In [5]:

import pandas as pd

import nltk

text="""\

In the year 1878 I took my degree of Doctor of Medicine of the University of London, and proceeded to Netley to go through the course prescri

bed for surgeons in the army. Having completed my studies there, I was duly attached to the Fifth Northumberland Fusiliers as Assistant Surge

on. The regiment was stationed in India at the time, and before I could join it, the second Afghan war had broken out. On landing at Bombay,
I learned that my corps had advanced through the passes, and was already deep in the enemy's country. I followed, however, with many other o

fficers who were in the same situation as myself, and succeeded in reaching Candahar in safety, where I found my regiment, and at once entere

d upon my new duties.

The campaign brought honours and promotion to many, but for me it had nothing but misfortune and disaster. I was removed from my brigade and
attached to the Berkshires, with whom I served at the fatal battle of Maiwand. There I was struck on the shoulder by a Jezail bullet, which
shattered the bone and grazed the subclavian artery. I should have fallen into the hands of the murderous Ghazis had it not been for the dev

otion and courage shown by Murray, my orderly, who threw me across a pack-horse, and succeeded in bringing me safely to the British lines.

f = open('stud.txt")

longtext = f.read()

f.close()

Segmentation (Sentence)

In [6]:

s=nltk.sent_tokenize(text)
print("\n--\n".join(s))

In the year 1878 I took my degree of Doctor of Medicine of the University of London, and proceeded to Netley to go through the course prescr
ibed for surgeons in the army.

Having completed my studies there, I was duly attached to the Fifth Northumberland Fusiliers as Assistant Surgeon.

The regiment was stationed in India at the time, and before I could join it, the second Afghan war had broken out.

On landing at Bombay, I learned that my corps had advanced through the passes, and was already deep in the enemy's country.

I followed, however, with many other officers who were in the same situation as myself, and succeeded in reaching Candahar in safety, where
I found my regiment, and at once entered upon my new duties.

The campaign brought honours and promotion to many, but for me it had nothing but misfortune and disaster.

I was removed from my brigade and attached to the Berkshires, with whom I served at the fatal battle of Maiwand.

There I was struck on the shoulder by a Jezail bullet, which shattered the bone and grazed the subclavian artery.

I should have fallen into the hands of the murderous Ghazis had it not been for the devotion and courage shown by Murray, my orderly, who th
rew me across a pack-horse, and succeeded in bringing me safely to the British lines.

In [7]: s=nltk.sent_tokenize("Dr. Weber will help you. We go to the U.S.A., i.e., not to Italy; Mrs. Hussey is there!")
print("\n--\n".join(s))

Dr. Weber will help you.

We go to the U.S.A., i.e., not to Italy; Mrs. Hussey is there!

In [8]: s=nltk.sent_tokenize('''"A clam for supper? a cold clam; is THAT what you mean, Mrs. Hussey?" says I, "but that's a rather cold and clammy re
ception in the winter time, ain't it, Mrs. Hussey?"''')
print("\n--\n".join(s))

"A clam for supper?

a cold clam; is THAT what you mean, Mrs.

Hussey?"

says I, "but that's a rather cold and clammy reception in the winter time, ain't it, Mrs.

Hussey?"

Word Tokenization

In [9]: tokens=nltk.word_tokenize(text)

pd.DataFrame(data=tokens[0:30],columns=["token"])

Out[9]:

token

-

the

year

1878

took

my

degree

of

Ol N[o(fa [~ | W|DN

Doctor

-
o

of

-
-

Medicine

-
N

of

-
w

the

-
H

University

Y
(3]

of

-
o

London

-
~

’

-
=]

and

-
©

proceeded

N
o

to

N
-

Netley

N
N

to

N
w

go

N
S

through

N
[3,]

the

N
o

course

N
~

prescribed

N
(-]

for

N
©

surgeons

In [10]: tokens=nltk.word_tokenize("20% hundreds dog's house (here) and 'there he goes' and \"somwhere he flows\"")

pd.DataFrame(data=tokens,columns=["token"])

Out[10]:

token

0 (20

-

%

hundreds

dog

S

house

here

O | o | N ua|bh~]|WO|DN

and

-
o

'there

-
-

he

-
N

goes

-
w

-
H

and

-
(3]

-
(=]

somwhere

-
~

he

-
©o

flows

-
©

bigram - only frequencies

In [11]: tokens=nltk.word_tokenize(longtext)
words=[word.lower() for word in tokens if word.isalpha()]

bigram_measures = nltk.collocations.BigramAssocMeasures()
finder = nltk.collocations.BigramCollocationFinder.from_words(words)
result=finder.score_ngrams(bigram_measures.raw_freq)[0:20]

print("%-10s\t%-10s\t%s" % ("term 1", "term 2", "freq"))
print (M --- - e ")
print("\n".join(list(str("%-10s\t%-10s\t%.6f" % (bigram[0],bigram[1],freq)) for bigram, freq in result)))

term 1 term 2 freq

of the 0.006964
in the 0.004875
to the 0.003180
to be 0.002275
he had 0.002182
it was 0.002182
and the 0.002089
upon the 0.002043
at the 0.001973
he was 0.001927
i have 0.001880
that i 0.001764
that he 0.001718
he said 0.001695
on the 0.001695
there was 0.001695
of his 0.001602
from the 0.001509
had been 0.001486
of a 0.001462

bigram - pmi without frequency threshold

In [12]: result=finder.score_ngrams(bigram_measures.pmi)[0:20]

print("%-10s\t%-10s\t%s" % ("term 1", "term 2", "score"))
print("-----------mm e ")
print("\n".join(list(str("%-10s\t%-10s\t%.2f" % (bigram[@],bigram[1],score)) for bigram, score in result)))

term 1 term 2 score
ac nummos 15.39
admired treated 15.39
airy cheerfully 15.39
ambitious title 15.39
anchor tattooed 15.39
angel merona 15.39
aqua tofana 15.39
arch rebel 15.39
assistant surgeon 15.39
attractive locality 15.39
audible expressions 15.39
babe unborn 15.39
balsamic odour 15.39
barrenness inhospitality 15.39
basaltic columns 15.39
belladonna opium 15.39
big pitcher 15.39
blanched skeletons 15.39
bodily exertion 15.39
brain originally 15.39

bigram - pmi with frequency threshold

In [13]: finder.apply freq_filter(10)
result=finder.score_ngrams(bigram_measures.pmi)[0:20]

print("%-20s\t%s\t%s\t%s\t%s" % ("bigram", "tf 1", "tf 2", "tf 1&2","score"))

o] o o G e R L E LT ")

print("\n".join(list(str("%-20s\t%d\t%d\t%d\t%.2f" % (" ".join(bigram),finder.word_fd[bigram[@]],finder.word_fd[bigram[1]],finder.ngram_fd[bi
gram],score)) for bigram, score in result)))

bigram tf 1 tf 2 tf 1&2 score
salt lake 11 10 10 11.94
brixton road 15 28 13 10.38
jefferson hope 37 56 34 9.47
joseph stangerson 13 47 10 9.46
john ferrier 39 62 29 9.01
sherlock holmes 52 98 52 8.78
lucy ferrier 29 62 10 7.90
no doubt 174 19 17 7.79
more than 83 57 19 7.43
her father 173 28 12 6.74
my companion 306 41 29 6.64
at last 319 49 22 5.92
my own 306 51 19 5.71
did not 59 185 13 5.68
they were 180 169 35 5.63
has been 80 147 13 5.57
at once 319 37 13 5.57
may be 45 250 12 5.52
will be 94 250 25 5.52
might have 43 290 13 5.49

In [49]: tokens=nltk.word_tokenize(longtext)
words=[word.lower() for word in tokens if word.isalpha()]

trigram_measures = nltk.collocations.TrigramAssocMeasures()

finder = nltk.collocations.TrigramCollocationFinder.from_words(words)
finder.apply_freq_filter(5)
result=finder.score_ngrams(trigram_measures.pmi)[0:20]

print ("%-30s\t%s\t%s\t%s\t%s\t%s" % ("bigram", "tf 1", "tf 2", "tf 3", "tf1&2&3","score"))

PP ANt (M= mm e m e e e e e ")

print("\n".join(list(str("%-30s\tkd\t%d\t%d\t%d\t%.2f" % (" ".join(trigram),finder.word_fd[trigram[0]],finder.word_fd[trigram[2]],finder.word
_fd[trigram[2]],finder.ngram_fd[trigram],score)) for trigram, score in result)))

bigram tf 1 tf 2 tf 3 tf1&28&3 score
halliday private hotel 5 14 14 5 23.40
salt lake city 11 23 23 9 22.65
the brixton road 2535 28 28 11 14.23
of enoch drebber 1217 62 62 5 13.91
of joseph stangerson 1217 47 47 5 13.61
said sherlock holmes 207 98 98 7 13.59
may as well 45 58 58 5 13.38
do not know 125 50 50 6 13.23
jefferson hope was 37 653 653 5 12.74
joseph stangerson the 13 2535 2535 5 12.55
i should like 927 34 34 5 12.33
the two detectives 2535 9 9 5 12.33
the young hunter 2535 14 14 5 12.30
must have been 44 147 147 5 12.27
should like to 57 1088 1088 5 12.10
no doubt that 174 673 673 5 12.03
as far as 333 333 333 6 11.97
as he spoke 333 28 28 15 11.86
said at last 207 49 49 6 11.75
gregson and lestrade 46 a7 47 5 11.63

Word Tagging

In [14]: tokens=nltk.word_tokenize(text)
tags=nltk.pos_tag(tokens)[0:20]

pd.DataFrame(data=tags, columns=["term","tag"])

Out[14]:

term tag
0 |In IN
1 |the DT
2 |year NN
3 |1878 CD
4 || PRP
5 |took VBD
6 |my PRP$
7 |degree NN
8 |of IN
9 |Doctor NNP
10 | of IN
11 [Medicine |NNP
12 | of IN
13 [the DT
14 | University |NNP
15 | of IN
16 | London NNP
171, ,
18 |and CcC
19 | proceeded | VBD

In [15]: tokens=nltk.word_tokenize(text)
tags=nltk.pos_tag(tokens, tagset="universal")[0:20]

pd.DataFrame(data=tags, columns=["term","tag"])

Out[15]:

term tag
0 (In ADP
1 |the DET
2 |year NOUN
3 |1878 NUM
4 || PRON
5 |[took VERB
6 |my PRON
7 |degree NOUN
8 |of ADP
9 |Doctor NOUN
10 | of ADP
11 [Medicine |NOUN
12 | of ADP
13 [the DET
14 | University |NOUN
15 | of ADP
16 | London NOUN
171,
18 |and CONJ
19 | proceeded | VERB

In [16]: tokens=nltk.word_tokenize(longtext)
result=nltk.FreqDist(tag for (word, tag) in nltk.pos_tag(tokens)).most_common()

pd.DataFrame(data=result, columns=["tag","freq"])

Out[16]:

tag | freq
0 (NN 6170
1 [IN 5572
2 |DT 4692
3 |PRP |4067
4 |VBD (3387
5 |, 2959
6 2699
7 |J4J 2648
8 |RB 2255
9 (CC 1711
10 [NNP (1668
11 (VB 1555
12 [NNS (1498
13 |PRP$ [1369
14 |VBN |1242
15|TO 1088
16 (" 918
17 886
18 |VBP |745
19|VBG |713
20 |MD 658
21|VBZ |[630
22|CD |[354
23 |WDT |[349
24 |RP 285
25|WRB |271
26 |WP 258
27 |: 247
28 [EX 202
29 [POS |162

tag | freq
30 (JJR [100
31|PDT |64
32(JJS |64
33|RBR |51
34/UH |30
35|RBS |30
36 |NNPS |22
37 |WP$ |11
38 |FW 6
39 ((2
40/) 2

In [17]: tokens=nltk.word_tokenize(longtext)
result=nltk.FregDist(tag for (word, tag) in nltk.pos_tag(tokens, tagset="universal")).most_common()

pd.DataFrame(data=result, columns=["tag","freq"])

out[17]:

tag| freq
0 [NOUN (9358
1 |VERB |8930
2 7713
3 [PRON |5705
4 |ADP |5572
5 |DET |[5307
6 |ADJ (2812
7 |ADV |2607
8 |CONJ (1711
9 [PRT |1535
10 |[NUM | 354
1 |X 36

In [18]:

Out[18]:

In [27]:

out[27]:

In [28]:

Out[28]:

In [54]:

Out[54]:

extract named entities (ne_chunk)

pos=nltk.pos_tag(nltk.word_tokenize("David never was in Switzerland but in January, he was in New York working for Google"))

nltk.ne_chunk(pos)

—
waz VED

PERSON never RB in 1M GPE hut CC im 1IN Jamiary HHP o he FPRP was VED in IN

David MHE Switzerland NHE

extract noun phrases (NP)

grammar = "NP: {<DT>?<JJI>*<NN>}"
pos=nltk.pos_tag(nltk.word_tokenize("The brown tall horse is slow"))
nltk.RegexpParser(grammar).parse(pos)

g

O el . T

ME iz VBZ =low JJ
The DT brown JJ tall JJ horse NM

pos=nltk.pos_tag(nltk.word_tokenize("the little black dog barked at the fat cat"))
nltk.RegexpParser(grammar).parse(pos)

=1
HE barked VBD at 1IN HE
the DT little Jfblack JJ dog NN the DbT fat JJ cat NN

nltk.pos_tag(nltk.word_tokenize("He wanted to ski. He found the ski. Can I ski?"))

[('He', 'PRP"),
('wanted', 'VBD'),
('to', 'TO"),
('ski', 'VvB'),
¢t
('He', 'PRP'),
('found', 'VBD'),
('the', 'DT"),
('ski', 'NN"),
(L,
('Can', 'MD"),
('T', 'PRP"),
('ski', 'vB'),
2)]

Lemmatization

working VEBG

for IN

PERSON

Google NP

In [55]: from nltk.corpus import wordnet as wn

def is_noun(tag):
return tag in ['NN', 'NNS', 'NNP', 'NNPS']

def is_verb(tag):
return tag in ['VB', 'VBD', 'VBG', 'VBN', 'VBP', 'VBZ']

def is_adverb(tag):
return tag in ['RB', 'RBR', 'RBS']

def is_adjective(tag):
return tag in ['J3', 'JJR', '3J3S']

def penn_to_wn(tag):

if is_adjective(tag):
return wn.ADJ

elif is_noun(tag):
return wn.NOUN

elif is_adverb(tag):
return wn.ADV

elif is_verb(tag):
return wn.VERB

return wn.ADJ]

In [56]: pos=nltk.pos_tag(nltk.word_tokenize(text))
porter=nltk.PorterStemmer()
lancaster=nltk.LancasterStemmer()
snowball = nltk.SnowballStemmer("english")
wordnet=nltk.WordNetLemmatizer()
stems=1ist((w.lower(),penn_to_wn(p),porter.stem(w).lower(),lancaster.stem(w).lower(),snowball.stem(w).lower(),wordnet.lemmatize(w,pos=penn_to
_wn(p)).lower()) for w,p in pos)

print("%-15s %-15s %-15s %-15s %-15s %-15s" % ("Term", "pos tag","Porter","Lancaster","Snowball","Wordnet"))

PP AN (Mo m s m oo o o o o oo e ")

print("\n".join(list(str("%-15s %-15s %-15s %-15s %-15s %-15s" % (t,pos,p,1l,s,w)) for t,pos,p,l,s,w in stems[0:40] if w!=t or t!=p or p!=1 or
ll=s or s!=w)))

Term pos tag Porter Lancaster Snowball Wordnet
took \% took took took take
degree n degre degr degre degree
doctor n doctor doct doctor doctor
medicine n medicin medicin medicin medicine
university n univers univers univers university
proceeded v proceed process proceed proceed
course n cours cours cours course
prescribed \% prescrib prescrib prescrib prescribe
surgeons n surgeon surgeon surgeon surgeon
army n armi army armi army
having v have hav have having
completed \% complet complet complet complete
studies n studi study studi study
there r there ther there there

In [57]: nltk.corpus.wordnet.synsets('dog')
print("defintions:\n-------------c-mm e ")
print("\n".join(list(str("%-20s %s" % (s.name(),s.definition())) for s in nltk.corpus.wordnet.synsets('dog'))))
print("\n\nexamples:\N-----------c-moo oo ")
print("\n".join(list(str("%-20s %s" % (s.name(),s.examples())) for s in nltk.corpus.wordnet.synsets('dog'))))
print("\n\nlemma names:\N--------------- - ")

print("\n".join(list(str("%-20s %s" % (s.name(),s.lemma_names())) for s in nltk.corpus.wordnet.synsets('dog'))))

defintions:

dog.n.01 a member of the genus Canis (probably descended from the common wolf) that has been domesticated by man since prehistor
ic times; occurs in many breeds

frump.n.ol a dull unattractive unpleasant girl or woman

dog.n.03 informal term for a man

cad.n.ol someone who is morally reprehensible

frank.n.02 a smooth-textured sausage of minced beef or pork usually smoked; often served on a bread roll
pawl.n.o1 a hinged catch that fits into a notch of a ratchet to move a wheel forward or prevent it from moving backward
andiron.n.o1 metal supports for logs in a fireplace

chase.v.01 go after with the intent to catch

examples:

dog.n.01 ['the dog barked all night']

frump.n.ol ['she got a reputation as a frump', "she's a real dog"]

dog.n.03 ['you lucky dog']

cad.n.o1 ['you dirty dog']

frank.n.02 []

pawl.n.0o1 []

andiron.n.o1 ['the andirons were too hot to touch']

chase.v.01 ['The policeman chased the mugger down the alley', 'the dog chased the rabbit']

lemma names:

dog.n.01 ['dog', 'domestic_dog', 'Canis_familiaris']

frump.n.o1 ['frump', 'dog']

dog.n.03 ['dog']

cad.n.o1l ['cad', 'bounder', 'blackguard', 'dog', 'hound', 'heel']

frank.n.e2 ['frank', 'frankfurter', 'hotdog', 'hot_dog', 'dog', 'wiener', 'wienerwurst', 'weenie']
pawl.n.o1 ['pawl', 'detent', 'click', 'dog']

andiron.n.o1 ['andiron', 'firedog', 'dog', 'dog-iron']

chase.v.01 ['chase', 'chase_after', 'trail', 'tail', 'tag', 'give_chase', 'dog', 'go_after', 'track']

In [58]:

nltk.corpus.wordnet.synsets('horse")

print("hypernyms :\N----------c-mom oo ")

print("\n".join(list(str("%-20s %s" % (s.name(),s.hypernyms())) for s in nltk.corpus.wordnet.synsets('horse'))))
print ("\n\nhyponyms:\n-----------commm oo ")

print("\n".join(list(str("%-20s %s" % (s.name(),s.hyponyms())) for s in nltk.corpus.wordnet.synsets('horse'))))
hypernyms:

horse.n.01 [Synset('equine.n.01')]

horse.n.02 [Synset('gymnastic_apparatus.n.o1')]

cavalry.n.o1 [Synset('military_personnel.n.01')]

sawhorse.n.01 [Synset('framework.n.03")]

knight.n.02 [Synset('chessman.n.01')]

horse.v.01 [Synset('provide.v.02")]

hyponyms:

horse.n.01 [Synset('bay.n.07"), Synset('chestnut.n.06'), Synset('eohippus.n.@1'), Synset('gee-gee.n.01'), Synset('hack.n.06'), Syn

set('hack.n.07"'), Synset('harness_horse.n.01'), Synset('liver_chestnut.n.01'), Synset('male_horse.n.01'), Synset('mare.n.0@1'), Synset('mesoh
ippus.n.0@1'), Synset('pacer.n.02'), Synset('palomino.n.01'), Synset('pinto.n.@1'), Synset('polo_pony.n.01'), Synset('pony.n.@1'), Synset('po
ny.n.e5'), Synset('post_horse.n.01'), Synset('protohippus.n.@1'), Synset('racehorse.n.01'), Synset('roan.n.02'), Synset('saddle_horse.n.o
1'), Synset('sorrel.n.05"), Synset('stablemate.n.@1'), Synset('stalking-horse.n.@4'), Synset('steeplechaser.n.01'), Synset('stepper.n.e3"),
Synset('wild_horse.n.01"), Synset('workhorse.n.02')]

horse.n.02 [Synset('pommel_horse.n.@1'), Synset('vaulting_horse.n.01')]
cavalry.n.o1 [1]

sawhorse.n.@1 [Synset('trestle.n.02"')]

knight.n.02 []

horse.v.01 [Synset('remount.v.03")]

Aggregation

In[]:

nltk.corpus.stopwords.words('english')
#nltk. corpus.stopwords.words('german')
#nltk.corpus.stopwords.words('italian')
#nltk.corpus.stopwords.words()

In [59]: stopwords=nltk.corpus.stopwords.words('english')
tokens=nltk.word_tokenize(longtext)
for w in nltk.FregDist(tokens).most_common(20):
print("%-20s %s" %w)

print("\n\nstopwords: %.3f" % (len([w for w in tokens if w.lower() in stopwords])/len(tokens)))
print("non-alpha: %.3f" % (len([w for w in tokens if not w.isalpha()])/len(tokens)))
print(" content: %.3f" % (len([w for w in tokens if w.isalpha() and w.lower() not in stopwords])/len(tokens)))

, 2959
. 2406
the 2327
and 1322
of 1204
to 1076
a 963
I 927
o 886
v 811
in 674
was 649
he 630
that 619
his 613
had 471
it 453
you 369
which 315
with 313

stopwords: 0.458
non-alpha: 0.166
content: 0.376

