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5.1 Motivation

» Signal information is too low level

« Feature extraction based on machine learning abstracts lower level signal information
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pemo:  clarifai

— Clarifai provides APIs to recognize ‘models’ in images

— https://www.clarifai.com

=+
A TRY YOUR OWN IMAGE OR VIDEO

Demo: Recognition of handwriting
Demo: Speech Recognition

English (en)

antique

interior design

stool

decoration

empty

08.987
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0.985

0.973

09.972

8.963

8.945

8.915

8.907

08.892

0.882

0.872

0.864

0.861

Probability that the
model / concept is
present in the picture

“Alexa, turn on my
Chill Time™

“Alexa, turn off my
Bedroom Sonos”
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https://www.clarifai.com/

* Machine learning has greatly improved over the past years because of three factors:
— Deep learning

— CPUs and especially GPUs

— Auvailability of frameworks like Tensorflow

5000 7
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« Although not every aspect of the human brain is understood

— It was believed brain adapts in the first months
does not change afterwards

The brain can shift

take over functions after brain damages

— What does this mean? The brain working with  “universal algorithm”

simple

learn best with increasing difficulties and if we struggle in the practice

« Many researchers switch between neuroscience and artificial intelligence

algorithms are rather
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5.2 Machine Learning Basics

The Machine Learning Problem

A computer program is said to learn from experience E with respect to some class of
tasks T and performance measure P if its performance at tasks in T, as measured by P,
improves with experience E [Mitchell 1997]

There is a wide variety of machine learning problems

Often, real-life examples employ a set of different approaches

« Other examples include cascading several methods

* Modern approaches in Deep Learning build excessively deep sequences
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5.2.1 Tasks

* With task
supposed to perform

 Classification

fixed acidity
#1 8.5

y = f(x) with f: RM - {1, ...,K}.

ability that the machine is

volatile acidity quality
7

0.28 0.56 3.3 10.5
#2 8.1 0.56 0.28 3.11 9.3 5
#3 7.4 0.59 0.08 3.38 9 4
#4 7.9 0.32 0.51 3.04 9.2 6
#5 8.9 0.22 0.48 3.39 9.4 6
» Classification with missing input
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Regression predicting a numerical value
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Clustering divides a set of inputs into groups
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Density estimation (probability mass function estimation) is the construction of an estimate of

an underlying, unknown probability density function
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« Imputation of missing values requires an algorithm to replace (estimate / guess) missing data

« Synthesis and sampling is a type of task where the machine learning algorithm must generate
new examples that are similar to the training data

Anomaly detection requires the algorithm to flag unusual, incorrect, or atypical events
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* Machine translation (MT) is the mapping of a sequence of input symbols (source language) to a
sequence of output symbols (target language)

English Spanish French English - detected ~ "'.. English Spanish German ~ Translate
Machine translation (MT) is the mapping of a sequence of input symbols (source X | Maschineniibersetzung (MT) ist die Abbildung einer Folge von Eingabesymbolen
language) to a sequence of output symbols (target language). In simpler cases, (Quellsprache) auf eine Folge von Ausgangssymbolen (Zielsprache). In einfacheren
subsequent input symbols correlate directly to sequences of output symbols. Applied Fallen korrelieren nachfolgende Eingabesymbole direkt mit Sequenzen von
to natural language translation, however, simple word-by-word translation is not Ausgangssymbolen. Auf die natirliche Sprachubersetzung angewendet, ist jedoch
sufficient and the algorithm must find a representation in the target language that is eine einfache Wort-fur-Wort-Ubersetzung nicht ausreichend und der Algorithmus muss
|structurally and semantically correct. eine Reprasentation in der Zielsprache finden, die strukturell und semantisch korrekt
ist.

[_D ") ‘/: f Suggest an edit

L DI

« Transcription asks a machine learning algorithm to observe a unstructured representation of the
data an to transcribe it into a discrete (often textual) form

« Dimensionality Reduction simplifies the input vectors to a lower-dimensional space
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* Reasoning is the process of generating conclusions from knowledge

* Autonomous Robots work with reinforcement learning

— While

Tesla states that its autopilot is
10 times safer than the average driver.

— Laws for and acceptance of robots in society
are in its infancy

— Further obstacles are insurance issues
(who pays for a mistake of a robot)

Multimedia Retrieval — 2019 5.2.1 Tasks Page 5-11




5.2.2 Performance

* To evaluate

Chapter 1 (Evaluation of Performance). A short summary:

— Binary classification

— Multi-class classification

— Binary classification with scores and thresholds

— Multi-class Classification with Probabilities

— With Regression

mean squared error (MSE)

— As machine learning algorithms to evaluate

to find an optimal set of parameters
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5.2.3 Experience

* Supervised Learning
the data set

Classification

A target: label in the

o form of a shape
A o O

feature 2
>
> >

v

feature 1

— As discussed

— Even though targets are given
wrong labelling

the teacher

target for each instance of

Regression

target

[
»

feature

provides an error measure

noise
defects, distortion
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— Missing targets
targets (or labels)

1) Smoothness
2) Cluster

3) Manifold

* Induction only

« Semi-Supervised Learning

few labels

missing

predict the missing labels

feature 2

some objects do not have

credit card firms investigate only a small subset of “suspicious” transactions

Classification

. target: label in the

A missing target  form of a shape
A x @0 0 ©
A A 8
2% © A - N
A
A s
A 8 Qo
B O @)

2
3 " ] 8 o

© o

8
O O
o o O
O

@)

[

feature 1
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 Transduction

1. Start with a single cluster with all objects

2. While a cluster has two objects with different labels
Partition the cluster to resolve the conflict

3. For all clusters
Assign the same label to all objects in the cluster

— Missing features
features

* Naive Bayes

k* = argmax P(Cy) [; P(x;|Ci)
k
missing features simply ignore them
o If
“average” over the missing features

Classification

target: label in the

8

feature 2
>
&3

A missing target

8

form of a shape

v

feature 1

some objects lack some of the

“‘integrate” or
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* Unsupervised Learning observe data set without targets

algorithm must learn without any guidance. R —

- CIUSterlng 4 outlier / anomaly
o m <
§ 8 ® 2 8
8
8 8
. . 838383 & 2 cluster
Outlier/Anomaly detection . . ® 8w
& 2 838383
8 8 8 @
X 8 8
B By B8 e

[

Density function

feature 1

Dimensionality reduction

Self-organizing maps (SOM)

—_—

Multimedia Retrieval — 2019 5.2.3 Experience

Page 5-16































Reinforcement learning evaluates possible actions in an environment so as to maximize the

cumulative award

— Areinforcement agent typically interacts with its environment in discrete time steps

maximize the cumulative rewards

reward l
Reinforcement .
L Sensor — . —— Action
state Learning policy
Agent
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— A policy is a series of actions
define policies and choose the best policy
Exploration developing (or composing) new policies exploitation
application of the best known policy

— Reinforcement learning is an efficient approach if the environment behaves non-deterministic or
even chaotic
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5.3 The Learning Proces

« Machine learning algorithm learn from data “right” data

— Feature selection, i.e., ability to capture essential information to learn a task

— Data cleansing, i.e., ability to remove the negative impact of outliers or of noise

— Normalization, i.e., ability to address correlation between features and to normalize scales
— Curse of dimensionality, i.e., inability to learn underlying structure due to sparse data space
— Opverfitting, i.e., inability to generalize well from training data to new data sets

§7— Underfitting, i.e., inability of the algorithm to capture the true data structure

Data preparation is a 3-step approach which we do not further discuss in this section

1) Select Data
2) Preprocess Data
3) Transform Data

« We need to pay attention how we divide the data sets into training sets
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Train model
with training
set only

/’\

Validate model, adjus\
hyper parameters, and >

Features Targets

Training Model IS repeat steps 2, 3, 4
Set a /
1 . . -
Validation . )e@model with test
e e - = —»
Solt fraini : Set Validate —1 setand compare with
Pl rgmlpg I other methods
and validation I
data sets

i G — | ‘\/7

————————————————————————————————————————————— » Test Set —> Assess —@—b. ‘
l T Results
______________________________________________________ >

and test data
sets

training sets and test sets are distinct

* Most algorithms have hyper parameters

validation sets (again, distinct from the training sets)
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« What is the right complexity
— Too simple
— Too complex

« Our brain is excellent in finding the right level of abstraction
— Examplé: birds can fly

— Example: describe what makes a chair a chair

— Example: horse - much narrower in terms of what is accepted
— Example: dog - wide variety of forms
— Example: sketches of people

— Example: throw a basketball
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* Overfitting and underfitting

optimal

overfitting

optimal |
\
underfitting
overfitting optimizing for training data
with too many parameters
— Underfitting large errors on the training data and poor prediction

performance
capacity of the model
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« When altering the((;io_ﬂtb ’gam’srazor s

— Numqguam ponenda est pluralitas sine necessitate [Plurality must never be posited without necessity]

among competing hypothesis that explain
observations equally well, one should choose the “simplest” one.

error

underfitting | overfitting
zone | zone

generalization error

generalization gap
training error

»

optimal capacity capacity

« The\bias-variance tradeoff (gr dilemma)

— The bias error of a model (underfitting)

— The variance error from sensitivity to small changes
(overfitting)

The bias-variance decomposition is a way to analyze the expected generalization error
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 Todrive partition data set training set
(70-80% of data) test set (20-30% of data)

validation set (20-30% of data):
— The training set is used for learning

— The validation set is used to tune hyperparameters

— The test set is used to assess the performance

— k-fold cross validation

test set training set -

1stiteration Mmuw.wuooummomonmoum»

2nd jteration onnmnol.uonoommﬁn«oonmmomonmoumno :I T St
N applies for the

31 iteration onmmoWuWomonmouwo validation set

4t jteration O“WMOW“OO“MMO“”%MO“MO

5™ iteration onmmownoonmmomo{omonnm{
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5.4 Methods

» Classification of Tasks (based on Input)
— Unsupervised
— Supervised
— Semi-Supervised
— Reinforcement Learning
» Classification of Tasks (based on Output)
— Regression
— Classification
— Clustering
— Density distribution of a distribution
— Topic Modelling / Dimensionality reduction

« Approaches considered in the following
— Decision Trees (ID3, C4.5)
— Nalve Bayes
— Unsupervised Clustering (k-means / Expectation Maximization)
— Multi-layer Network
— Deep Learning
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5.4.1 Decision Tree Learning

* Classification

Male

Speech Female

Child

Silence

« Decision tree learning

Background

Noise

Classical

Rock
Music
Pop

Jazz

simple but effective classification

Hard Rock

—
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« The concept of classification trees is quite old

* A node in a classification tree usually tests for a single feature only

true

—> f(x)?

‘ false

binary test
(f(x) is the condition)

x=a xE{a,b,c}‘
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« The leaf nodes denote the labels (or targets)

true

» yes
| age <25 » student? false > no — Note that this
tree is not
i 5 < age <65 balanced
w(z)rreig;? ——  ager  ——5 -
| age = 65 _ credit score < 75 ~
score? > -
score = 75
» yes
* In order to create a decision tree must identify  set of tests

— Note: the condition “minimal number of steps” leads to the most simple tree that maps features to
labels following Occam’s razor

Multimedia Retrieval — 2019 5.4.1 Decision Tree Learning Page 5-28




To construct

information

gain reduction of entropy given the observation
— Let T be the training set (x,y) = (xq1,%5, X3, e, Xpp, Y)
LetT;, ={x € T| xj= v} subset of T such that Xj=v
I1G(T,x;) = H(T) — Z ||1r| jv
VEV;
Entropy H P(y;) denotes the probability that

a randomly selected item from T has the label y = y;

Entropy is usually based on log, but
z P(yy) - log, (P(y )) for the purposes here, the basis of
' ' the logarithm is irrelevant

> Pyl = v) -loga (P(vilx; = v))

L
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— Example

H(T) = — P(y) -log;(P(»)) =
y€e{Yes,No}

Viinay = {TRUE, FALSE}

H (Tj,TRUE) = -
ye{Yes,No}

H (Tj,FALSE) = -
ye{Yes,No}

IG(T,x;) = H(T) — Z

ve{TRUE,FALSE}

14 entries with 9 ‘Yes’ and 5 ‘No’

j = Windy

|T| 14 14

14 entries with 6 ‘TRUE’ and 8 ‘FALSFE’

Outiook | Temp.___|Humidity _]windy _|Play

Sunny Hot High FALSE )
Sunny Hot High R Nc
Overcast  Hot High A Yes
Rainy Mild High FALSE |5
Rainy Cool Normal FALSE Yes
Rainy Cool Normal
Overcast  Cool Normal
Sunny Mild High
Sunny Cool Normal
Rainy Mild Normal
Sunny Mild Normal
Overcast  Mild High
Overcast  Hot Normal
Rainy Mild High

6 TRUE entries with 3 ‘Yes’ and 3 ‘No’

— —

3 3\ 3 3
P(ylx; = TRUE) - log, (P(y|x; = TRUE)) = —<logy () —=-logz (£ ) =1

6 6\ 2 2
P(y|xj = FALSE) - log, (P(y|x]- = FALSE)) =-3 log, (=] —="-log, (=) =0.8113

8 8

T
8 FALSE entries with 6 ‘Yes’ and 2 ‘No’

8

T; 6 8
[T H(T;,) =0.9403 ——-1——-0.8113 = 0.0481
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A high-level pseudo code

Function DecisionTree(Features, Targets)

TrainingSet, validationSet, Attributes & CleanseData(Features, Targets)

Root €« BuildTree(TrainingSet Attributes)

Rules €« PruneTree(Root, ValidationSet)

Return Rules

We can re-write a decision tree as a set of rules

true

age < 25 false
|—> student? —»
credit 25 < age <65
age? >
worthy?
age = 65 i <75
Y credit score X
score?
| score = 75

public boolean isCreditworthy(Customer c) {

yes

no

yes

no

yes

if c.getAge()<25 && c.isStudent()

if c.getAge()<25 && !c.isStudent()

if 25<=c.getAge() && c.getAge()<65

if c.getAge()>=65 && c.getCreditScore()<75
if c.getAge()>=65 && c.getCreditScore()>=75

return false; // default: false

Rule Set:

Note that ‘true’ and ‘false’ are labels
and not Boolean values in the rules

yes € (age<25) AND (student==‘true’)
no < (age<25) AND (student==‘false’)
yes €& (25<=age) AND (age<65)

no < (age>=65) AND (score<75)

yes €& (age>=65) AND (score>=75)

return true;
return false;
return true;
return false;
return true;

rules compiler

N

Further optimizations of
code generation possible
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* Cleanse data

Function CleanseData(Features, Targets)
Features, Targets €« eliminate entries with missing Targets (=NULL) and outliers
Features € predict missing Features (=NULL) with domain knowledge
Features €« transform and normalize Features with domain knowledge
Attributes ¢« select set of useful Features with domain knowledge

collapse entries that share the same Features

assign the most frequent label from Targets to the collapsed entry

keep Counts (=number of entries) for correct entropy calculations later on
Data €& combine Features, Targets, and Counts into a structure

TrainingSet, validationSet &« Split Data into distinct sets with given Ratio (e.g., 70:30)
Return TrainingSet, validationSet, Attributes

Additional information — not part of the exams
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 Build tree

Function BuildTree(bData, Attributes)
N € new Node and associate most common Tlabel in Targets with node N
If all Targets have same label Then Return N
If Attributes is empty OR Data too small Then Return N
A, Tests, Fitness &« SelectBestAttribute(Data, Attributes)
If Fitness below Threshold Then Return N
Foreach T in Tests Do
B € add new branch to node N for test T
P €& get partition of Data which fulfills test T
If P is empty Then add new (empty) node below branch B with same label as node N
Else C ¢« BuildTree(P, Attributes - {A}); add node C below branch B
End T
Return N The typical approach is to use an attribute only once
on each decision path in the tree. Hence, tree height
is limited by the number of selected attributes.
Function SelectBestAttribute(Data, Attributes)
Foreach A in Attributes
Tests[A], Partitions €« split feature values for attribute A and determine partitions
Fitness[A] &« determine a fitness/score for attribute A (e.g., information gain)

End
Abest €& find A with Fitness[A]==max(Fitness)
Return Abest, Tests[Abest], Fitness[Abest]

Additional information — not part of the exams
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* Prune tree

Function PruneTree(Root, ValidationSet)

Repeat _ _ This pseudo-code is obviously not
Accuracy € get total accuracy for validationSet optimized for speed but rather shows the
Foreach N underneath Root steps that are necessary for pruning

If N is Teaf Then Accuracy[N]=Accuracy
Else

replace subtree at node N with leaf (keep Tabel of N = most common target)
Accuracy[N] € get total accuracy for validationSet
insert original N into the tree again
End

End

N €& find node N with AccuracyNode[N]==max(AccuracyNode)

If AccuracyNode[N]>Accuracy Then replace subtree at node N with leaf

Until AccuracyNode[N]<=Accuracy

Return (Rules & create rule set given the tree underneath node Root)

Additional information — not part of the exams
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— Pruning rules

This pseudo-code is obviously not
Function PruneTree(Root, ValidationSet)

optimized for speed but rather shows the
steps that are necessary for pruning

Rules €& create rule set given the tree underneath node Root

Repeat

e

Accuracy € sort Rules by accuracy; get total accuracy for validationSet
Foreach R in Rules
Foreach condition C in R
remove condition C in R

AccuracyRule[R][C] €« get total accuracy for validationSet
insert condition C into R again
End

END

R,C €« find rule R and condition C with AccuracyRule[R][C]==max(AccuracyRule)
If AccuracyRule[R][C]>Accuracy Then remove condition C in R

until AccuracyRule[R][C]<=Accuracy

Return (Rules € sort Rules by accuracy)

Additional information — not part of the exams
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* Implementations
— The ID3 algorithm was invented by Ross Quinlan in 1986

IG(T,x;) = H(T) — 2 ||1r|

UEW

To compute the entropy count frequencies f;,(T) of y,

K
_ fk(T) fk(T) |T]v| fk(T]v) fk(T]v)
I6(T, ) == D gy o (m) z mZ e

The best attribute Xj* | maximizes the information gain;-hence:

’ Ji(T; | Since we are looking for the
j' = argmax IG(’]I‘ x]) = argmaxz Z fk("JI‘J v) -log, ( ( ]v) maximum value, the base of

k=1vEV; |TJ"U| the logarithm is irrelevant.

e - empty partitions are

» Decision nodes only exists for discrete attributes

ignored.
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— Ross Quinlan refined the ID3 algorithm and published the C4.5 algorithm in 1993

« The information gain measure favors attributes with many values

information entropy with respect to the attribute values
'

4 )

_ Mol | 1og, ol
SI(T, xj) Z ] 2 0 00«

UEJ

The gain ratio Is then the ratio between information gain and split information:

I1G(T, x;)

GR(T, Xj) = S](']I'—x)
)

A practical issue, however, occurs if one T; ,, is almost as biga T

- compute IG(T, x;) for all x;
» select a threshold Gy esnoia, fOr example:

* IGrhreshola = avg (1 G(T, xj)) (mean information gain)
BTG =P (IG('JT, x]-)) (median information gain, 50-percentile)
- IG('[[‘,xj)>
. jr= argmax (—
JJ IG(T'xj)>IGThreshold SI(T'XJ)

split
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* To allow for continuous values
2 xj < z then the value is ‘true’, otherwise it
is ‘false’

. By 7S R i N e . S S T P~y R N V=Y 1= Ve idava ILQLLLUF{E[D_[IEEU‘\
// - \‘\\\\
& There are several strategies to address missing values ~ J
K,‘Ivnngr']:um—rna‘t — [ C. JISIEaT=S uﬂ[j:[(
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« Example: audio classification

— Decision trees are very simple and produce efficient classifiers

— In the learning phase, we need to pre-process the audio signal, extract features, gather statistical

Feature

information
Segmentation
> length=4s
hop=100ms
Audio
Signal
Framing
> length=40ms
hop=20ms

——» HZCRR

Extraction

\ 4

| Computation

Statistical features

targets

\ 4

C4.5

v

——» LSTER

v

—» AM Ratio

> FFT

Example with a combined feature extraction and statistical computation [Castan, 2010]

Co
MFCC
Cl’ ey C12

—> MET ——

—» VAR —M88

v

VSF

v

Features (6 dimensions)

A\ 4

Rule
Set
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— Framing and Segmentation

— Castan (2010) focused on a small number of characteristic features:

« HZCRR
High Zero-Crossing Rate Ratio (HZCRR)

LSTER
Low Short Time Energy Ratio

« AMR Amplitude Modulation Ratio

« VSF
Variation of Spectral Flux

MET & VAR
Minimum-Energy Tracking (MET) measure how long C,
Pauses variance of all MFCC
over the frames in the segment. Small VAR values indicate music.
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— In the prediction phase

Audio
Signal

\ 4

v

Statistical

Computation

features Rule

A

|Fr?r:n£g . Feature -~
engtn=40ms » ) >
hop=20ms Extraction
Segmentation

length=4s

hop=100ms )

p= 10! -
| —l —

Set

predictions

continuous stream

A 4

Smoothing

A 4

Segmentation

Classification

&

single file

\ 4

Voting

A 4

Classification

« Smoothing uses weighted sums over past predictions with exponentially smaller weighs to
avoid fast alteration between targets

* Voting is rather simple
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5.4.2 Naive Bayes

» Bayesian classifiers go back to 1950

treesstyg

P(C,|x)|= P(x|Ci) - P(Cy) osterior — likelihood - prior
- P(x) - evidence

. L a high-dimensional vector

conditional independence of features

naive Bayes assumes

Note that P(x) is a constant over classes

— M S
P(Cy|x) = P(Cylxq, ..., xp) = ) : P(Cy) - 1—1 P(leck) % ¢, and scales the probabilities. For our
Ne? N :

purposes, we do not need to know it.

maximum a posteriori (MAP):

M
That is it! The equation describes the decision rule
k* = argmax P(Ck Ix) = argmax P(Ck) . | | P(leck) of Naive Bayes. The only thing left are the estimates
k k . for the probabilities on the right hand side

j=1
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To obtain the prior and the likelihood, we need to estimates the probability distributions

Learning pro@

— EStimating P(Cy) N, bet the number of training items with label C,
P(Cy) = N
If the exact numbers are not clear
— To find P(x;|Cy) need to model the underlying distribution

maximum likelihood estimation (MLE)
model parameters that maximize the likelihood of making the observations

— Letx; discrete Ni(x; = v) with v € V; number of training items
with label Cy that have x; = v

Ni(xj =v)

P(x;=v|C) = N,

Multimedia Retrieval — 2019 5.4.2 Naive Bayes

Page 5-43
















— What if aJvalue v b never seen for x; P(x;=v|C)=0
P(Cy|x) = P(Cp|xy, ......,xM) =0

In other words eliminates
C, as a prediction

ﬁaplace smoothing (add-1).

“steal” probability mass

Nk(xj = v) +1

P(Xj=U|Ck)= Nk+|v'|
]

Note: the sum of P(xj = | Ck) over all values v € V; is still 1. But we got rid of O-probabilities.

Observed Probabilities Smoothed Probabilites
0.4 0.4
] stolen
0.3 0.3 l
0.2 0.2

0.1 0.1
H |_| 1 o H ﬁ M = [ 14 added
3 4 3 4 5 6 7 8 9

5 6 7 8 9 1 2

Red indicates “stolen” probability mass and green denotes added probability mass.
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— A special case is a discrete Boolean valué xj € {0,1} (

Bernoulli event model

L PGy160) = @) (- o)™

—

e
Prj = —Nk(xj =1) or smoothed: Dri = min (Nk -1 max(l'N"(xf ~ 1)))
' Ny k.J Ny,
- A multinomial event model
x = (xq, ..., x)y) representing a histogram x; counting the number of times a feature or

event j was observed

Note that the factor to the left of the product symbol is a constant when
looking for the best class €, and hence drops in the argmax equation

_ (ijf)! Xj
P(x|Cy) = W : U(pk,j)

Let ny occurrences of feature j in items with label C

N, j ny;+1
or smoothed: py;, =o———
o YNy + M

Phj = X Nk,
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— If feature values x; are continuous

Gaussian distribution

2
(i)
203 ;

1
p(x;|Cy) = —="¢
/2110,3’1-

unbiased estimators based

When estimating variance from samples, we must
1 2 for th in the estimated lue, th
;= — X O (x —u ) account for the error in the estimated mean value, that
ki Nk t k.l . k.l is, we underestimate the variance because differences
€Cy

XECK between values and the estimated mean are too small.

— Using a Gaussian mixture model

L
p(x;|C) = Z wy - N (Ukin Oir)
=1

To lear amet e normal distributions, we can use th& Expectation Maximization
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 Prediction

— To predict the class Cj+
maximum a posteriori (MAP)

M
k* = argmax P(Cy|x) =argmax P(Cy) - nP(xj|Ck)
k K :
j=1

With practical issues due to the multiplications

M
k* = argmax log(P(Cy|x)) =argmax| log P(Cy) + Z log P(x;|C)
k k :
j=1

— To reduce the noise of a large number of features, we can focus on a few features only that are
sufficient to classify data items

Chi-square and
mutual information
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« Example: Text Classification

— There are two models for text classification: 1) set of words, and 2) bag of words

— Set of words and multivariate Bernoulli binary
feature vector x
classes Cj
Ny P 1
PG =~ or if Ny is not known:  P(Cy) = %

Let x; = 1 denote that term ¢; is present

Dk,j = Ny = 1) or smoothed:  p, = min(Ny — 1, max(1, N (x; = 1))
1 Nk ,] Nk

Prediction

M
k* = argmax P(Ci|x) =argmax| log P(Cy) + E(xj logpy,; + (1 —x;) log(1 — py;))
k K :
=1
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— Bag of words and multinomial X
denotes the number of occurrences of terms

classes Cj
Ny U 1
PG =~ or if Ny is not known:  P(Cy) = %
Let n; ; be the total number of occurrences
Pk,j = or smoothed: =
) 2 Nkt Ph.j Y+ M
Prediction

k* = argmax P(Cj|x) =argmax (logP(Ck) + Z X; logka-)
k k

x]'>0

« Summary: Naive Bayes is not so naive
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5.4.3 Unsupervised Clustering

« With unsupervised learning tasks,

k-means clustering and Expectation
Maximization over a Gaussian mixture
typical applications are:

— Feature quantization

— Cluster analysis

— Image segmentation

guide clustering algorithms in selection of optimal number K of clusters
underfitting (extreme case is K = 1) and overfitting
(extreme case is K = N with N being the number of training items)
utilize a target function
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« k-means clustering

data point belongs to cluster with the
nearest centroid

— Although computation is a NP-hard
efficient heuristics

— Let N be number of data items with d-dimensional representations x, ..., Xy
K sets S = {S4, ..., Sg} within-cluster sum of
squares

S* = argmlnz z lx — w3 —argmlnzlSkl o

=1 xE€Sk

— S

with u; denoting the mean of items in S, and ¢ being the variance of items in S,

1. Select an initial set of centroids u( ) ,ué) (see later how to select)

2. Assign x to closestto py, i.e., [x—pul| < ||x— 1| v:1<1<k

3. Calculate the new centroids for the next iteration (t + 1):

u+D 1 Z X
k7 e®
st

(®)
XES;,
4. Repeat steps 2 and 3 until algorithm has converged
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— Initial choice of centroids
* Random points

« Random partition

* k-means++: the first centroid chosen randomly subsequent centroid
chosen with probabilities proportional to squared
distance to closest centroid

« Expectation Maximization (EM) (and interpretation of k-means algorithm)
— Expectation maximization

observations are
obtained from probability distribution
soft assignment denotes that cluster assignment follows a
conditional distribution find the soft assignment and the parameters of
the distributions that best explain the
observations
— Solving above objective function not possible

expectation step
maximization step
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— Let us start
two (K = 2) Gaussian distributions V' (uy, o7)

prior P(Cy)
LP(C) =1.
— Now, assume observations T = {x4, ..., xy }.
assume XES, from blue
x€ES,=T\$, from red

(biased) estimators:

_ Lxesi ¥ y Des, (X — i)? IS, |

—G1

k
Ly, = o P(C) = —
C IS k Skl G ="
— On the other side, assume parameters py, o7
priors P(Cy)
P(Cylx;) x; part of C,?
P(C |x.)=P(xi|Ck).P(Ck) _ P(x;|Cy) - P(Cy)
el P(x;) Y P(x;1Cy) - P(C)
i 2
with  P(x;|Cy) = f(xl-; Ui G,f) == exp (—M)
Zna,% L o
Multimedia Retrieval — 2019 5.4.3 Unsupervised Clustering Page 5-53




— Given  probabilities P(Cy|x;)

0ft assignments.

not entirely sure from which sub-population

AN .

I = 2i P(Cielx) - x; 52 = Y P(Crelxy) + (x — py)?
f i P(Cilx;) f X P(Cilx;)
— Now we can summarize the EM responsibility y;, =
P(Cylx;) weights wy, = P(Cy)

1. Selectinitial values for 4,62 and w(® for1 < k < K

2. E-step: evaluate new responsibilities Vl(z? for1 <i <N and1 <k < K using current parameters

k %%k
f(xu u,(f),a,g“))
3. M-step: evaluate new parameters ,u(t“) a,f(tﬂ) and W,Et-l-l) for 1 < k < K using current responsibilities
(t+1) _ i Vz(ltc) " Xi (t+1) _ 2 y(t) ( ”’(ftﬂ)) (t+1) _ 2 V(t)
R R %k R 2 N

4. Repeat E-step and M-step until the parameters stop changing
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— Once convergence of EM  reached (hard) assign data item x;

P(x;|Cy) - P(C
k* = arg}rglaxP(Cklxi) = arglrcnax ( llpk()xi) (C) argmax (Wkﬁ) f(xl, #,((19),0;3(19))

— We can generalize d-dimensional spaces

1. Selectinitial values for ”(0) 22( ) and wko) forl<k<K
2. E-step: evaluate new responsibilities y; k) for1 <i < N and1 < k < K using current parameters

® (t) y2()
(t) _ Wk f (xll I’lk 12 )
ik t t (®)
kal(()'f(xll u](()'zz )

(t+1) 2:2(t+1)

3. M-step: evaluate new parameters pu, and w,g”l) for 1 < k < K using current responsibilities

® (t+1) (t+1)
(t+1) _ Zlylk i (t+1) _ Zlylk ( — M ) ( — M ) WD Zlyl(lt()
My, o (O D t
Z y Z V() k N

4. Repeat E-step and M-step until the parameters stop changing

— Again, we obtain a hard assignment

1 1
k* = argmax( 9) - f (xl, () 22(19))) f(xi me, Z3) = " exp <_E(xi — w)TE  (x; — Mk)>
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— Where does the name Expectation Maximization

Y* = argmax p(X]|Y) = jp(X,ZW) dZ
Y
Z

Q(Y[Y®) = Eypy yeo [log p(X, Z| )]

Additional information — not part of the exams
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— Let us reconsider the k-means algorithm as an EM problem

] = z Yirllx: — uells

N k

l

1. Selectinitial values for u,((o). Keep X =1 and w;, = 1/k constant
2. E-step: evaluate new responsibilities yif,? for1 <i < N and1 < k < K using current parameters
@ |1 ifk= arg{nin”xi — i3

YVik = _
0 otherwise

3. M-step: evaluate new parameters u,(f”) for 1 < k < K using current responsibilities

()

uED = LiVik " Xi

koo ®
Zi)/i,k

4. Repeat E-step and M-step until the parameters stop changing

Additional information — not part of the exams
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 For both k-means and EM need to control number K of clusters

sum of squared errors

K K

SSE(k—means) = z z llx — w1 SSE(EM) = Z z (x — )" E (e — )

k=1 x€Sy k=1x€eSy

If we plot this SSE as a function of K

a) Vary K from 2 to an upper bound (here 20) and determine the point that lies farthest away
from the line between the start and the end of the curve.

Sum of Squared Errors(SSE)
b) Start with K = 2 and determine the distance to the point

(2,0). While increasing K observe the distance. Stop if
the distance starts growing.

100

=]

60

40

need to normalize the two dimensions

20

elbow point
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« Example: Image Segmentation (Blobworld)

f) Blobworld hard assigns pixels

Blobworld University of Berkeley a

a) The original image

{a) original image (b} smoothed image

b) A rough Gaussian filter

c) Coloris transformed into L*a*b*

polarity
edgeness, and
texture contrast
pixel position (x, y)

d) Apply the EM algorithm
8 feature values
2, 3, 4, and 5 clusters.

e) To steer

Minimum . e B e ek
DeSCI‘Iptlon Length (MDL) (e) final segmentation {fyBlobworld

Multimedia Retrieval — 2019 5.4.3 Unsupervised Clustering Page 5-59




5.4.4 Multi-Layer Network

 Artificial neural networks inspired by how the brain works

* The first wave late 1950s
perceptron (in hardware).

XOR function

 The second wave 1960s with the introduction of hidden layers

1986 paper on backpropagation

calculation issues (vanishing and exploding gradients)

» At the beginning of the 2000s, almost no research was published

2006 a break-through paper

Google started
in 2011 its Google Brain
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W Perf / watt

source: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu

Electronic Brain

S. McCulloch - W. Pitts

DGX-1 with Tesla V100

8X GPU Server

18 hours, 40X faster

CPU-only Server [| 711hours

0X

Workload: ResNet50, 90 epochs to solution | CPU Server: Dual Xeon E5-2499 v4, 2.6GHz

source: https://www.nvidia.com/en-us/data-center/dgx-server/

10X 20X 30X 40X 50X

Relative Performance [Base on Time to Train)

60X 70X 80X 90X 100X

Multi-layered
XOR Perceptron
ADALINE (Backpropagation)
A A
A
Perceptron
Golden Age Dark Age (“Al Winter”)

F. Rosenblatt B. Widrow - M. Hoff

M. Minsky - S. Papert

1990

Deep Neural Network
(Pretraining)

SVM

2000

A

XA%NDY XORY NOT X
+1 +] -2 +1 +1 - -1
/LN /LN ]
X Y #1 X Y # X

Foward Activity =——jp»

¢—— Backward Error

« Adjustable Weights

« Weights are not Learned

source: ttps://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_partl.html

* Learnable Weights and Threshold

» XOR Problem

+ Solution to nonlinearly separable problems
 Big computation, local optima and overfitting * Kernel function: Human Intervention

« Limitations of learning prior knowledge

* Hierarchical feature Learning
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« We first consider the original perceptron idea

\

_)1 ifw'xt+b>0
= {0 otherwise

K weights and b is the bias

1<
hyperplane-givenby wx + b In a more geNgrakce

L perceptrons

as follows:
x i el by —> 01 —
1 1 Vi<I<L: g
X2 iy b, —» 02 <+t
) : with the binary step fur
Xk ik b, —» 0L <« Ik £(2) 1 z>0 ‘\)’\
z) = .
sampje input weights bias  output target 0 otherwise

The learning algorithm is then as follows:

(demo: https://www.cs.utexas.edu/~teammco/misc/perceptron/)

1. Initialize the weights w,g? and the biases bgo) with small random values. Set a learningrate 0 < a <1
2. For each example x € T, apply it to the perceptron, i.e., leti = x
- Calculate that actual output: o; = f(Xk_; iy - wy) + by)

« Update the weights: Wi

» Update the bias:

(t+1) ®)

1
bl(t+ ) =S bl(t) + (X(tl - Ol)

=w,; +a(t;—o) i, (i.e., only adjust if target+output)

(i.e., only adjust if target=output)

Convergence is only reached if the data set is linearly separable.
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* Intuitively adjust weights if target differs from
output

heuristic approach

* In contrast support vector machine (SVM) computes  optimal solution

Perceptron SVM

possible

solutions exactly one

optimal solution

* Inany case, binary classifier can learn multiclass outputs “one-vs-all”

“‘one-vs-one”
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The linear classification
has the “kernel trick”

The “kernel trick” is

considered

seems limiting

human intervention

However, SVM
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« Multilayer networks introduce a number of changes to the original perceptron
— several “hidden” layers between input and output
— different activation functions to “fire” a neuron, and not necessarily only binary output
— objective functions to define an optimal state for all network parameters
— anew algorithm to learn the weights (the so-called backpropagation)
» Let us start with a simple two-layer network

sample input hidden output error

A

i

x€T J
W3
Iy s J2
1 t
to(x)
1
* The network input neurons i, i, hidden neurons h4, h, output neurons
01, 07 (shared) biases
weights on the connections connections are only from one

layer to the next one no inter-layer connections or cycles

nodes to

capture training error: J; and J,
J denotes the training error.
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* Feed-Forward

sample x

summation

weights

activation

L =x and i,=x 1
1o 277 P) = Tres
hy = osn) = oz dwg xp b by) and by = @(s,) = Ol - %5 + 1)

01290(501)=§0(W5‘h1+W6'h2+b2)=¢(W5'¢(W1‘x1+Wz‘xz+b1)+W6'<P(W3‘x1+W4‘x2+b1)+b2)
02=<p(502)=g0(W7-h1+W8-h2+b2)=(p(w7-(p(wl-x1+wz-x2+b1)+wg-<p(w3-x1+w4~x2+b1)+b2)

feed-forward we “feed” data

into input layer then forward from one layer to the next one
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e Error function

1
J(8) = m;r/(x; 9) =

6 denotes parameters of the network = (Wyq, ...,Wg, by, by)

1
9" = aX](O) =2 ZHt(x) —o(x;0)|I3 %
xX€eT

gradient descent

1. Choose an initial random vector for (%) and a learningrate 0 <75 < 1
2. Repeat until ||@¢+D — B(t)||2 <e O _t>tmax

- Compute gradient: A® =14

« Adjust parameters: @+ =g —A®

— Gradient descent slow close to minimum and “zigzags” for poorly
conditioned convex functions

|1r| Z”WO —o(x; 0|13
i VM\ .
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— Instead

stochastic gradient descent
(SGD) with a momentum method

1. Choose an initial random vector for 8(?), a learning rate 0 <7 < 1, and a momentum 0 < y < 1.
. 2
2. Repeatuntil [0+ — D" <& or &> tpay

* Randomly shuffle the training set T
. 9t+D) — g®©

« Foreachx €T
- Compute gradient: A=y -A+7n-V/(x;0¢D)
- Adjust parameters: @+ = g(t+1) — A

* Increase y

compute the gradient V/(x; )

1
J(x0) =S lle(x) = o(x; 0)13 CV(x; 0) =?
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« Gradient computation

d] a] dJ 6])

ezl = (aw1 " Qwg’ by’ Ob,

1 1
J(x;0) =],(x;0) + J,(x;0) = 5 (t;1 —01)* + 5 (t; — 03)?

01 = (p(Sol) =@(ws-hy +wg - hy, +by) 0, = (p(sOZ) = oWy - hy + wg - hy + b,)
aa_viszai%e' (t2 = 01)* +%' (& _02)2> =aiw5<%' (t —01)2> = (t, — 01) 'aa_vz

%S:,: = afVS(Ws'h1+W6-h2+b2) = h,

all together: -
aa_Vljfs =t —0)-0(1-01) Iy zr(si ; ,1(j1L f_q;)

Additional information — not part of the exams
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G 9]
a—%=(t1_01)‘01(1—01)‘h1 a_%=(t1_01)'01(1_01)'h2
aJ a]
a—m=(t2_02)‘02(1—02)'h1 a_%=(t2_02)‘02(1_02)‘h2

d]

gw; = (A —hy)
2
a_M{Z=h1'(1—h1)'
9
= ha (1= hy) -
Y —hy-(1—h
aw, = 2 (L—ha)-
aj

hz‘(l_hz)‘

oby (t;y —01) - 01(1 —01) + (t; — 03) - 0,(1 — 03)

x1‘((t1_01)‘01'(1_01)'W5+(t2_02)'02'(1—02)'
x2'((tl_01)'01'(1_01)'W5+(t2_02)'02'(1_02)'
x1'((t1_01)‘01'(1—01)'W6+(t2_02)‘02‘(1_02)'

xz‘((t1_01)‘01‘(1—01)‘W6+(t2_02)‘02‘(1—02)'

((t1_01)‘01‘(1—01)‘W6+(t2—02)'02'(1—02)'W8)

Additional information — not part of the exams

wy)
w;)
wg)

wg)

a_blzhl'(1—h1)'((t1_01)'01'(1_01)'W5+(t2_02)'02'(1_02)'w7)+
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01 = 90(501) = @(ws - hy + wg * hy + b,)

hy = <P(5h1) =@(wy - x1 +wy - x; + by)

0y = 90(502) = @(w; - hy + wg - hy + by)

h, = ‘P(Shz) = @(ws X1 +wy - x5 + by)

6] Jd (1 1 do, do
T W(_ (t1 — 01)? t3 - (t2 — 02) > = (t; — 01) Y + (t2 —02) - 6_21
1 1

ﬂ_i((p(s ))=<p(s ).(1_(p(s )).0501:0 (1_0).6501 9o, e ).aso2

ow; O0wy %1 01 %1 ow, 1 Y ow, ow, 02 02 ow,

ds 0 dh

601_6 (Ws * hy + wg - hy + b)) = wg - 61 6502: oty

! W1 W1 ow, ow,

6h1 ash1 ashl

e (90( hl)) = ¢o(sn,) (1 — <P(Sh1)) Iw, hy-(1—hy)- T

aShl d

aW =an (Wl'x1+W2-x2+b1)=x1

1

all together:

aJ 1

—=({t;—01) 01 (1—0y) wsg-hy-(1—hy) x; + —

an 1 1 1 1 5 1 1 1 (p(s) 1 o os

(tz—02) 0, (1 —02) - wy-hy-(1—hy) x o' =¢-(1—-0¢)
Additional information — not part of the exams
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Can we do it simpler? Yes, we can. Backpropagation

chain rule from calculus

F(x)=fog=f(9(x) F(x)=f"(g() g'(x)
or in Leibniz notation with z = f(y)andy = g(x): == Z—; L= f(y)g'(x)
x y=gx) z=f)
forward X > g > f > z
x y=g) z=f)
forward x > g > f > z
x y
dz _dz dy ' < ' <
dx dy dx il dz _dz J dz 4 1 ! backward
a—d—y'g(x) E—f()’)

Additional information — not part of the exams
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multivariable chain rules
F(x) = f(g(x), h(x)) F(x) = f'(g(x),h(x)) - g'(x) + f'(g (), h(x)) - R’ (%)
or in Leibniz notation with z = f(y),y = g(x) and w = h(x)

dz dz dy+dz dw ( ) g’ ) + F( ) RGO
dx _dy dx ' dw xS Oow - g@+ fyw) hix

z=f,w)
forward x >
X
X
z=fQ,w)
forward X >
X
y,w
X
dz dz 7 dz
5o = 5 X ’ — =
dz _dz dy 4 dz dw 1
dx dy dx Taw @x + X f 1 backward
dZ _ dZ h’ hl dZ o
-y oy = TowW
Additional information — not part of the exams
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p(s) =

g = 1 Wi,1, Wo,1 = by 7] m
o' =¢-(1-9)
1 t
forward )
a 5= Zkak * Wil o, = @(s)) i E(tl —0))2
ay X > > ] >]_>]=Zl]l
: (257 : 0; : t;, 01 : ]l
| | | |
| | . |
) - ¢’ Ji' < ] «— 1 backward
] l §y=0-(1—-0) (ty —0p) (t;—op) 1
aJ ]
IWes =ag -6 A=y -Dg+1- e, W,?fw = Wiy — Ay
1 ;
/ = > 2y o1
0 aJ aJ
1 b =2k'—l———> T k %zz Sk Ab=V'Ab+U'% prew = h — A,
\ 61{ k
ZK_ - l -—— ZIK

Additional information — not part of the exams
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a =1 Wi, Wou = by mTTTTTTT Vim §)=——
! 9(s) 1+e”s
LA
forward 1 | l o' =¢-(1-¢)
o 5= Zkak * Wi / o =) !
ay X > \ : >y —»
| | 1 |
1 1 | 1
1 1 | 1
1Ay 1 0p 1 1 0
1 1 | 1
| | 1 |
v v v v
«— s/ < @ < + < Y — backward
6y \ Si=0-(1-0p) Z Vim * Om Z Vim * Om Om
m m
a] ]
IWes =ay -6 A=y Dy +1- Iwe, Wit = wiy — Ay
Additional information — not part of the exams
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« Generic implementation of multilayer networks

— Example with 3 layers:

00,1 "N 011 AW 02,1 AW 031 1

0o,m, 01,m, 02,M, 03,15 Jums
— Feed Forward is then given as:
1. Initialize o, = x; from the current data sample x € T c RMo with target t € R*~
2. For each layer L; with i iterating from 1 to N:
« Compute o;, = @(X; W; ;- 0;—1,;) With a selected activation function ¢ forall 1 < k < M;
3. Compute J, = E,(onk; tx) With a selected error function E forall 1 < k < My

Compute training error J(x; 8) = Y. Jx = E(on x; tx) for current sample
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— Backpropagation is finally (e.g., with logistic activation function and mean square error):

1. Given target t and assume output o, from feed forward step; assume learning rate n and momentum y
Initialize A; ;= 0

Compute &y, = <p’(oN,k) . E,'C(ON,R; tk) = Oynk* (1 — oN’k) . (tk — oN,k) foralll1 < k < My
For each layer L; with i iterating from N — 1 down to 1:

e

- Compute 8;x = @'(0ix) - ZiWizrik - Sipqy forall 1 <k < M
® Compute Ai,k,lz Y Ai,k,l + n: Oi—l,l 0 6i,k fOI’ a” 1 < k < Mi
5. Update Welghts Wikt = Wikl — Ai,k,l

Note: it is tempting to update the weights in the inner loop (step 4). However, we need the old
weights in the preceding layer (next iteration in step 4) to compute 6; .
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« Example: Face Detection
— Rowley, Baluja, Kanade [1998], Carnegie Mellon University

Input Image Pyramid Extracted Window Histogram Derctated Corrected Histogram Receptive Flelds

{idden Units

(20 by 20 pizels) Egualized Window Lighting Equalized

O

Hidden Angle
Input Units Charput
Preprocessing Detection Network Architecture
Router Network
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5.4.4 Multi-Layer Network
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5.4.5 Deep Learning

 The second wave died very quickly

vanishing and exploding
gradients and competition of support vector machine (SVM)

C -fig

» Let us first consider the vanishing gradient problem

aJ
a_wl=(t1_01)’01‘(1—01)‘W5‘h1‘(1—h1)‘x1+(t2_02)‘02‘(1_02)‘W7‘h1'(1_h1)'x1

/’-

———————
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— The derivative of sigmoid function ¢(s) = s
maximum value is

Ya

— On the other hand, if we scale the weights and input values beyond the typical [-1,1] range, the
gradients will explode as we a now multiply several numbers larger than 1

* Deep learning activation functions (ReLu),
improved architecture (convolution, pooling, inception modules, residual networks), and improved
regularization techniques (dropout, RelLu, L1, L2)
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* The rectified linear unit (ReLU)

@(s) = max(0,s)

closer to biological neurons

— The output is no longer in the range [0,1
softmax function

Let o, be the k-th output value

ek

10

\

L
=10

Dk = S eon ](9) = — z Vi log D J is defined as the cross-entropy
k€ loss function. @ contains alll
k parameters of the network, i.e.,
weights and biases.
aJ i
— = — that is
doy P = i simple!
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— The derivative of the ReLU can become 0

0.01-s

¢(s) = 5

s<0
s=0

(0.0

¢'() =17

To overcome vanishing and exploding gradient

s<0
s=>0

|

introduce a small slope
to keep the update alive

<Ieaky ReLU

improved

architecture
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b CO nVO|UtIOn input neurons
— Sofar layers were fully connected

[ 3334 hidden neuron

— In contrast, receptive 3885 ——y
fields extract features from spatial neighborhood Q—y—(//o
— Deep learning introduced convolutional layer

0;;(x) =¢ @"‘ z@ Xitk,j+1 )
Tl

weights wy ; and bias b are shared across the neurons

— In addition arbitrary number of filters withif ~ single convolution layer
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— As output can be N-dimensional, so can input be an M-dimensional
vector start with three channels

klm

0;jn(x) = ¢ (bn + z Wi L, mn 'xi+k,j+l,m>

For example assume a 5x5 convolution on three (M = 3) input channels want to
convolute to N = 20 output feature

20 biases and
5x5x3x20=1500 weights

256x256 input image with 3 channels output 5
256x256x20 arrays
_‘_-h“~—::::-—_‘:::::::::::::§~
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— The special case of @ 1x1 convolution to reduce the dimensionality
convolution with 20 output features

features 5x5x20x20=10'000 weights and 20 biases

20 input

 We first apply 1x1 convolution to generate 3 output features (from the 20 input features).
1x1x20x3=60 weights and 3 biases

 We feed 3 features into  5x5 convolution with 20 output
features 5x5x3x20=1"500 weights and 20 biases
* Overall 1’583 parameters compared to 10°020

2() |e/\/\/\{\/>ﬂ,é/1 — D g C‘)l/\LP,L’—%

— Strides
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« Convolution layers are often followed by Pooling Layers

hidden neurons (output from feature map)

— A pooling layer max-pooling units
2
2X2
max-pooling layer outputs maximum value of the 2x2 window.
stride of (2,2) reduces “feature

map” by 4 times

Oi,j,n(x) = TTZI%X Xi+k,j+ln

— Next to max pooling, other summarization functions are possible. Typical examples include
average pooling and L,-Norm pooling.

— In deep learning pooling layers
reduce spatial size of representation
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* Regularization is an important element in deep learning to prevent overfitting to the training data.
— As  discussed overfitting occurs if ~ model has too many ——

optimal |

parameters s

underfitting

— Overfitting is lack of generalization

« Almost perfect accuracy for the training set at the end of the learning
« Significant lower accuracy for the validation set at the end of the learning
« The gap between training accuracy and validation accuracy is growing over the learning time

Overfitting A Regularization

100% oo 100% oo
training set training set

gap is growing over time;
significant difference

validation set

¢ validation set

still a gap but validation accuracy much
closer following progress of training set

accuracy
accuracy

»

epochs / iterations

»

epochs / iterations
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— We have several options for regularization
» Adjust the network structure

« Expand the training set

» Adjust the cost function
for use of large weights

— A 2
Jreq(®) ={1®) + 5T Z w;

penalties for weights but not for biases

(t+1) _ nA )
wp = <1—m>'wi — 4,

Regularization adds weight decay factor (1 — ;7—1;1')

add a penalty

L2 regularization
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« The Dropout technique

—~—

— At each training step, nodes are dropped out with a probability of 1 —p
— Feed forward: if a node is dropped out, its output value is setto O
— Back propagation: if a node is dropped out, it does no longer propagate changes

— The final model for prediction uses all nodes but compensates their weights with (1 — p).
We can interpret the dropout technique as learning many different networks at the same time.

(b) After applying dropout.

(a) Standard Neural Net
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« Putting all together
_ Let MNIST input Inger hidden layer 1 hidden layer 2 hidden layer 3
database consists of 28x28 " A '
images depicting hand written digits (0, 1, 2, ..., 9)
— The conventional approach
fully connected hidden layers

T

PR T
T e
=

— The deep learning approach

deep
i learning
5x5 convolution produces
20 features with a ReLU activation
2x2 max-pooling
convolutional layer sigmoid 15 1 ouron
Iayer . 28 % 28 . 2t:>l<24>-<L2I4jr pooling layer m'?“‘%:‘ orﬁt:;::i')tr
2880 elements Al oxuzx2 QO O
fully connected to 100 neurons | S o
i 3 O O
—‘ | [~ C:“; O
I o |
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* The original black and white images from NIST

» The data set consists of 60’000 training items
and 10’000 test items

* The best method currently (a convolutional
network) has an error rate of 0.23%

» List of further datasets for machine learning

— https://en.wikipedia.org/wiki/List of dataset
s for machine learning research

HANDWRITING SAMPLE FORM

DATE CITY STATE ZIP
[5—5—9 9_] I/z',wwé'/fy P FFESE ]

This sampie of handwriting s being collected for use 1o testing computer recognmition of hand prnted numbers
and letters Please print the following characters in the boxes that appear bejow
D1234567%6 012345687 RY 0123456729

lcr23yserz9 | [ 07239056252 [ 3 vs2.57)
7 701 3752 %0753 960941

Lzr] |s7=2] [sorsz] [eerv~ |
158 4586 32123 R32656 82

[/59 [4s8¢| [32:22] [ 820557 | [&2]
T481 B0539 419219 67 904

[ vsr | | fos29| | «/82/9 | le7] |22¢]
81738 720658 5 390 5716

(728 [229es | |2 |3%2] |s2ve]
109334 40 625 4234 )2

lrorszy | [90] [ez5] [w2z¢] [#4222]

gyxlakpdsbtzirumwlgjenhocyw :
L9y Xda N AT b/ 2/ b F9IEn hoc |
ZXSBNGECMYWQTKFLUOHPIRVDJA
| ZXSBUCECHMYWR TKFLALOHPIEY pTA

Please print the following text in the box below:
We, the People of the United States, in order to form a more perfect Union, establish Justice, insure domestic

Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty L
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America

we, 7he Pecfte 0F tre Yy feq STetes, /s orderre
Forma more parfect Daor, establish Svstee,
msor e olome<sC TrangoliTy, Provide Fof The.
gommun Tefend<) promote +ne geneval Welfe,
and Seeuve tv<e BZ\essmas of pber+ty to our-
3elves and ooV Dogter\Ty  do ordawmn and
esTa tiign *hnie CopsSTITLUTION For Fre

Onivied 5‘:1\*!-9-_:-, of Hmer\{qk.
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* GoogleLeNet for image classification

— GoolgLeNet was the winner of the ILSVRC 2014 Classification Challenge
et

— A key ingredient inception modules

» The inception module applies different operators

» To control the complexity of the model, 1x1 convolutions (marked in yellow) are added to
reduce the number of features

Filter
concatenation

_—7

1x1 convolutions

3x3 convolutions

5x5 convolutions

1x1 convolutions

A

A

1x1 convolutions

1x1 convolutions

[)

3x3 max pooling

Previous layer
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* The full architecture of GoogleLeNet for

image classification

— Input: 224x224 RGB images

7712
3x3/2
3x3/1
3x3/2

convolution
max poo
convolution
max pool
inception (3a)
inception (3b)
max pool 3x3/2
inception (4a)
inception (4b)
inception (4c)
inception (4d)
inception (4e)
max pool 3x3/2
inception (5a)
inception (5b)
avg pool 7x7/1
dropout -40%

linear

softmax

112x112x64 2.7K

56x56x64
56x56x192
28%28x%192
28x28%256
28x28x480
14x14x480
14x14x512
14x14x512
14%14%x512
14x14x528
14x14x832
7x7%832
7x7%832
7x7%1024
1x1x1024
1x1x1024
1x1x1000
1x1x1000

112K

159K
380K

364K
437K
463K
580K
840K

1072K
1388K

1000K

34M

360M

128M
304M

73M
88M
100M
119M
170M

54M
71M

1M

1x1+1(5) [l 3x3+1(S) [l 5x5+1(5) [l 1x1+1(S)

[ Conv Conv. Conv.
1x1+1(S) |l 3x3+1(S) [l 5x5+1(S) [l 1x1+1(S)

[ C MaxPool

onv AveragePool
1x1+1(5) [l 1x1+1(5) [l 3x3+1(5)

5x5+3(V)

Conv

Conv
3x3+1(S) 5x5+1(S)

Conv Conv
1x1+1(S) M 1x1+1(S)

Conv

Conv
3x3+1(S) 5x5+1(S)

Conv [
1x1+1(S) | 1x1+1(S)

Conv Conv
3x3+1(S) 5x5+1(S)

v v
1x1+1(S) | 1x1+1(S)
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 Tensorflow
— Tensorflow was developed by the Google Brain team

— The term tensor stands for an arbitrary dimensional array holding the data values (often float32).
— Tensorflow has two elements

* Nodes are operators on input tensors and produce an output tensor

» Data edges combine nodes and connect outputs with inputs (" 560 Trainer

— The Python front-end provides a simple way of building these
graphs

— Another aspect of tensorflow is the distributed execution of the graph
and the support for CUDA (GPU based operations) and parallel
execution of operations.

— For more information see: www.tensorflow.orq
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« In this chapter, we only looked at deep learning for Neu’l‘,’gi’“ﬁ"“"g{’wlb ks
spatial data sets (images, videos). But there is a o " e o 79

great number of further architecture extensions to B Noisyiop o Percepron ®)  FesForwad () Rt Basi et (450
. . . Hidden Cell -

support, for instance, natural language processing, o | S8 R e

m e m O rl Z atl O n Of faCtS an d d ata, an d SO O n . . Spiking Hidden Cell Recurrent NeuraL Netwark (RNM) Long / Short Term Memary (LSTM)  Gated Recurrenl Umt (GRU)

. . . . . Output Cell
» The Asimov Institute published in 2016 a map @ etch gt

outlining the neural network zoo @ recuromca

. Memary Cell

http://www.asimovinstitute.org/neural-network-zoo/ P

" Kernel

h ,m}’m’

Auto Encoder (AE) Variational AE (VAE) Denaising AE (DAE) Sparse AE (SAE)

O Convelution or Pool

Markov Chain (MC) Hopfield Netwark (HN) Boltzmann Machine (BM)  Restricted BM (REM) Deep Belief Metwork (DBN)

[ele)

Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwark (DCIGN)

~ ™ P
\_O/o\.. X /O'\o - Pio g
™~ S ™~
Generative Adversarial Metwark (GAN) Liquid State Machine (LSM)  Extreme Learning Machine (ELM) Echo State Netwaork (ESN)
Q VaYaYyaY ‘
5 :lﬁﬂ‘ﬁ“ﬁﬂﬁﬂ
g AW »«v»«'; _
Deep Residual Network (DRMN) Kohonen Netwark (KN) - Support Vector Machine (SUM)  Meural Turing Machine (NTM)

m%%%
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