.11
john ferrier 39 62 29 9.01
sherlock holmes 52 98 52 8.78

Multimedia Retrieval — 2019 2.2.2 Step 2: Create Tokens Page 2-17

2.2.3 Step 3: Tagging of Tokens

« A simple form of tagging is to add position information to the tokens. Usually, this is already done at
token generation time (term position in stream).

» For natural language processing, tagging associates a linguistic or lexical category to the term. With
Part of Speech (POS), we label terms as nouns, verbs, adjectives, and so on. Based on this
information, we can construct tree banks to define the syntactic and semantic structure of a
sentence. Tree banks have revolutionized computational linguistic in the 1990s with “The Penn
Treebank” as first large-scale empirical data set. It defines the following tags:

CC Coordinating conjunction PRP$ Possessive pronoun with NLTK, use

CD Cardinal number RB Adverb nltk_help.upennitagset ()

DT Determiner RBR Adverb, comparative

EX Existential there RBS Adverb, superlative

FW Foreign word RP Particle

IN Preposition or subordinating conjunction SYM Symbol

JJ Adjective TO to
JJR Adjective, comparative UH Interjection

JJS Adjective, superlative VB Verb, base form

LS Listitem marker VBD Verb, past tense

MD Modal VBG Verb, gerund or present participle

NN Noun, singular or mass VBN Verb, past participle
NNS Noun, plural — VBP Verb, non-3rd person singular present
NNP Proper noun, singular FIEERT U EI(e specmc VBZ Verb, 3rd person singular present

people, places, things.
NNPS Proper noun, plural WDT Wh-determiner
WH-words are: where,

PDT Predeterminer WP Wh-pronoun what. which. when. ...
POS Possessive ending WP$ Possessive wh-pronoun
PRP Personal pronoun WRB Wh-adverb

Multimedia Retrieval — 2019 2.2.3 Step 3: Tagging of Tokens Page 2-18

« NLTK also provides a simpler variant with the universal POS tagset. It is based on the same
(machine learning) approach as the Penn Treebank but maps tags to a smaller/simpler set. Here is
an example together with the number of occurrences in the book “A Study in Scarlet”:

ADJ adjective 2812 new, good, high, special, big, local

ADP adposition 5572 on, of, at, with, by, into, under

ADV adverb 2607 really, already, still, early, now

CONJ conjunction 1711 and, or, but, if, while, although

DET determiner, article 5307 the, a, some, most, every, no, which

NOUN noun 9358 year, home, costs, time, Africa

NUM numeral 354 twenty-four, fourth, 1991, 14:24

PRT particle 1535 at, on, out, over per, that, up, with

PRON pronoun 5705 he, their, her, its, my, I, us

VERB verb 8930 is, say, told, given, playing, would
punctuation marks 7713 ca !

X other 36 ersatz, esprit, dunno, gr8, univeristy

POS tags are the basis for natural language processing (NLP). They are used to define a parse tree
which allows the extraction of context and the transformation of sentences. Named entities is one
such transformation. Based on the initial POS tagging and with the help of a entity database,
individual tokens or groups of tokens are collapsed to a single named entity.

Chunking is the more generic technique. We can define a simple grammar which is used to
construct non-overlapping phrases (NP). For example, the grammar “NP: {<DT>?<JJ>*<NN>}"

collapses a sequence of article, adjectives, and noun into a new group.

Multimedia Retrieval — 2019 2.2.3 Step 3: Tagging of Tokens Page 2-19

2.2.4 Step 4: Lemmatization and Linguistic Transformation

* Lemmatization and linguistic transformation are necessary to match query terms with document
terms even if they use different inflections or spellings (colour vs. color). Depending on the scenario,
one or several of the following methods can be applied.

« A very common step is stemming. In most languages, words appear in many different inflected
forms depending on time, case, or gender. Examples:

— English: go, goes, went, going, house, houses, master, master’'s
— German: gehen, gehst, ging, gegangen, Haus, Hauser, Meister, Meisters

As we see from the examples, the inflected forms vary greatly but essentially do mean the same.
The idea of stemming is to reduce the term to a common stem and use this stem to describe the
context. In many languages, like German, stemming is challenging due to its many irregular forms
and the use of strong inflection (gehen - ging). In addition, some languages allow the construction
of “new terms” through compound techniques which may lead to arbitrarily long words:

— German (law in Mecklenburg-Vorpommern, 1999-2013): Rinderkennzeichnungs- und
Rindfleischetikettierungstiberwachungsaufgabeniibertragungsgesetz. Literally ‘cattle marking and
beef labeling supervision duties delegation law’

— Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde. Literally ‘atomic
nuclear energy reactor generator condenser turbine cogwheel stage’

In many cases, we want to decompose the compounds to increase chances to match against query
terms. Otherwise, we may never find that German cattle law with a query like “Rind
Kennzeichnung”. On the other side, breaking a compound may falsify the true meaning

— German: Gartenhaus -> Garten, Haus (ok, not too far away from the true meaning)
— German: Wolkenkratzer - Wolke, Kratzer (no, this is completely wrong)

Multimedia Retrieval — 2019 Page 2-20

* For English, the Porter Algorithm determines a near-stem of words that is not linguistic correct but
in most cases, words with the same linguistic stem are reduced to the same near-stem. The
algorithm is very efficient and several extensions have been proposed in the past. We consider here
the original version of Martin Porter from 1980:

— Porter defines v as a ,vocal” if
e itisan A, E, I,0, U
* itis a Y and the preceding character is not a ,vocal® (e.g. RY, BY)
— All other characters are consonants (c)
— Let C be a sequence of consonants, and let v be a sequence of vocals
— Each word follows the following pattern:
« [C] (VC)™[V]
« m is the measure of the word
— further:
« *o: stem ends with cvc; second consonant must not be W, X or Y (-WIL, -HOP)
« *d: stem with double consonant (-TT, -SS)
« *y*: stem contains a vocal

— The following rules define mappings for words with the help of the forms introduced above. m is
used to avoid overstemming of short words.

Source: Porter, M.F.: An Algorithm for Suffix Stripping. Program, Vol. 14, No. 3, 1980

Multimedia Retrieval — 2019 2.2.4 Step 4: Lemmatization and Linguistic Transformation Page 2-21

— Porter algorithm - extracts (1)

Rule Examples

Step 1

a) SSES -> S8 caresses -> caress
IES => I ponies -> poni
SS -> S8 caress -> caress
S -> cats -> cat

b) (m>0) EED ~>EE feed -> feed
(*v*) ED -> plastered -> plaster
(*v*) ING -> motoring -> motor
... (further rules)
Step 2
(m>0) ATIONAL -> ATE relational -> relate
(m>0) TIONAL —-> TION conditional -> condition
(m>0) ENCI -> ENCE valenci -> valence
(m>0) IZER -> IZE digitizer -> digitize

... (further rules)

Multimedia Retrieval — 2019

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-22

— Porter algorithm - extracts (2)

Rule Examples
Step 3
(m>0) ICATE -> IC triplicate -> triplic
(m>0) ATIVE -> formative -> form
(m>0) ALIZE -> AL formalize -> formal
... (further rules)
Step 4
(m>1) and (*S or *T)ION -> adoption -> adopt
(m>1) OU -> homologou -> homolog
(m>1) ISM -> platonism -> platon
... (further rules)
Step 5
a) (m>1) E -> rate -> rate
(m=1) and (not *0o)E -> cease -> ceas
b) (m>1 and *d and *L) -> single letter controll -> control

Multimedia Retrieval — 2019

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-23

* There are several variants and extensions of the Porter Algorithm. Lancaster uses a more
aggressive stemming algorithm that can result in almost obfuscated stems but at increased
performance. Snowball is a set of rule based stemmers for many languages. An interesting aspect
is the domain specific language to define stemmers, and compilers to generate code in many
computer languages.

» In contrast to the rule based stemmers, a dictionary based stemmer reduces terms to a linguistic
correct stem. This comes at additional stemming costs and the need to maintain a dictionary. The
EuroWordNet initiative develops a semantic dictionary for many of the European languages. Next to
words, the dictionary also contain all inflected forms, a simplified rule-based stemmer for regular
inflections, and semantic relations between words (so-called ontologies).

— Examples of such dictionaries / ontologies:
« EuroWordNet: http://www.illc.uva.nl/EuroWordNet/
« GermaNet: http://www.sfs.uni-tuebingen.de/1lsd/
« WordNet: http://wordnet.princeton.edu/

— We consider in the following the English version of WordNet with its stemmer Morphy. It consists
of three parts

« a simple rule-based stemmer for regular inflections (-ing, -ed, ...)
 an exception list for irregular inflections
« a dictionary of all possible stems of the language

Multimedia Retrieval — 2019 2.2.4 Step 4: Lemmatization and Linguistic Transformation Page 2-24

— The rule-based approach is quite similar to the Porter rules but they Type Suffix Ending
: At NOUN s
only apply to certain word types (noun, verb, adjective). NOUN e]
— The stemming works as follows: NOUN xes X
NOUN zes z
NOUN ches ch
1. Search the current term in the dictionary. If found, return the term as its HSSH fnh:rf fnhan
own stem (no stemming required) NOUN - y
2. Search the current term in the exception lists. If found, return the VERB .
associated linguistic stem (see table below) VERB ies y
3. Try all rules as per the table on the right. Replace the suffix with the vERD e e
ending (we may not know the word type, so we try all of them) VERB ed e
. L o VERB d
a. Ifarule matches, search in the indicated dictionary for the reduced e ﬁ]g o
stem. If found, return it as the stem VERB ing
b. If several rules succeed, choose the more likely stem ADJ or
Example: axes - axis, axe ADJ est
. . ADJ er e
4. If no stem is found, return the term as its own stem ADJ est e
adj.exc (1500): verb.exc (2400): noun.exc (2000):
gt'agiest stagy éie eat Héuromata neuroma
stalkier stalky atrophied atrophy neuroptera neuropteron
stalkiest stalky averred aver neuroses neurosis
stapler stapler averring aver nevi nevus
starchier starchy awoke awake nibelungen nibelung
starchiest starchy awoken awake nidi nidus
starer starer babied baby nielli niello
starest starest baby-sat baby-sit nilgai nilgai
starrier starry baby-sitting baby-sit nimbi nimbus
starriest starry back-pedalled back-pedal nimbostrati nimbostratus
statelier stately back-pedalling back-pedal noctilucae noctiluca
stateliest stately backbit backbite
Multimedia Retrieval — 2019 Page 2-25

 NLTK supports Porter, Lancaster, Snowball and WordNet stemmers. The table below shows
examples for all stemmers. Note that the Morphy implementation in NLTK requires a hint for the
word type, otherwise it considers the term as a noun.

Porter Stem Lancaster Stem Snowball Stem WordNet Stem

took took took took take
degree degre degr degre degree
doctor doctor doct doctor doctor
medicine medicin medicin medicin medicine
university univers univers univers university
proceeded proceed process proceed proceed
course cours cours cours course
surgeons surgeon surgeon surgeon surgeon
army armi army armi army
completed complet complet complet complete
studies studi study studi study
there there ther there there
was wa was was be

duly duli duly duli duly

fifth fifth fif fifth fifth
fusiliers fusili fusy fusili fusiliers
assistant assist assist assist assistant
regiment regiment regy regiment regiment
stationed station stat station station
time time tim time time
afghan afghan afgh afghan afghan
had had had had have
broken broken brok broken break

Multimedia Retrieval — 2019

2.2.4 Step 4: Lemmatization and Linguistic Transformation

Page 2-26

* When analyzing text or parsing a user query, we will come across homonyms (equal terms but
different semantics) and synonyms (different terms but equal semantics). Homonyms may require
additional annotations from the context to extract the proper meaning. Synonyms are useful to
expand a user query if the original search is not (that) successful. Examples:

— Homonyms (equal terms but different semantics):
* bank (shore vs. financial institute)

— Synonyms (different terms but equal semantics):
« walk, go, pace, run, sprint

WordNet groups English words into so-called synsets or synonym sets and provides short
definitions for their usage. It also contains further relations among synsets:

— Hypernyms (umbrella term) / Hyponym (species)
« Animal <« dog, cat, bird, ...

— Holonyms (is part of) / Meronyms (has parts)
 door <« lock

These relationships define a knowledge structure. The hypernym/hyponym relationship defines a
hierarchy with synsets at each level and the unique top synset “entity”. We can use this structure to
derive further information or context data for our annotations. For instance, if we find the term horse,
we can try to derive whether the text is about an animal or about a chess figure.

— NLTK provides the corpus nltk.corpus.wordnet which provides access to the WordNet knowledge
base. You can also browse through the structure online.

« Spell checking: for user queries, we often use spell checkers to fix simple misspellings or to
suggest corrected versions of the terms. Most systems provide a fuzzy search which automatically
looks for similar terms and adds them to the query if necessary (see Lucene later on)

Multimedia Retrieval — 2019 Page 2-27

2.2.5 Step 5: Summarize to Feature Vector

« Before we can create a feature vector, we first must define the vocabulary and decide how to
statistically summarize the term information.

« Vocabulary: how many different terms does a collection of documents contain? Church and Gale
gave a very good and rough estimator: the number of distinct terms is about the square root of the
number of tokens in the entire collection. But not all of these terms are equally important for the
retrieval task. So how can we find the most important ones?

— We usually normalize terms before we add them to the vocabulary (but this is not necessary). As
discussed in the previous section, we may end up with near-stems or real stems of the words.
Normalization not only reduces the size of vocabulary but it also merges different terms with
(mostly) the same meaning. For instance:

« we can consider the set {cat, cats, cat’s, cats’} as 4 individual terms or as a single term
* Wwe can treat a synset as one term or each constituent of the synset as an individual term

— Regardless of the chosen method to extract and normalize terms, we want to eliminate terms that
do not help much describing the content of the document. For instance, the term ‘it’ is used in
almost every English text and bears little information about the content. So we may want to
ignore these so-called stop words; here some examples for English:

i me my myself we our ours ourselves you your yours yourself yourselves he him his himself she her hers herself it
its itself they them their theirs themselves what which who whom this that these those am is are was were be been
being have has had having do does did doing a an the and but if or because as until while of at by for with about
against between into through during before after above below to from up down in out on off over under again further
then once here there when where why how all any both each few more most other some such no nor not only own
same so than too very s t can will just don should now d [m o re ve y ain aren couldn didn doesn hadn hasn haven
isn ma mightn mustn needn shan shouldn wasn weren won wouldn

Multimedia Retrieval — 2019 2.2.5 Step 5: Summarize to Feature Vector Page 2-28

— Stop word elimination is very common but bears some risks if not done carefully. In the example
before, we stated that “it” is not meaningful to distinguish English texts. But consider this:

« Stephen King wrote a book “It” — We never will find this book if we eliminate ‘it’ as a stop word

« If we write IT we actually mean information technology — even though it looks like our ‘it’, the
big IT is a homonym with a very distinct meaning

« What do you get if you search the web for it'?

— The other extreme case are seldom terms (or bigrams, n-grams) that only appear once in the
entire collection. This multimedia retrieval course is the only one containing the bigram
endoplasmic reticulum. Is it worth to index this bigram? Is any student ever going to search for
this in a computer science collection? If this is unlikely, why bother with such terms.

« We already considered the pmi earlier when we extracted n-grams from the text. pmi is a
simple measure to reduce the numbers of n-grams that we want to consider. Without such a
control, we would end up with excessive numbers of terms. According to the Oxford English
Dictionary, there are about 170’000 currently used words in English. With bigrams, the potential
number is in the billions, and with n-grams (and large corpuses) we may obtain trillions of
combinations (upper bound by the number of tokens in the collection). Google’s n-gram viewer
has 1 trillion tokens but “only” 13 million n-grams. Clearly, rare combinations were taken off the
vocabulary. So filtering rare terms is an important step.

— A final issue are spelling mistakes. Britney, Britni, Bridney, Britnei all appear similar but are
different terms for our retrieval system. Misspellings not only blows up our vocabulary (consider
all spelling mistakes ever done by all people!), but they also make it impossible to retrieve the
content by the correct spelling. On the other side, all of the names given before do also exist
(maybe in some cases the parents misspelled the name on the form)

Multimedia Retrieval — 2019 Page 2-29

— A pragmatic approach to control vocabulary size is based on Zipf’s law. Let N be the total
number of term occurrences (tokens) in the collection and M be the number of distinct terms in
the vocabulary. We already used the term frequency tf (t) to denote the number of occurrences
of term t. Now, let us order all terms by decreasing term frequencies and assign rank(t) to term
t based on that order. The central theorem of Zip’s law is that the probability p,- of randomly
selecting the term t with rank(t) = r from the collection is

== YO for the term t with rank(t) = r. cis aconstant depending only on M
r N

In other words, we always get the same constant value c - N if we multiply the rank of a term with

its term frequency. Or we can estimate the rank of a term t as: rank(t) = ¢ .~ We can easily

tf ()
compute c as a function of M as follows:
M M M
=)=y tee) s
= = —=C- _ = ~
% r r 2 ‘T w 1°05772+InM
r=1 r=1 r=1 Zrle

With this we get a simple lookup table for ¢ given the number M of distinct terms:

5000 10°000 50'000 100’000

0.11 0.10 0.09 0.08

Multimedia Retrieval — 2019 2.2.5 Step 5: Summarize to Feature Vector Page 2-30

— The right hand figure shows the Zipf
distribution. As discussed, the most
frequent words (above the upper cut-off
line) bear little meaning as they occur in
almost every text. The least frequent
words (below the lower cut-off) appear
too seldom to be used in queries and
only discriminate a few documents. The
range of significant words lies in between
the lower and upper cut-off.

— Originally, the idea was to define the
cut-off thresholds and eliminate the
words outside the indicated range. This
would save memory and speed up
search. This has become irrelevant.

— Today, the typical approach is to
eliminate only stop words from a short well-maintained list, or to keep even all terms as the
additional (storage) overhead is minimal. On the other side, we can use Zipf's law to weigh the
terms. With these weights, we can express how well a term can distinguish between relevant and
non-relevant documents. The figure above indicates that power of discrimination with the red
plot. Note that even though the very rare terms are directly pointing to the relevant documents,
they are also rarely used in queries and, hence, their expected discrimination power is low. The
best terms are those, that divide documents clearly (contain term, do not contain term) and are
frequently used in queries.

lower cut-off

frequency
upper cut-off

discriminating power

54— Significant words —»i ,S—

rank

Multimedia Retrieval — 2019 Page 2-31

— Discrimination power: in vector space retrieval, we use the so-called inverse document
frequency to define weights on terms that correspond directly to their discrimination power.
Instead of counting the total number of occurrences as in the term frequency tf (t), the document
frequency df (t) counts in how many documents the term t appears at least once. Let N be the
number of documents in the collection. The inverse document frequency idf (t) is then given as
(note that there are many similar definitions for idf (t)):

df(t) = = log(N + 1) — log(df(t) + 1)

logro+1
The inverse document frequency describes the weight of a term both in the document description
as well as in the query description. We can estimate the discrimination power of a term t by
multiplying the squared idf (t)-value with the probability that the term occurs in the query. This
values estimates the expected contribution of the term to the result ranking (=discrimination
power).The figure below shows idf-weights (blue) and discrimination power (red) as a function of
the document frequency df and with N = 1000 documents (see vector space retrieval)

« Terms with low document frequencies (on the discrimination power ——idf-weights
left side) have the highest id f-weights but
as they also seldom appear in queries, their
discrimination power is low

* On the right side, the terms with high document
frequency have both low weights and
discrimination power.

* The terms around df = 100 = 0.1 - N have
. . o . 0 200 400 600 800 1000
the highest discrimination power. document frequency df

Multimedia Retrieval — 2019 2.2.5 Step 5: Summarize to Feature Vector Page 2-32

— The discrimination method provides an alternative to the idf-weights. In essence, we want to
measure how much a term is able to discriminate the document collection, or from a different
angle: if we remove the term from the collection, how much more similar do the documents
become without that term. Let 0 < sim(D;, D;) < 1 denote the similarity between two documents
D; and D; where 0 means the documents are totally dissimilar and 1 means they are identical.

* In a collection with N documents, compute the centroid document C as the document that
contains all M terms with mean frequency over the collection. If tf(D;, t;) is the term frequency

of term t; in document D;, then

N
1

tf(C.t) =5+ z tf(Dyt) forvjil<j<M

=1

« We define the density of the collection as the sum of all similarities between documents and
their centroid C:

N
Q = sim(D;, C)
3

« Now assume we remove the term t from the collection. We can compute the density Q; for this
modified collection and then define the discrimination power of term t as:

dp(t) = Q. —Q

Multimedia Retrieval — 2019 Page 2-33

« If the discrimination value is large, Q; is larger than Q. Hence, if we remove the term t from the
collection, similarities to the centroid become larger. If we add the term again, documents
become more distinct from their centroid. In other words, the term t differentiates the collection
and is hence a significant term. On the other side, if dp(t) is negative, we conclude that Q is
larger than Q. That means if we remove the term from the collection, documents become more
distinct from the centroid. If we add the term again, the documents become more similar to the
centroid. In other words, the term is likely “spamming” the collection and has a (very) negative
impact on describing the documents. For example, if we add the term “hello” a 1’000 times to
each document, they obviously become more similar to each other (and the centroid). Hence,
terms with very small dp(t) are not significant (or even harmful) to describe the collection.

« We can now select the most useful terms by ordering them by their decreasing dp(t)-values
and cut-off the list if the discrimination value falls below some threshold value.

* Once the vocabulary is fixed, we can describe documents D; by a feature value d;. The set-of
words model is a simple representation that only considers whether a term is present and
disregards order of terms, number of occurrences, and proximity between terms. The most simple
representation is the set of terms appearing at least once, that is a binary feature vector where
dimension j denotes the presence (= 1) or absence (= 0) of term ¢;.

1 tf(Dyt)>0

0 tf(Dyt;) =0 or d; ={t; | tf(Dt;) > 0}
i

di,j € {O,l}M, di,j - {

The bag-of-of words model is the more common representation and differs from the set-of-words
by keeping multiplicity of terms. The representation is a feature vector over term frequencies

di,j € NM, di,j = tf(Di, t])

Multimedia Retrieval — 2019 Page 2-34

2.3 Text Retrieval Models

In the following sections, we consider different retrieval models and discuss their advantages and
disadvantages. We only touch the essential method while there are many more extensions in the
literature. We will use the following notations in this chapter:

Value Range

D {Dy, ..., Dy}
D;
T {t1, .., ty}
j
d; (0,1}, NM, or RM
A {0 1}M>(N NMXN or RMXN
tf (D, t;) N
af () N
idf (t) R
Q

(0,1}, NM, or RM

sim(Q, D;) [0,1]

Collection of N documents

Representation of a documentwith 1 <i < N
Collection of M terms

Representationof atermwith 1 <j < M

Feature description of document D; with the j-the dimension describing document
with regard to term ¢;

Term-document matrix with a;; = tf (D, t;), that is rows denote terms and columns
denote documents. For instance, the i-th columnis a.; = d;.

Term frequency of term ¢; in document D;, i.e., number of occurrences of term ¢; in
document D;

Document frequency of term ¢; in the collection I, i.e., number of documents in D
that contain term ¢; at least once

Inverse document frequency of term ¢; given by
idf(t;) =log(N + 1) —log(df(¢;) + 1)
Representation of a query

Feature description of query Q with the j-the dimension describing query with regard
to term ¢;

Similarity between query Q and document D;. 0 means dissimilar, 1 means identical

Multimedia Retrieval — 2019

2.3 Text Retrieval Models Page 2-35

2.3.1 Standard Boolean Model

« The standard Boolean model is the classical text retrieval method introduced in the 1970s. Given
the limited capabilities of computing at this time, it was important that we can answer queries by
considering only the current data set (tape drives were sequential). Even though more advanced
methods were developed, it is still used by many engines and still works fairly well.

« As the names suggests, the model operates on Boolean logic over sets of terms. Documents are
represented by sets of words, and queries come from the following grammar:

e Q=t Term t must be present

e Q=+t Term t must not be present

* Q=0Q,V0, Sub-query g, or sub-query g, fullfilled
c Q=0,N0, Both sub-query g; and g, fullfilled

« To evaluate such queries, we can transform them into their disjunctive normal form

L K;
Q = (Tl,l A A Tl,Kl) V-V (TL,I JANCERIWA TL,KL) - \/</\Tl’k>
=1 \k=1

With 7, = tjk) OF Tie = i) (j(1,k) is mapping to the index of the term used in the query)

« For each atomic part 7, ;, we can compute the set S, , of documents that contain or do not contain
the term:

_ {Di 1tf(Di, tja) =1} if 1 =t
b {D; 1 tf (Di, tjupy) =0} if 715 = iy

Multimedia Retrieval — 2019 Page 2-36

» The final result Q is then a combination of intersections and unions over the sets derived from the
atomic parts

l L

Q= Uﬁglk = Uﬁ W 1¢f (P) = 1} 1 = G
’ 1=1 k=1 {D | tf(Dv (L k)) = 0} if T = —tjn

« Advantages: simple model with a clean description of query semantics. Very simple to implement
and intuitive for users. Even though the definition of query evaluation is based on sets, we will see
later in this chapter that the inverted lists provides a very efficient way to compute the inner
intersections of the evaluation (with some restrictions on query structure). The Boolean expression
provides an accurate way to define what relevance means.

« Disadvantages: no (intuitive) control over the size of retrieved documents and a user may get
either too few or too many results. For larger result sets, the lack of ranking requires the user to
browse through the documents to find the best match. Although the query language is simple, users
may find it hard to express a complex information need as a combination of ANDs and ORs. All
terms are treated equally, hence, stop words contribute equally to the result as the more significant
terms. Retrieval quality is ok but other methods (with equal computational complexity) achieve much
better results.

Multimedia Retrieval — 2019 Page 2-37

2.3.2 Extended Boolean Model

* The lack of ranking is a huge handicap of the standard Boolean model. The extended versions of
the Boolean model overcome this drawback: we consider term weights, use the bag of words model,
and apply partial matching capability similar to the vector space retrieval model. The algebra is still
Boolean but evaluations return a similarity value rather than a 0/1-view. There are several variants
but they all follow a similar concept.

A document D; is represented as a vector d; with normalized term frequencies:

- <1’ tf (D t;) - idf(tj)>
a

i Vji:1<j<M with a = max (tf(Di, t;) - idf(tj)) (or some other value)

Other methods to normalization are possible (like the discrimination value we have seen previously).
A query Q follows the same structure as in the standard Boolean model, hence:

L K;
Q = (Tl,l A A Tl,Kl) V-V (TL,l A A TL,KL) - \/</\Tl’k>
=1 \k=1

With 7, = tjk) OF Tie = i) (j(I,k) is mapping to the index of the term used in the query)

- For each atomic part 7, , we can compute the similarity value sim(Q = t;, D;) for a document D;:

dijary FTe =tk

sim(Q = Ty, D;) = 1—=dijary e =twr

Multimedia Retrieval — 2019 Page 2-38

» There are several variants that calculate the AND and OR operators.
— Fuzzy Algebraic: (only works for two operands)

sim(Qq A Q,, D;) = sim(Q4, D;) - sim(Q,, D;)
sim(Q V Q;, D;) = sim(Q4, D;) + sim(Qy, D;) — sim(Q4, D;) - sim(Q3, D;)

— Fuzzy Set: (generalization to K sub-queries is straight forward)

sim(Qq A Q,, D;) = min{sim(Q, D;), sim(Q,, D;)}
sim(Q, V Q,, D;) = max{sim(Q4, D;), sim(Q,, D;)}

— Soft Boolean Operator: (generalization to K sub-queries is straight forward)

sim(Q, A Q,,D;) = (1 — @) - min{sim(Q4, D;), sim(Q,, D;)} + a - max{sim(Q4, D;),sim(Q,,D;)} 0<a <0.5
sim(Qy V Q2, D;) = (1 — B) - min{sim(Q4, D;), sim(Qz, D;)} + B - max{sim(Qy, D;),sim(Q2, D)} 05<p<1

— Paice-Model: order the sub-queries in increasing order of their similarity values for AND
operator, and order the sub-queries in decreasing order of their similarity values for OR. ris a
constant coefficient:

K K k=1, i

1T - sim(Qy, D; _

sim (/\ Qk,Dl-> = k=1 — rk_EQk 2 with Vk,1 < k < K:sim(Qy, D;) < sim(Qy+1,D;)
k=1 k=1

K K k-1,
4T - sim(Q,,, D; _
sim (\/ Qk,Di> = Li=1 e k_EQk 2 with Vk,1 < k < K:sim(Qy, D;) = sim(Qy+1, D;)
k=1 k=1

Multimedia Retrieval — 2019 Page 2-39

— P-Norm-Model:

K P e)P
sim (/\ Qk!Di> =1- \/Zk(l SlnI;(Qk'Dl)) W|th 1 < |% < 0o
k=1

K -
k=1

« Advantages: simple model with a clean description of query semantics. Very simple to implement
and intuitive for users. Even though the definition of query evaluation is rather heuristic,
performance is quite good. With the inverted lists method, there is a very efficient way to compute
the similarity values. In comparison with the standard Boolean model, we now obtain ranked lists
and partial matches, i.e., we can control the size of results to be presented back to the user. Terms
are treated differently based on their term occurrence and their discrimination power.

« Disadvantages: heuristic similarity scores with little intuition why they work well (no theoretic
background for the model). Although the query language is simple, users may find it hard to express
a complex information need as a combination of ANDs and ORs. Retrieval quality is ok but other
methods (with equal computational complexity) achieve better results.

Multimedia Retrieval — 2019 Page 2-40

2.3.3 Vector Space Retrieval

» The vector space retrieval model is by far the most popular of the classic text retrieval models. It has
a clean and simple query structure and offers a very fast computational scheme through inverted
lists. In contrast to the Boolean models considered so far, it uses the bag-of-words model both to
describe the documents and the queries. In other words, a query is considered as a (mini) document
and then used as a reference to find similar documents.

A document D; is represented as a vector d; using weighted term frequencies (we do not normalize
the term frequencies as with the extended Boolean models):

» All the vectors d; of the collection D form the so-called term-document-matrix A with d; denoting the
i-th column of the matrix, i.e., a;; = d; ; (the switch of indexes is necessary as d; is a column

vector). A visual representation is as follows:

| document D; O
i di1 idi,l dn,
di1 B SRS N U AL
dl - ' A= __(%]___]________ _6%1;! _________ fl_jy_] _______ >tel'm t]
dim :
dlM di,M dNM

It follows that the j-th row in A contains the information about the term ¢;.

Multimedia Retrieval — 2019 Page 2-41

* Queries are represented as (very sparse) documents. In other words, the user is not required to
enter a complex Boolean query but rather provides a few keywords to search for. A query Q is
hence represented as a vector q just like all the documents:

* We can compute similarity values between documents and queries as a function over the M-
dimensional vectors. Two popular methods exists:

— The inner vector product uses the dot-product over vectors to calculate similarity values.
M
sim(Q,D;)) =q-d; = z qj - d;;
j=1

We can also represent all similarity values between documents D; and the query Q as a matrix
multiplication:

sim(Q, D,)

sim(Q,D) = =ATq

sim(é, Dy)

Note that we only write the above formula for the sake of concise presentation, but we never
actually perform matrix multiplications to search for documents. Intuitively, documents are similar
to the query if they use the same term as the query (all terms not used in the query have a 0 in
q). If the query terms are frequently used, high similarity values result. Further we observe that
not all query terms are necessary to obtain non-zero similarities (= partial matches)

Multimedia Retrieval — 2019 Page 2-42

— The second measure calculates the cosine of the angle between the query vector and the
document vector to calculate similarity values.

q-d;]1q1 l]

lqll - lld;l
T e foue

sim(Q,D;) =

Again, a matrix multiplication leads to all similarity values:

et
. 0
sim(Q, D,) lld, |l q
sim(Q,D) = : =LATq" with Le RV*N =| : and q' = Tal
sim(Q, D) 0 1 1
ldnll

As before, we only write the above formula for the sake of concise presentation, but we never
actually perform matrix multiplications to search for documents. Intuitively, documents are similar
to the query if their vectors point to the same direction as the query vector. The number of terms
and the weights only play a role to define the direction but the length of the vectors is irrelevant.
This provides an equal chance for small and large documents to obtain a high similarity value.

Multimedia Retrieval — 2019 Page 2-43

« Example: we consider a very simple collection of three documents to observe how the method
works. The documents and the query are as follows:

D; Shipment of gold damaged in a fire

D, Delivery of silver arrived in a silver truck

D; Shipment of gold arrived in a truck

Q gold silver truck

— We can extract terms and determine document frequencies and inverse document frequencies.
The document and query are then represented as vectors (N = 3,M = 11):

| dy | d, | d; N g
1 a 3 0

2 arrived 2 176
3 damaged 1 AT7
4 delivery 1 AT7
5 fire 1 ATT7
6 gold 2 176
7 in 3 0

8 of 3 0

9 silver 1 AT7
10 shipment 2 176
11 truck 2/&

To simplify, we use: idf(t;) = log(N) — log (df ()

176 176
ATT
ATT
AT7
176 176
.954
176 176
‘ 176 176
Y
A

with inner
vector product

031
sim(Q, D) = | 486
062
176
=it D, > D; > D,
176

Multimedia Retrieval — 2019

2.3.3 Vector Space Retrieval

Page 2-44

— Observations: the term-document matrix is usually very sparse, that is a single document only
contains a small subset of all possible terms. We also note that we only need to consider the
guery terms for evaluation; all other terms are eliminated due to the 0-value in g. On the other
side, a document does not have to contain all query terms to be relevant. In the example before,
none of the documents contained all terms. To express such a partial match query with Boolean
operators would quickly lead to quite complicated expressions. In the example before, the partial
match query in Boolean terms is: (gold AND silver AND truck) OR (gold AND silver) OR (gold
AND truck) OR (silver AND truck) OR gold OR silver OR truck.

* Advantages: extreme simple an intuitive query model. Very simple to implement and very fast to
calculate. Performance is better than with Boolean models and can compete with the best retrieval
methods. The model naturally includes partial match queries and documents do not have to contain
all query terms to obtain high similarity values.

» Disadvantages: heuristic similarity scores with little intuition why they work well (no theoretic
background for the model). The similarity measures are not robust and can be biased by authors
(spamming of terms). Main assumption of retrieval model is independence of terms which may not
hold true in typical scenarios (see synonyms and homonyms). There are several extensions that
address this latter aspect.

Multimedia Retrieval — 2019 Page 2-45

2.3.4 Probabilistic Retrieval

» The biggest criticism for the models so far is the heuristic approach they take. The methods work
and perform well, but there is no foundation to prove correctness. Probabilistic retrieval is a formal
approach based on the probability P(R|D;) that a document D; is relevant for a query Q and the
probability P(NR|D;) = 1 — P(R|D;) that a document D; is not relevant for a query Q. The similarity
value is defined as:

P(R|D;) _ P(R[Dy)
P(NR|D;,) 1-—P(R|D))

Sim(Q, Dl) =

 The Binary Independence Model (BIR) is a simple technique based on a few assumptions to
compute the conditional probabilities above. The assumptions are

1. Term frequency does not matter (we use the set-of-words model for documents)
2. Terms are independent of each other (all models so far made the same assumptions)

3. Terms that are not part of the query do not impact the ranking (if a term does not appear in the
guery, we assume that it is equally distributed in the relevant and the non-relevant documents)

With these assumptions, we now compute the above similarity function. As a first step, we use
Bayes’ theorem on the definition above:

P(R|D;) _ P(DiIR) - P(R)
P(NR|D;) P(D;|NR) - P(NR)

sim(Q,D;) =

We can interpret these new probabilities as follows: P(R) and P(NR) are the probabilities that a
randomly selected document is relevant and not relevant, respectively. P(D;|R) and P(D;|NR) are
the probabilities that D; is among the relevant and among the non-relevant documents, respectively.

Multimedia Retrieval — 2019 Page 2-46

— We now use the assumption that documents are binary vectors and that terms are independent
of each other:

Assumption 1: Assumption 2: Terms Assumption 1: Documents
Documents are are independent are binary vectors

binary vectors

u L
POIR) = P@IR) = | [P(aylR) = [Play=1R)- || Plas;=0lR)
j=1

Vj:di,j=1 Vj:di,j=0
M
PDINR) = PyINR) = | [P(aislvR) = || Pldiy=1lR)- [] P(dij=o0lnR)
j=1 Vj:dij=1 Vj:di;=0

— We introduce a short notation for the conditional probabilities on the right most side of the
formula above. Let r; = P(d; ; = 1|R) denote the probability that a relevant document has the
term ¢; (i.e., d; ; = 1). Further, let n; = P(d; ; = 1|NR) denote the probability that a not relevant
document has the term ¢; (i.e., d; ; = 1). With that we can write the similarity value as:

sim(Q, D;) = i) 1_[i 1_[7 - sim(Q, D) ~ 4.)

PRy L1 w7 L1 T 1] % 1l 75
V]:di'j=1 V]:di’j=0 v]:di,j:1 V]:di'j=0

Note that we do not need to compute P(R) and P(NR) as they are depending only on the query
but do not change the order of documents D; by their similarity values. Hence, the right formula
above is a further simplification that yields the same ranking for documents as the left formula.

Multimedia Retrieval — 2019 2.3.4 Probabilistic Retrieval Page 2-47

— We finally use the third assumption that r; = n; if the term t; does not occur in the query (the term
occurs equally likely in the set of relevant and non-relevant documents). This means that for all

. i 1-r; .. .
q; = 0, the ratios Q and —Z are 1 and we can eliminate them from the calculations:

n; 1 n;j

Assumption 3: non-query
terms do not impact result

m(Q,D;) y = e 1-7
sm@oo~ || o || =0="[] & [] =

Vjidij=1 J Vj:dij=0 Vj:dij=1,q;=1 J Vj:dij=0,q;=1

We drop the condition d; ; = 1 in the second product and must compensate in the first product:

sim(Q,D;) ~ 1_[n-Q-mn) L=7

nj-(1—r1) o qj=11 —n;

Vj: di,j=1,qj=1

Next, we eliminate terms that only depend on the query and do not change the ordering:

r-(1—mn)

sim(Q, D;) ~ (=1
j J

Vj: di,jzl,qul

We finally obtain a very simple similarity function as a sum over c;-values. Note that we only need
to compute ¢; for query terms, that is for a very small number of terms.

n-d-n)

sim(Q, D;) ~ Z C; with ¢; =lo
i j j gnj d-r)

Vj: di‘j=1,qj=1

Multimedia Retrieval — 2019 Page 2-48

— Computing the ¢; values: recall that r; = P(d; ; = 1|R) denotes the probability that a relevant

document contains the term t;. Similarly, n; = P(di,j = 1|NR) denotes the probability that a non-
relevant document contains the term t;. To obtain estimates for these probabilities, we ask the
user to rate some of the retrieved documents. The more feedback we gather, the better our
estimates become. In more details:

* Initial step: without any samples, we assume that query terms are more likely to occur in

relevant documents while they appear in non-relevant documents according to their document
frequency. We use the following estimates for the initial step to compute the ¢;

df(t:
T = 0.5, n; =% Vjiqgi =1

* Feedback step: although the initial values are a heuristic, we only use them to generate a first
result set. We then ask the user to rate the K retrieved documents and annotate them with
relevant (R) and not relevant (NR). Let L be the number of documents that the user marked as
relevant. Further let k; be the number of retrieved documents that contain the term ¢; (that is

the document frequency of ¢; over the set of retrieved documents), and let [; be the number of
retrieved and relevant documents that contain the term ¢; (that is the document frequency of ¢
over the set of retrieved and relevant documents). With that, we can estimate new values for ;
and n; as follows:

[, +0.5 _kj—1;+05

TTrr1 MT Kk -L+1

V]q] =1

We use the values 0.5 and 1 in the formula above to prevent numerical issues (0-divisions).

Multimedia Retrieval — 2019 Page 2-49

« Advantages: the BIR model provides a probabilistic foundation based on simple assumptions to
define similarity values. The ranking of documents is based on their probability of being relevant for
the query. Again, we only require query terms for the calculations of similarity values and, with the
inverted lists, we have a very efficient evaluation method at hand. The method provides very good
performance, especially after a few feedback steps. It also supports partial match queries, i.e., not
all query terms must occur in relevant documents.

« Disadvantages: the simple assumptions do not always hold true. Like discussed in the vector
space model, term independence does not apply generally. There are more sophisticated
probabilistic models that deal with term dependence, but often come with additional computational
overhead. Finally, we note that the ranking of documents does neither take term frequencies nor the
discrimination power of terms into account.

Multimedia Retrieval — 2019 2.3.4 Probabilistic Retrieval Page 2-50

2.4 Indexing Structures

« With all retrieval models considered so far, we have observed that ranking (or selection of an
answer in Boolean models) only depends on query terms. In addition, if the terms have high
discrimination value they are likely to appear in only a few documents. In this section, we look at
inverted lists as a simple retrieval model, and apply it to SQL databases for a fast and efficient
implementation of text retrieval.

» The term-document matrix is very sparse. We expect that documents only use a small subset of the
existing vocabulary, and many terms in the vocabulary occur only in very few documents. Instead of
storing the full matrix, we keep condensed rows for each term. For example, we have two terms
“dog” and “cat” which appear in some document. In addition, we want to keep track of term
frequencies in the documents to apply one of the more sophisticated ranking function. A typical
inverted list looks something like this:

| 711 D2(2), D5(1), D19(1), D19(2), D32(2), Das5(1), Dag(1)

cat’

term frequency

dogl . [41 D,(1), Ds(2), Dy(1), Dyo(3)

inverted list

document

vocabulary

document frequency

Multimedia Retrieval — 2019 2.4 Indexing Structures Page 2-51

« Application to standard Boolean model: we can calculate the result with set operations over the
atomic parts of the query (must contain term, or must not contain term). The inverted lists provide
the sets for the atomic parts “must contain terms”, and, with some restrictions, we can also use
them for “must not contain terms”. For example:

- Q = “cat” AND “dog”
 Scat = {D2, D3, D19, D19, D33, Dys, Dyg}, Salog = {D3, D5, D7, D14}
e Q=Sca: N Sdog = {D21D19}
- Q = “cat” AND (NOT “dog”)
* Scat = {D2, D3, D14, D19, D33, Dyss, Dag}, Sdog = {Dy, Ds, D7, D15}
* Q = Scat — Saog = {D3, D10, D32, Dss, Dag}
— More generally, NOT-clauses are only allowed within AND-clauses (translates into minus set-
operation), but not in OR-clauses. A query like: “cat” OR (NOT “dog) cannot be answered with

only the inverted lists; in addition, such a query is not really meaningful. So the restriction is
hardly relevant for users.

— To accelerate the set operations, we sort the inverted lists by increasing document frequencies.
This way the intermediate results sets are smaller.

* Retrieval Models with ranking: all the models with ranking that we considered so far, have a
partial match capability. In other words, we must retrieve all documents that contain at least one
guery term and then evaluate the similarity values only for these retrieved documents. For example:

- Q ="“catdog” (vector space retrieval, probabilistic retrieval)
Q = “cat AND dog” @Q = “cat AND (NOT dog)” (extended Boolean model)
e S= SCat U Sdog = {DZ! D3! DS! D7! D10, D19r D32r D4—5r D4—8}

Multimedia Retrieval — 2019 Page 2-52

* The typical implementation stores the inverted lists as individual files. But we can also efficiently
implement inverted lists in a SQL database and exploit other features that a database provides
(proven storage, transaction management, high availability, disaster recovery, ...). For the
implementation, we need: 1) a (document) collection, 2) the vocabulary, 3) and the inverted list
(here: table Index). In addition, we require a (temporary) query table to simplify SQL queries.

Collection

docid doc_name date dateline

1 WSJ870323-0180 3/23/87 Turin, Italy

2 WSJ870323-0161 3/23/87 Du Pont Company, Wilmington, DE

Index Vocabulary

doc_id term tf term idf

1 commercial 1 according 0.9031

1 vehicle 1 commercial 1.3802

1 sales 2 company 0.6021

1 italy 1 dale 2.3856 Query

1 february 1 diversified 2.5798 term tf

1 year 1 february 1.4472 vehicle 1

1 according 1 italy 1.9231 sales 1
. krol 4.2768 italy 1

2 krol 2 president 0.6990

2 president 2 products 0.9542

2 diversified 1 sales 1.0000

2 company 1 succeeding 2.6107

2 succeeding 1 vehicle 1.8808

2 dale 1 year 0.4771

2 products 2

Multimedia Retrieval — 2019

2.4 Indexing Structures

Page 2-53

» Evaluation of a Boolean Query

— Option 1: no Query table — Option 2: with Query table
Q =,vehicle sales italy” Q =,vehicle sales italy”

DELETE FROM Query;
INSERT INTO Query
VALUES (‘vehicle‘',1) ;
INSERT INTO Query
VALUES (‘sales‘,1);
INSERT INTO Query
VALUES (‘italy‘',1) ;

SELECT a.DocID
FROM Index a,Index b,Index c
WHERE a.Term=‘vehicle‘' AND
b.Term='sales‘' AND
.Term=‘italy‘' AND
.DocID=b.DocID AND
.DocID=c.DocID;

SELECT i.DocID
FROM Index i, Query q
WHERE i.Term=q.Term
GROUP BY i.DocID
HAVING COUNT (i.Term)=
(SELECT COUNT (*) FROM QUERY)

P QO

Multimedia Retrieval — 2019 Page 2-54

« Evaluation with Vector Space Retrieval

— Example: inner vector product
Q =,vehicle sales italy”

DELETE FROM Query;
INSERT INTO Query
VALUES (‘vehicle‘',1) ;
INSERT INTO Query
VALUES (‘sales‘,1);
INSERT INTO Query
VALUES (‘italy‘',1);

SELECT i.DocID, SUM(q.tf * t.idf * i.tf * t.idf)
FROM Query q, Index i, Term t
WHERE q.Term=t.Term AND
i.Term=t.Term
GROUP BY 1i.DocID
ORDER BY 2 DESC;

2.5 Lucene - Open Source Text Search

» Apache hosts several projects to provide easy to use yet powerful text and web retrieval. All of them
are based on the core engine called Lucene. In addition, third-party libraries enrich Lucene with
additional content extractor and analyzers.

— Lucene: core retrieval library for both analysis of documents and searching
— Apache Tika: parsers and extractors for various file formats

— Nutch: open source web search engine with scalable, distributed crawlers and a Tomcat web
application to search through the content

— Solr: open source enterprise search engine for a rich set of file formats
— Elasticsearch: an enterprise search server

* In this chapter, we look at: . 7&2@&'&7

w
»
— how Lucene analyzes documents Apache -

- Y
— how Lucene ranks documents SOI F = %’

— how to use Lucene in own applications

* Note: this is not meant to be a complete %E [uLic /2 [/? /2

overview of Lucene. Refer to the online
documentation or to books such as
“Lucene in Action” to get more details

1_ __l
O = '-.-'1
] L0
o010 1001011 I a
10111010110011101

Multimedia Retrieval — 2019 2.5 Lucene - Open Source Text Search Page 2-56

2.5.1 History of Lucene

* Lucene started as a SourceForge project and joined the Apache Jakarta family in 2001. Original
author was Doug Cutting. Since 2005, Lucene is a top-level Apache project with many sub-projects.
Some of them, namely Nutch and Tika, have become independent Apache projects.

* Main versions introduced (selected versions):
— 1.01b (July 2001): last SourceForge release

- 20 (May 2006): clean up of code, removed deprecated methods

- 3.0 (November 2009): cleanup and migration to Java 1.5 (generics, var args)
3.6 is latest build released on July, 2012

- 4.0 (August 2012): speedup of indexing and retrieval

- 5.0 (February 2015): index safety, many adjustments on the API

- 6.0 (April 2016): Java 8, classification, spatial module update

- 7.0 (September 2017): Java 9 and support of Jigsaw modularization

- 7.5 (September 2018): Integration of OpenNLP

- 8.0 (March 2019): Faster custom scores

* Lucene implementations

— Java (original), C++ (CLucene), .NET (Lucene.NET), C (Lucene4c), Objective-C (LuceneKit),
Python (PyLucene), PHP 5 (Zend), Perl (Plucene), Delphi (MUTIS), JRuby (Ferret), Common
Lisp (Montezuma)

Multimedia Retrieval — 2019 2.5.1 History of Lucene Page 2-57

2.5.2 Core Data Model of Lucene

* Lucene is a high-performance, full-featured text search library. It is suitable for a wide range of
applications that require text retrieval functions. Most importantly, it works across different platforms,
firstly due to its Java implementation, and secondly, due to the many ports to other programming
languages.

» If you are looking for an open source search engine, Lucene based projects such as Nutch (web
search engine) or Solr (enterprise search engine) provide ready-to-deploy search applications. In all
other cases, we have to implement the search features through the Lucene APIs.

» The core concepts of Lucene revolve around
- Document and Field to encompass the content of documents
- Analyzer to parse the content and extract features
- IndexWriter which maintains the inverted index including concurrency control
— Directory that holds the inverted index structures
- Query and QueryParser represent queries and parse input strings, respectively
- Term and TermQuery denote unit search expressions
- IndexSearcher exposes search methods over the inverted indexes
— TopDocs contains the result of a search sorted by scores

Multimedia Retrieval — 2019 2.5.2 Core Data Model of Lucene Page 2-58

» Lucene’s APl is split into offline analysis functions and online search function. The interaction with
an application is as follows:

& offline online =

1 application ,/ application 1
/
| Lucene / Lucene |
//
/
\Z /
/
Analyze & Analyze &
Index Index
Inverted
List

& offline online =

Multimedia Retrieval — 2019 2.5.2 Core Data Model of Lucene Page 2-59

2.5.3 Indexing Documents with Lucene

1. Select Directory to store Index in
I JJ directory = FSDirectory.open ("./index");

Documents

2. Create Analyzer for Documents

analyzer = new StandardAnalyzer();

3. Create Document and add Fields
doc = new Document () ;
Maintain Index Code doc.add (new TextField("title", title,
Dtick;lrr:;m Steps 1-5 TextField.TYPE STORED)) ;
doc.add (new TextField("content", content,,
TextField.TYPE_NOT_STORED));
doc.add (new StoredField("id", id));

4. Get Index Writer and add Document
config = new IndexWriterConfig(anaylzer);
writer = new IndexWriter (directory,config);

Field Field Field writer.addDocument (doc) ;

(title) (content) (id)

Analyze & 5. Close Index Writer (optionally optimize)
Index writer.optimize () ;

writer.close();

Document Analyzer

IndexWriter

\hirectorA

Multimedia Retrieval — 2019 2.5.3 Indexing Documents with Lucene Page 2-60

2.5.4 Indexing Documents with Lucene

» Directory

— Lucene provides multiple ways to maintain and persist inverted indexes. Among them are file based indexes,
memory based indexes, and database indexes

— The LockFactory associated with a directory implements basic concurrency control mechanisms.
IndexWriter and IndexSearcher provide concurrency control to the application to ensure integrity of the
indexes (other transaction attributes depend on the selected directory implementation)

» Analyzers

— Lucene and 3" party extensions provide a rich set of pre-defined analyzers with support for various languages.
The main function of an analyzer is to return a TokenStream. A token stream implements a pipeline that

cascades a tokenizer with a set of token filters.
— A Tokenizer parses the fields of documents, removes syntactical elements, and produces a stream of tokens.
— A TokenFilter filters/changes/aggregates elements in the token stream. Prominent examples include
stemming, stop word elimination, and lower case converter.
+ Fields
— Lucene is able to store additional attributes for each document in the index. The purpose of fields is two-fold:
« Ability to restrict the search on specified meta data items (e.g., only title, author, abstract, etc.)
« Ability to store data that identify the document (or are relevant for presentational purposes)
— Creation of fields includes many options (newer release subsumes all of them in FieldType)

« Field.Store: YES or NO indicating whether the content needs to be stored. NO means that the content is only
analyzed but not available at search time any more. Use YES for identifying attributes (or for presentation).
Typical examples include ID, file name, document type, date of insertion, size of document.

* (deprecated)Field. Index: main values are ANALYZED and NO. NO indicates that the field must not be
analyzed; it is not possible to search for such attributes. ANALYZED is used for content that must be indexed.

¢ (deprecated)Field.TermVector: allows to fine tune what term vector information is kept in the index.

Multimedia Retrieval — 2019 2.5.4 Indexing Documents with Lucene Page 2-61

2.5.5 Searching Documents with Lucene

1.Select Directory where Index resides

directory = FSDirectory.open("./index");

Present
Result

2.Create Analyzer as used for Documents

analyzer = new StandardAnalyzer();

3.Create Query (optionally through QueryParser)

Search Code parser = new QueryParser ("content", analyzer);
Query f—_— Steps 1-5 Query query = parser.parse (queryStringFromUser) ;
Construction Presentation
4.Get Index Searcher and Search
searcher = new IndexSearcher (directory);
TopDocs hits = searcher.search (query, NUM RESULTS) ;
5.Present Result
QueryParser TopDocs for (int 1i=0; i<hits.scoreDocs.length; i++) {
doc = searcher.doc (hits.scoreDocs[1] .doc);
System.out.printf (" %4d %$1.3f %s %$s\n",
i+1,
Analyze & Query hits.scoreDocs[i].score/hits.getMaxScore(),
Index doc.get ("id"), doc.get("title"));
Analfyzer }
IndexSearcher
y

IDirectoryI

Multimedia Retrieval — 2019 2.5.5 Searching Documents with Lucene Page 2-62

2.5.6 Searching Documents with Lucene

* Query and QueryParser

— Lucene provides multiple ways to query the content of an index. Queries are always against the content of
analyzed field data. Atomic queries consist of term queries, range queries, phrase queries, fuzzy queries
(searching for all terms that are close to the given one), wildcard queries, and so on. Atomic queries can be
combined by means of Boolean operators.

— QueryParser simplifies the interface with a standard way how users have to enter queries
* Query is a set of clauses optionally prefixed with '+' (must include) and '-' (must not be included)

» A clause can be a single term such as 'hello’ for the default search field, a search term for a selected field such
as 'title:hello', a fuzzy query such as 'hello~' or-ing all similar terms in the index, a wildcard-query such as 'h?llo’
or-ing all matching terms, and many more.

— Scores are computed through a Similarity object. The example code uses the default scoring, but it is possible to
overwrite how Lucene scores and ranks documents (see next slide)

* TopDocs

— The search method of the IndexSearcher returns the top (NUM_RESULTS) documents matching the query and
ordered by their score.

— Retrieval of the content of fields of document is through the IndexSearcher. TopDocs only holds Lucene internal
document identifiers (property doc of scoreDocs field in TopDocs).

— Only fields that were indexed with Field.Store.YES can be retrieved after a search. Any other metadata has to be
retrieved by the application it self.

* Analyzer

— Use the same analyzer object as for indexing the documents in offline mode. Lucene provides versioned standard
analyzer to avoid confusion should the standard implementation change over time.

Multimedia Retrieval — 2019 2.5.6 Searching Documents with Lucene Page 2-63

2.5.7 Retrieval Model of Lucene

* Lucene combines Boolean retrieval with vector space retrieval. Only documents that match the
Boolean query are returned. The candidates are scored with an extended version of the vector
space retrieval model, and the top k documents are returned. The following discusses the standard
similarity scoring scheme, but you can change and tune many aspects of it (see JavaDoc for class
org.apache.lucene.search.Similarity).

* Boolean Retrieval Part
— Applications can define arbitrary Boolean expressions on fields content with
¢ atomic queries such TermQuery, RangeQuery, Or any other Query
- and a Boolean clause constraint whether MUST, MUST NOT, or SHOULD occur

— Example: +information —multimedia retrieval search

TermQuery gl =

TermQuery g2
TermQuery g3
TermQuery g4
BooleanQuery
query.add (gl,
query.add (g2
query.add (g3,
query.add (g4

new TermQuery (new Term("content","information"))
= new TermQuery(new Term("content","retrieval"));
= new TermQuery (new Term("content","search"));
= new TermQuery (new Term("content","multimedia")):;

query = new BooleanQuery (),

BooleanClause

, BooleanClause

BooleanClause

, BooleanClause

.Occur .MUST) ;
.Occur.SHOULD) ;
.Occur.SHOULD) ;
.Occur.MUST NOT) ;

— FuzzyQuery and WildcardQuery translate into a MultiTermQuery over a set of terms

« FuzzyQuery (‘hello~0.5") expands to a search over all terms in the index that have a
normalized similarity of 0.5 and larger (value btw 0 and 1). Similarity is measured with edit
distance and normalized over the length of the term.

« WildcardQuery ('h?llo") expands to a search over all terms that match the pattern

Multimedia Retrieval — 2019

2.5.7 Retrieval Model of Lucene Page 2-64

* Boolean Retrieval Part (contd)
- IndexSearcher uses the inverted lists in the directory to retrieve all documents that match the
Boolean condition. This is the set of candidates.

* Ranking uses an extended version of the cosine measure. However, there are several additional
factors and normalizations built into the standard similarity measure

— The conceptual scoring formula is:

Vig)-V(d)
IVl

» coord_factor(q, d): score factor based on how many query terms are found in the document. In essence, this
scores how many of the optional terms (OR clauses) are found in d.

e query_boost(q): boost factor for individual query terms to be taken into account
e V(q),V(d): vector representation, i.e., tf*idf weighted number of term occurrences

e doc_len_norm(d): unlike the normalization of queries by their length, documents are normalized by the length
of a field (humber of term occurrences) to boost smaller fields over larger fields

e doc_boost(d): application specified boost factor defined at document insertion time

score(q,d) = coord_factor(q, d) - query_boost(q) - - doc_len_norm(d) - doc_boost(d)

— To simplify computation, Lucene's implementation is as follows
« guery norm and query boost are combined as they are known at search start time
« document norm and document (filed) boost values are stored in the index for each term

Multimedia Retrieval — 2019 2.5.7 Retrieval Model of Lucene Page 2-65

* Ranking in Lucene (contd)
— The formula defined by TFIDFSimilarity is:

score(q,d) = coord(d, q) - queryNorm(q) - Z (tf (¢, d) - idf (£)? - boost(t) - norm(t,d))
ting

overlap

e coord(d,q) = boosts documents that contain more of the query terms (not the number of

max _overlap
occurrences. max_overlap is the maximum number of query terms found in a single document.

1
boost(q)?-Y; in q(idf(t)-boost(t))z)
comparable. It does not affect document ranking (constant factor) but how a query overall is weighted.
boost(q) is an application specified boost factor for the query.

e queryNorm(q) = (Is used to make scores of different (sub-)queries

e tf(t,d) = \/frequency of tind documents with higher numbers of term occurrences obtain a higher weight.
Note the query term occurrences are not taken into account. Rather, Lucene treats each term occurrence the
same, e.g., if the term occurs twice, two sub-queries exist for weighting

numbDocs

e idf(t) =1+ log (docFrequency+1) denotes the standard inverse document frequency applied to both query

and document terms

e boost(t) represents an application specified boost value for a term t in the query

1
* norm(t’ d) - bOOSt(d) | number of terms in field

computes at indexing time and stores within the inverted lists for each term in document d. boost(d) denotes
a boost factor that applications can specify when adding documents.

*fietd f in @ anmeas as ¢ bOOSt(f) denotes a value that Lucene

Multimedia Retrieval — 2019 2.5.7 Retrieval Model of Lucene Page 2-66

2.6 Literature and Links

General Books on Text Retrieval

— Gerard Salton and Michael J. McGill. Information Retrieval - Grundlegendes fir Informationswissenschattler,
McGraw-Hill Book Company, 1983.

— W.B. Frakes and R. Baeza-Yates. Information Retrieval, Data Structures and Algorithms, Prentice Hall, 1992.

— Karen Sparck Jones and Peter Willet. Readings in Information Retrieval. Morgan Kaufmann Publishers Inc.,
1997.

— David A. Grossmann and Ophir Frieder. Information Retrieval: Algorithms and Heuristics, Kluwer Academic
Publishers, 1998 (1st edition), 2004 (2" edition).

— Ricardo Baeza-Yates and Berthier Ribeiro-Neto. Modern Information Retrieval, ACM Press Books, 1999 (18t
edition), 2011 (2"d edition).

— Sandor Dominich. Mathematical Foundations of Information Retrieval, Kluwer Academic Publishers, 2001.

— Christopher Manning, Prabhakar Raghavan, Hinrich Schitze. Introduction to Information Retrieval, Cambridge
University Press, 2008

— Stefan Buttcher, Charles Clarke, Gordon Cormack. Information Retrieval - Implementing and Evaluating Search
Engines. MIT Press 2010.

— Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly Media, 2009.
Free online version: http://www.nltk.org/book/

Thesaurus & Ontologies for selected Languages
— EuroWordNet: http://www.illc.uva.nl/EuroWordNet/
— GermanNet: http://lwww.sfs.uni-tuebingen.de/Isd/
— WordNet: http://www.cogsci.princeton.edu/~wn/

Implementations
— Natural Language Toolkit (NLTK), http://www.nltk.org
— Apache Lucene, https://lucene.apache.org

Multimedia Retrieval — 2019 2.6 Literature and Links Page 2-67

http://www.nltk.org/book/
http://www.nltk.org/
https://lucene.apache.org/

