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6.1 Overview

• In the previous chapters, we have discussed various methods to extract features and to retrieve 

relevant documents. We have distinguished low-level features (close to signal information) and 

high-level features (close to perceptual and context related interpretation of the user). 

• The level system on the right side is valid for all 

media types including text, image, audio, and

video. We have seen so far:

– Low-level features for text with set-of-word 

and bag-of-word description

– Low-level features for images, audio files,

and videos with multi/high dimensional 

data summarizing perceptual aspect of the 

raw signal information like color moments, 

spectral bandwidth, or optical flow

– High-level features that extract terms,

assign class memberships, or cluster data

– Various methods to retrieve text related 

queries and method to use link information

to rank documents

• But we have not yet discussed how to

– Search for high-level features

– Search for multi/high dimensional features

– Search for documents/objects if several features (and objects) are given

6.1 Overview
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• High-level features are often straightforward:

– Classification methods assign a set of class memberships (with probabilities) to an object. These 

memberships can be used either as attributes (with predicates to search for) or as new terms 

which provide further annotations next to the descriptions being given

– Clustering assigns objects to groups (or several groups with probabilities). Cluster membership 

can be used to reduce the number of objects during retrieval (only look in the same cluster). In 

contrast to classification, the semantics of clusters are unknown (or may not even exist)

– Neural network can return predicate values (face? yes or no) or class memberships (one class or 

membership with probabilities). In both cases, we can transform the output into either an attribute 

value (with predicates to search for) or extract new terms (with probabilities interpreted as 

occurrences)

• In other words, we can map many of the high-level features back into a “term” domain and use any 

of the known (text) retrieval methods to search for relevant objects. A term like “cat” may match to 

the result of a neural network that can detect cats in images. A term like “jazz” can match the 

classification of a decision tree that categorizes music plays.

– For term based queries, this closes the semantic gap between the user and raw signal 

information. How would you otherwise define what “jazz” means in the time or frequency domain 

of an audio signal?

– If reference objects are used (e.g., ‘search for more like this’), the high-level features provide a 

set of keywords to look for. If several objects are given, occurrences of features work similar to 

term occurrences within queries for traditional retrieval models

• On the other side, if we map high-level features to attributes, queries define predicates on these 

attributes. For instance, hasFace captures whether a face is visible in an image or not. Any 

database provides capabilities to search for objects that fulfill several predicates on their attributes.

6.1 Overview
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• Things become more difficult, however, if low-level features are taken into account or if different 

feature types are combined. Examples:

– I want to find black horses

– I want a pop-song with even emphasis on bass and high pitches

– I look for videos with fast red cars

– I look for an action scene of my favorite actress

– I look for slow rock songs from my favorite band

• In the following, we provide methods to search through multi/high dimensional feature data and to 

combine different type of features to express a complex search. We mostly assume the presence of 

a reference object (or several objects) and search for similar objects. In the most complex case, this 

may include predicates on attributes and key-words for text based search

6.1 Overview
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6.2 High-dimensional Feature Search

• Many low-level features extract multi or high-dimensional feature vectors. In the following, we 

consider how to search for similar objects given only these low-level features.

• We already discussed the use of distance measures to define what similarity means. The figure 

below visualize this definition with different distance measures. Often the definition of the low-level 

feature includes the “right” distance measure to use. But we can select arbitrary measures that best 

match our information need.

6.2 High-dimensional Feature Search
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• Normalization

– Many low-level features compose different aspects (like moments, covariances) or are the 

combination of different low-level features (e.g. spectral bandwidth and spectral flux). In such 

cases, it is required to normalize the value ranges of each dimension to avoid that a single 

dimension (=aspect) dominates the similarity definition. Example:

• In dimension 𝑑1, all values are between 0 and 1. 

• In dimension 𝑑2, all values are between 100 and 200.

• If we do not normalize the two dimensions, then differences in 𝑑2 will always dominate the 

distance measure. It is like 𝑑1 (=other aspect) has no influence at all on what is similar.

– Gaussian normalization is a simple method to achieve satisfactory results. To this end, we need 

to compute the mean value and variance of values along each dimension. We do not require the 

“correct” values, hence, it is sufficient to sample a large enough data set and then keep the 

values constant. It is also not difficult to use incremental methods to adjust mean values and 

variances whenever the data set changes.

– The transformation from the original vector 𝒑𝑖 to its normalized version ෝ𝒑𝑖 is as follows:

with 𝜇𝑗 and 𝜎𝑗 being the mean value and variance in dimension j, respectively. As we do the 

same for the vector 𝒒 of the reference object and distances are based on differences in each 

dimension, the mean values drop out of the formula and the variances remain as scaling factor.

6.2 High-dimensional Feature Search

ෝ𝒑𝑖,𝑗 =
𝒑𝑖,𝑗 − 𝜇𝑗

𝜎𝑗

𝛿 𝒒, 𝒑𝑖 =෍

𝑗

𝑤𝑗 ∙ 𝑞𝑗 − 𝑝𝑖,𝑗 𝑤𝑗 =
1

𝜎𝑗
with



Page 6-7Multimedia Retrieval – 2019

– Alternatively, we can normalize with the differences of the extreme values for each dimension:

• Quadratic distance functions are expensive to calculate and, as we will see, difficult to build an index 

for them. 

– Note that the matrix A in the quadratic function must be positive semi-definite, i.e., 𝒙⊤𝐀𝒙 ≥ 0, to 

be considered as a useful distance measure. From linear algebra, we know that such matrices 

define a hyper ellipse and have real eigenvalues. Its eigenvectors define the main axis in the 

original space which then can be rotated and scaled to obtain a normalized space. Due to the 

properties of the Eigenvalue decomposition, the original quadratic function becomes a (squared) 

Euclidean distance measure.

– Hence, after extraction of the low-level features, a simple rotation and scaling yields normalized 

features. We only keep these feature vectors so that we can apply a more efficient comparison.

6.2 High-dimensional Feature Search
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• If we want to obtain similarity values from the distances, we need a so-called correspondence 

function ℎ. Let 𝜎(𝒒, 𝒑𝑖) denote a similarity function between query vector 𝒒 and a media vector 𝒑𝑖. 
The following properties must hold:

• 𝜎(𝒒, 𝒑𝑖) is in the range [0,1]

• 𝜎 𝒒, 𝒑𝑖 = 0 denotes total dissimilarity between query vector 𝒒 and a media vector 𝒑𝑖
• 𝜎 𝒒, 𝒑𝑖 = 1 denotes maximum similarity between query vector 𝒒 and a media vector 𝒑𝑖

– The correspondence function translates between distances and similarity values as follows

It must fulfil the following constraints

• ℎ 0 = 1

• ℎ ∞ = 0

• ℎ′ 𝑥 ≤ 0 (ℎ must be a decreasing function)

– The best method to build a correspondence function is to use the distance distribution 𝑝𝛿. We 

obtain the mapping by integrating the distribution function up to the given distance and subtract 

that value from 1. This guarantees that all constraints hold true:

6.2 High-dimensional Feature Search
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6.2.1 Nearest Neighbor Search Problem

• Searching for the most similar object translates to a search for the object with the smallest distance, 

the so-called nearest neighbor. We note the reversed relationship between similarity values and 

distances:

– large distances correspond to low similarity values

– small distances correspond to high similarity values

We can express similarity search as a nearest neighbor search:

• In the following, we consider a small number of index methods that were proposed to index multi-

and high-dimensional features and accelerate nearest neighbor search.

• We further discuss a generic algorithm that can find the nearest neighbor in optimal time and space 

given an index method and a distance measure.

6.2.1 Nearest Neighbor Search Problem

𝒑𝑖

𝒒

Nearest Neighbor Problem:

• Given a vector 𝒒 and a set ℙ of vectors 𝒑𝑖 and a 

distance function 𝛿 𝒒, 𝒑𝑖

• Find 𝒑𝑖 ∈ ℙ such that:

∀𝑗, 𝒑𝑗 ∈ ℙ: 𝛿 𝒒, 𝒑𝑖 ≤ 𝛿(𝒒, 𝒑𝑗)
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6.2.2 Quadtree

• Finkel and Bentley described the Quadtree in 1974. Their goal was to develop an index structure in 

main memory capable of storing and searching for 2-dimensional data points. As a consequence, 

they have not considered an external storage format. Later on, the 2-dimensional Quadtree was 

extended to more dimensions but did not succeed.

• Structure:

– The two dimensional space is divided with two orthogonal lines into four areas in the north-east 

(NE), north-west (NW), south-east (SE), and south-west (SW). The common edge of the four 

areas is the split point (intersection of the orthogonal lines). There were two method to define a 

split center: a) use a newly inserted data point to split the regions, or b) split the region in the 

center. The former had the advantage that the areas would naturally adapt to the distribution of 

the data points in the space. The latter was more easy to implement.

– With each newly inserted data point, the Quadtree splits the region into four areas. After inserting 

all data points, a hierarchical structure divides the space into ever smaller areas. The resulting 

tree is not necessarily balanced but finding points is greatly accelerated over a brute-force linear 

scan. It is possible to bulk load data points in such a way that a perfectly balanced Quadtree 

results.

6.2.2 Quadtree

NENW

SW SE
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NW NE SW SE
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6.2.3 K-d-tree

• Bentley then developed the k-d-tree in 1975 refining the original idea of the Quadtree to index higher 

dimensional spaces. Its extension, the k-d-B-tree was very popular given its additional balanced tree 

characteristics and its design for secondary memory.

• Structure:

– The k-d-tree is a binary tree structure. Each node holds a point that divides space into two parts 

along a selected dimension. Traversing the tree, the dimensions are alternated such that nodes 

with the same depth level in the tree always use the same dimension to split the space. 

– Newly inserted data points follow the unambiguous path to a leaf node. This leaf node is then 

split into two new sub-regions using the data point and the dimension at this depth level. As with 

the Quadtree, the k-d-tree usually leads to an unbalanced tree. Again, it is possible to bulk load 

data points in such a way that a perfectly balanced k-d-tree results.

– Variants: 

• Different splitting strategies were proposed (e.g., split in the middle, split at an arbitrary point)

• The k-d-B-tree was designed for secondary storage and improved insertion to obtain a 

balanced tree for the representation on secondary storage. 

6.2.3 K-d-tree
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6.2.4 Gridfile

• Nievergelt and Hinterberger (ETH Zurich) developed in 1981/84 the Gridfile, a structure that was 

later extended with space-filling curves and found its way into many relational database extension to 

capture geo-information. 

• Structure:

– The data space is divided by a gridlines along each dimension. The resulting cells are numbered 

and indexed in a directory. Each directory entry points to a disk page that holds the data points of 

the corresponding cell. To save storage, several cells can share the same disk page. If a cell 

contains more points that fit into a disk page, a new gridline is added and a local re-organization 

of the cells and the directory become necessary.

– Inserting and removal of data points is straightforward with the exception of over- and underflow 

of disk pages. Optimized bulk loading strategies can minimize the directory as well as the number 

of disk pages. 

– Note that the disk storage consumption does grow linearly with the number of data points while 

the directory grows super linearly (but not too fast). The grid acts like a quantization or hashing 

method for data points allowing the Gridfile to find data points with exactly one disk page load.

6.2.4 Gridfile

1 2 3
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6.2.5 Voronoi Diagram

• Given a set of points, a Voronoi diagram partitions the space in such a way that each region holds 

exactly the sub-space that is closest to the same given data point. In other words, each region 

represents the pre-computed results of all nearest neighbor searches in the space. 

• Structure: 

– Instead of storing the data points, we compute the Voronoi diagram and index the regions. To 

identify the nearest neighbor for a given query point, we identify the region it falls into and return 

the corresponding data points as its nearest neighbor. Voronoi diagrams can be computed for 

different distance metrics (not just Euclidean as in the picture below).

– There are two fundamental challenges: computing the Voronoi diagram (especially in higher 

dimensional spaces) and storing the cells in such a way that we can quickly identify the 

containing cell of a data point. Consider the example below: some regions have six and more 

lines that define their shape. Storage consumption is known to grow exponentially with the 

dimensionality of the data points. 

– To reduce storage costs, we can approximate a Voronoi cell with its minimal bounding rectangle. 

Instead of a single region, we may have to look at several regions to identify the closest point.

6.2.5 Voronoi Diagram

Voronoi Cell: all points in the cell 

are closest to blue center point
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6.2.6 R-tree and variants

• Guttman described the R-tree in 1984 as an index structure for 2-dimensional data points. It was 

designed as a balanced tree with all leaves at the same level. In later years, numerous extensions 

have further optimized the structure and adapted it for higher dimensions. 

• Structure:

– The R-tree consist of two node types: 

• The leaf nodes hold the data points at the bottom of the tree. They are described by minimal 

bounding regions (MBR). The original R-tree used rectangles but other forms are possible.

• The inner nodes hold a set of inner nodes or leaf nodes at higher levels of the tree. Again, a 

minimal bounding region encompasses the ones of all child nodes.

– Insertion of a point follows the typical algorithm for balanced trees: a path is identified from the 

root to a leaf node (point must be contained in MBRs of nodes along the path). The point is 

inserted into the leaf node and, if the node, overflows, it is split and the two new leaf nodes are 

added to the parent node. The split may propagate all the way up leading to a new root.

6.2.6 R-tree and variants

R-Tree
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– Splitting nodes:

• Leaf nodes are straight forward: the data points are divided along a dimensions into two parts 

(select the median value of points along this dimension). The split guarantees that the two new 

leaf nodes do not overlap.

– Splitting an inner node is more difficult: the children are now minimum bounding regions which 

we may not separate perfectly into two halves. In bad cases, the minimum bounding regions of 

the two new inner nodes overlap. 

6.2.6 R-tree and variants
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– Overlap is a problem: when searching for data points and if there is an overlap of regions, we 

have to follow several paths to find the point or ensure it does not exist. When inserting new 

points and if the data point falls into the overlap of regions, we must select a ‘best’ path. In bad 

cases, the overlap continues to grow (across leaf nodes) even if no new splitting occurs.

– R-tree Extensions: over the years, numerous extensions and optimizations for R-trees were 

published. Key aspects of optimizations include:

• Shapes of minimum bounding regions, i.e., rectangles, spheres, combinations of shapes

• Splitting: reduce overlaps of leaf nodes, re-insert points, rebuild tree

• Size of nodes: increase page size if split is not beneficial

• Metric Tree: no need for dimensional data but only requires a metric between objects

• Examples: R+-Tree (1987), R*-Tree (1990), P-Tree (1990), TV-Tree (1994), vp-Tree (1994), 

GiST (1995), X-Tree (1996), SS-Tree (1996), SS+-Tree (1997), SR-Tree (1997), 

M-Tree (1997), Pyramid-Tree (1998), DABS-Tree (2000), P-Sphere Tree (2000), 

…and many more

– So what is so difficult about high-dimensional spaces?

6.2.6 R-tree and variants

Which path to follow?
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6.2.7 Nearest Neighbor Search Algorithm

• Hjaltson and Samet described a generic, optimal search algorithm to find the nearest neighbor in 

hierarchical structures. Optimal means that the number of visited nodes is minimal to prove 

correctness of the found nearest neighbor (cannot be done with less visits) 

• The algorithm uses a priority queues for nodes and points. The priority corresponds to the distance 

of the query point to the data point or to the minimal bounding region. The queue is ordered by 

increasing distances. The algorithm works as follows for a given query object q

1. Initialization: the root node is added to the queue with the distance of its MBR to q

2. As long as the queue is not empty, fetch the top element of the queue → p

a) If p is a data object, then p is the nearest neighbor to q

b) If p is a leaf node, insert all contained data points with their distances to q

c) If p is an inner node, insert all its child nodes with their distances to q

• Note that the algorithm only requires a distance measure between objects and between an object 

and a node (e.g., the minimal distance of a point to a rectangle, if the node is represented by an 

MBR of the form of a rectangle).

• Proof of correctness: The priority queue is organized by increasing distances. Due to the 

construction of nodes with minimum bounding regions, the children (nodes, objects) of a node must 

have equal or larger distances to the query object than their parent node. If a data object is at the 

top of the queue, then all nodes not yet visited must have a larger distance to the query object and 

recursively all their (grand-) children nodes and objects must lie farther away then the object at the 

top of the queue.

6.2.7 Nearest Neighbor Search Algorithm
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• Proof of optimality: assume we know the nearest neighbor to the query object q:

– The circle around q through this nearest neighbor is the so-called

Nearest Neighbor Sphere (NN-Sphere). 

– To proof correctness, all nodes that intersect with the sphere (i.e., 

lie closer to q than the nearest neighbor) must be considered by

an algorithm as they may include a better answer. In the example

on the right, the red rectangle must be considered but the blue circle

is not needed to proof correctness. This set of nodes is also the 

minimal set of nodes that need to be checked.

– The algorithm visits nodes in increasing order of their distance to q. If finally an object is at the 

top of the queue, this is the nearest neighbor. Only nodes with a smaller distance to q than the 

nearest neighbor were visited. Nodes with larger distances may be in the queue but not visited 

(they were added by their parent node). 

• The algorithm works for any hierarchical structure and visits only (leaf) nodes that are required to 

prove correctness of the result. It is a generic implementation that only requires a distance 

measures but does not make any assumption about the internal structure except for hierarchy and 

that nodes encompass all their (grand-) children (which means that minimal distance to a node is 

smaller or equal to the minimal distance of any its child nodes and objects)

• Overlap of leaf nodes (as discussed in the R-tree) lead to a larger number of visited nodes in 

general. This is because query objects that lie in the overlap area of leaf nodes must always visit all 

these leaf nodes. 

6.2.7 Nearest Neighbor Search Algorithm

Nearest 

neighbor to q

qNN-sphere
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6.3 Curse of High Dimensionality

• While the methods for indexing multi-dimensional spaces work reasonably well for 2 to 5 

dimensional spaces, it was observed that they quickly degrade as dimensionality increases. One of 

the common mistake made was the assumption that high-dimensional spaces just behave the same 

as low-dimensional space. However, our minds have difficulties to ‘imagine’ how a high-dimensional 

space behaves. 

• In the following, we discuss the curse of high dimensionality. We want to understand why it is much 

more difficult to index high-dimensional spaces. We first consider a few peculiarities of high-

dimensional spaces and then develop of mathematical understanding of what happens if we search 

for nearest neighbors in higher dimensions.

• Assumptions: To simplify the mathematical considerations, we assume a closed data space of the 

shape of a hyper cube Ω = 0,1 𝑑. We further assume independent dimensions and uniform 

distributions along the dimensions (otherwise eliminate them with dimensionality reduction)

• Observation: Given Ω = 0,1 𝑑, the probability that a data point lies inside a subspace is given by 

the volume of that subspace. The total volume of the space is 1 regardless of dimensionality.

6.3 Curse of High Dimensionality
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6.3.1 Peculiarity 1: Bad intuition for high-dimensional spaces

• Given

– data space: Ω = 0,1 𝑑

– center of Ω: 𝒄 = 0.5,… , 0.5
– a point 𝒑 = 0.5, … , 0.5
– circle around 𝒑 with radius 0.7

• In a 2-dimensional space (see figure), the circle 

covers most of the data space. It also follows that 

the center c of the data space lies inside this 

circle. In other words, circles with a radius of 0.7

are large and cover most of the data space Ω if 

their center lies within Ω.

• In higher dimensions, this is not the case:

– Distance between 𝒑 and 𝒄 is 𝛿 = 0.2 𝑑
– With 𝑑 > 12, the distance is 𝛿 > 0.7 and the 

center 𝒄 is no longer inside the circle

In very high-dimensional spaces, the circle still 

touches all sides opposite of 𝒑 but it barely 

covers any space (volume goes to 0 with growing 

d)

Ω = 0,1 𝑑

𝒑

0.7
𝒄
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6.3.2 Peculiarity 2: Partitioning does not make sense

• Given

– data space: Ω = 0,1 𝑑

– a limited number N of data points, e.g.,  𝑁 = 109

• In a 2-dimensional space, we can partition the data space by continuously splitting it along each axis 

into two halves (see gridfile, k-d-tree). The number of partitions doubles with each split, and we 

obtain 22 = 4 partitions if all axes are split once.

• In higher dimensions, we still can split the data space into halves along an axis, but we can no 

longer split along each axis as the number of partitions grows exponentially with dimensionality. 

Consider the following table. Let 𝑑 be the number of dimensions, 𝑁 be the number of data points 

(e.g., 𝑁 = 109). Then the number of cells 𝑀 grows exponentially; if we split each dimension exactly 

once, then 𝑀 = 2^𝑑. Finally, 𝑚 = 𝑁/𝑀 is the expected number of points per cell.

• In higher dimensions, most of the cells are empty as the number of cells by far exceed the number 

of data points. The volumes of the cells becomes so small that it is even not likely that two points 

share the same cell (unless they are features from two extremely similar objects).

dimensionality [d] # cells [𝑀 = 2^𝑑] # points [𝑁] # points per cell [𝑚 = 𝑁/𝑀]

10 210 = 1024 109 976′563

50 250 = 1.12 ⋅ 1015 109 8.9 ⋅ 10−7

100 2100 = 1.27 ⋅ 1030 109 7.9 ⋅ 10−22
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6.3.3 Peculiarity 3: Where are all the data points?

• Given

– data space: Ω = 0,1 𝑑

– A hyper cube with side length 𝑠 = 0.95

• Consider the right hand figure: Where are the data 

points more likely to be found? In the blue hyper cube

with side length 𝑠 = 0.95 or in the red area of Ω that is

not covered by the hyper cube?

• In a 2-dimensional space, it is obvious that most points

must fall into the blue area. Its volume is 𝑠2 = 0.90 and

thus 90% of the points are contained by the blue area.

• In a high dimensional space, most of the points lie

in the read area! The volume of the blue hyper cube is 𝑠𝑑

and with 𝑠 = 0.95 this volume is shrinking exponentially to 0 as dimensionality grows:

– with 𝑑 = 10, still 60% of the points lie in the blue hyper cube and 40% are in the red area

– with 𝑑 = 50, only 8% of the points lie in the blue hyper cube and 92% are in the red area

– with 𝑑 = 100, only 1% of the points lie in the blue hyper cube and 99% are in the red area

• In other words, in higher dimensions, data points lie close to the edge of the data space. In at least 

one dimension, the value is either very close to 0 or very close to 1.

s

Ω = 0,1 𝑑

s
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6.3.4 Peculiarity 4: The nearest neighbor is far away

• Given

– data space: Ω = 0,1 𝑑

– a limited number N of data points, 

e.g.,  𝑁 = 109

– center of Ω: 𝒄 = 0.5,… , 0.5

– circle around 𝒄 with radius 0.5

• In a 2-dimensional space, we expect that

the nearest neighbor is close to the query

point (i.e., distances are small). The circle

around 𝒄 would surely contain the NN of 𝒄.

• This is no longer true for high dimensional space! 

The volume of the d-dimensional sphere shrinks 

towards 0 with increasing d. 

– With d = 10, the volume is 0.002, i.e., 0.2% of the are inside the sphere

– With d = 100, the volume is only 1.9*10-70, i.e., next to 𝒄 with minimal probability no other point lies 

within the sphere. 

In higher dimensions, the circle around 𝒄 must be much larger to contain the nearest neighbor. In 

other words, the distance between 𝒄 and its NN have to be larger than 0.5.

• So, how far away is the nearest neighbor in higher dimensional spaces?

c

0.5

Ω = 0,1 𝑑
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6.3.5 Cost Model for NN-Search

• In the following, we estimate the costs for NN-searches in hierarchical structures. To this end, we 

first have to determine the expected distance between query point and its nearest neighbor. Then 

we estimate how many leaf nodes, on average, are retrieved during the search. 

– Since we are using the optimal NN- search algorithm, we can easily determine the leaf nodes to 

be read: all the nodes that intersect with the NN-sphere around the query point.

• Expected NN-distance

– The expected NN-distance is given as the average distance between a query point and its 

nearest neighbor

– Basic idea:

• For a given point in the data space and a radius r, determine the probability that the NN lies 

within the sphere around the point with radius r

• With these probabilities, compute the expected value for r to obtain the expected NN-distance 

for the given point

• Compute the mean expected NN-distance over all data points in the data space

6.3.5 Cost Model for NN-Search
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– The expected NN-distance depends on the metric and the dimensionality of the space. The 

graphs below show the NN-distance for the metrics L1 , L2 und L

6.3.5 Cost Model for NN-Search
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• Number of leaf nodes to visit (simple consideration):

– Assume the tree uses rectangular MBRs. During splits, 𝑑′ < 𝑑 axes were split. Further we 

assume that we always split in the middle. Hence, the MBRs of leaf nodes have the shape 

depicted in the figure below. 

– Let 𝑙𝑚𝑎𝑥 be the maximum distance between a point in the space and a leaf node. Given the 

shape of the MBR, the distance is given by: 𝑙𝑚𝑎𝑥 = 0.5 ⋅ 𝑑′

– If we compare this distance with the expected distance, we obtain the following surprising 

results (see table): 

• with 𝑑 = 40, 𝑙𝑚𝑎𝑥 is about the expected NN-distance, with 𝑑 = 100, 𝑙𝑚𝑎𝑥 is much smaller 

than the expected NN-distance. This is because of the limited number of splits we can 

perform (ensuring we have non-empty leaves)

• with 𝑙𝑚𝑎𝑥 < NN − dist, each query points lies closer to 

all leaf nodes than to its NN. Hence, the MBR of each 

leaf intersects with the NN-sphere

• thus, an optimal NN-search must visit all leaves to find 

the nearest neighbor to any point in the data space

– Why do we use a hierarchical structure if we need to 

read all data anyway?

6.3.5 Cost Model for NN-Search

leaf node

𝑙𝑚𝑎𝑥

Ω = 0,1 𝑑

d N d’ 𝑙𝑚𝑎𝑥 NN − dist

40 106 14 1.87 1.80

100 106 15 1.94 3.00
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• Simple cost model – when is it better to use brute-force NN-search

– With spinning disks, access to leaf nodes results in a random access pattern on the disk which 

is much slower than a sequential read pattern. To be efficient, we do not want to read more 

than 10% of the leaf nodes; otherwise, a sequential scan through all data is faster. With SSD, 

the threshold can be higher (no penalty on random access). Still, to be faster (and justify the 

use of a complex structure), we want to read significantly smaller amounts of leaf nodes. 

– The figure on the right shows the percentage of leaf nodes that are required to determine the 

nearest neighbor. The graphs “d’=10” and “d’=18” show the percentage of leaf nodes for 

rectangular MBRs with splitting 10 and 18 dimensions, respectively. The graph “conservative” 

is an optimized structure with leaf nodes that contain only two points (which are nearest 

neighbor to each other). Such a structure 

has the minimal size for MBR, yet it still 

degenerates with dimensions above 100

– To be fast, the percentage of leaf 

nodes to be read should be well below 

10%. This limits hierarchical methods to

less than about 10 dimensions.

– Note that real data often has correlations 

between dimensions. In such cases, the 

limits apply to the “true” dimensionality of 

the underlying data. As a result, it is 

possible that hierarchical methods work in 

higher dimensions. But in such cases, it 

would be better to apply a dimensionality 

reduction to eliminate correlations.

6.3.5 Cost Model for NN-Search
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6.3.6 The Vector Approximation File (VA-File)

• The Vector Approximation File (VA-File) was developed in 1997 at ETH Zurich. Its aim was to 

accelerate the sequential scan through the data set through quantization. Typical speed-ups of 

factor 4-8 over a brute-force method made it the fastest NN-search algorithm.

• The VA-File reverses the curse of high dimensionality to benefit from it. At its core and as shown 

with the figure below, it quantizes the vectors with lower precisions (e.g., using 4-8 bits instead of 

32/64 bits per dimension). The quantization error is rather small:

– Consider a high dimensional space (d>50) and a data space with values in Ω = 0,1 𝑑

– If we use 8 bits per dimension, values are 

quantized to the closest 1/256 steps leading 

to an average error of 1/512

– Quantization error is rather small: the volume 

of the area with the same quantized 

representation shrinks with (1/256)𝑑 and 

thus quickly to zero as dimensionality 𝑑
grows. With other words: the area becomes 

so small that quantization is unlikely to map 

two points to the same representation.

– Distance errors are proportional to the 

quantization error and grow at the same 

rate with dimensionality as the expected 

NN-distance. 

6.3.6 The Vector Approximation File (VA-File)

00 111001

data space

approximations

1          0.6  0.8

2          0.0  1.0

3          1.0  0.0

4          0.3  0.4

5          0.5  0.1

6          0.3  0.6

vectors

p5

p4

p6

p2

p1

p3

10 11

00 11

11 00

01 01

10 00

01 10

x

y

00

01

10

11
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• The VA-File can operate in two modes

– Use only approximations to produce "a good enough" answer for the nearest neighbor search. 

Error rates are small and if used on real features it cannot be noticed due to the fuzzy definition 

of similarity. Note that features themselves are an approximation of the signal information and 

are sensitive to small changes (e.g., illumination, sampling rate). So we have no “absolute” true 

position of an object in the features space but more a region to which the object is mapped

– Produce correct results with a 2-phase filtering approach.

Phase 1:

Phase 2:

• The key benefit of the VA-File is to reduce the amount of data to be read. Given the quantization 

scheme, it is possible to accelerate distance computations with precomputed (squared) differences 

along all dimensions for a current query point. This provides a significant acceleration for in-memory 

search (no multiplications for Euclidean distances required, only additions)

• Given the sequential structure, it is also much simpler to evaluate complex queries over several 

features if the feature files are sorted in the same way.

6.3.6 The Vector Approximation File (VA-File)

• 𝑙𝑏𝑛𝑑𝑖 ≤ 𝛿𝑖 ≤ 𝑢𝑏𝑛𝑑𝑖 defines the bounds for a distance between a query point (query is not quantized) 

and the rectangular region spanned by the quantized approximation of 𝑝𝑖
• If 𝑙𝑏𝑛𝑑𝑗 > 𝑢𝑏𝑛𝑑𝑖, it follows that 𝛿𝑗 ≥ 𝑙𝑏𝑛𝑑𝑗 > 𝑢𝑏𝑛𝑑𝑖 ≥ 𝛿𝑖 and thus 𝛿𝑗 > 𝛿𝑖 and data point 𝑝𝑗 cannot be 

the nearest neighbor as data point 𝑝𝑖 must lie closer to the query point

• The above filtering is very effective due to the small ranges [𝑙𝑏𝑛𝑑𝑖 , 𝑢𝑏𝑛𝑑𝑖]. Typical results are that 99% 

of points can be excluded just with this filtering step

• To identify the correct NN, we compute true distances between the query point and the candidates left 

from Phase 1. We do this in increasing order of their lower bounds, i.e., the point with the smallest 

lower bound is the most likely candidate to be the nearest neighbor

• We can stop as soon as we have found a true distance 𝛿𝑖 such that for all remaining lower bounds 

𝑙𝑏𝑛𝑑𝑗 it holds: 𝛿𝑖 < 𝑙𝑏𝑛𝑑𝑗 ≤ 𝛿𝑗
• This filtering step is effective and only 0.001% of the points are considered for distance computation
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6.4 Complex Similarity Search

• In the following, we consider three extensions to the similarity search

– queries with multiple reference objects

– queries using different features (e.g., text and color)

– queries using features and predicates (e.g., large image)

• Example queries:

– All audio files similar to song B and song C

– All images that are similar to image A according to color and shape

– All images similar to image D that contain the terms „dolphin“ and „wale“

– All video clips similar to clip E which are for free (price=0) and contain a „car“

• We first discuss the evaluation schemes to compute a score given a complex queries. Then, we 

look into methods that help to evaluate such queries. While multi-reference queries are 

straightforward, multi-features and predicate search require additional methods.

6.4 Complex Similarity Search
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6.4.1 Multi-reference Queries

• A multi-reference query takes two or more 

reference objects for the search. Let 𝒒1, … , 𝒒𝐾
be the features of the 𝐾 reference objects

• Note: we consider only a single feature

• The right hand diagram shows the evaluation 

scheme from the top (feature vectors) to the 

bottom (score) for the i-th object with feature 

representation 𝒑𝑖
– The top part (blue boxes) evaluates a 

distance between the features 𝒑𝑖 of the i-th

object and 𝒒𝑘 of each reference object. We 

use the distance measure 𝐿 as defined for 

the feature.

– The bottom part combines distances with a 

distance combination function 𝐷 and 

applies a correspondence function ℎ to map 

distance to scores. Examples for distance 

combining functions are:

• 𝐷𝑎𝑛𝑑: 𝛿 𝒑𝑖 = max
𝑘

𝐿(𝒑𝑖 , 𝒒𝑘)

• 𝐷𝑜𝑟 ∶ 𝛿 𝒑𝑖 = min
𝑘

𝐿(𝒑𝑖 , 𝒒𝑘)

• 𝐷𝑎𝑣𝑔: 𝛿 𝒑𝑖 =
1

𝐾
σ𝑘 𝐿(𝒑𝑖 , 𝒒𝑘)

6.4.1 Multi-reference Queries

𝑞1,1 𝑞1,𝑑 𝑞𝐾,1 𝑞𝐾,𝑑

𝑝𝑖,1 𝑝𝑖,𝑑 𝑝𝑖,1 𝑝𝑖,𝑑

- - - -

𝐿 𝐿

𝐷

𝒉

[0,1]

... ...

... ...

...

reference object 1 reference object K
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• Interpretation: assume we have two reference objects in a 

2-dimensional feature space:

– Each reference object spans a neighborhood in the 

feature space that contain similar objects

– Depending on the query semantics, the neighborhoods 

are merged in different ways:

• AND-semantics: all reference objects must be matched 

as good as possible, i.e., the maximum distance to a 

reference object must be as small as possible. This 

corresponds to the intersection of the neighborhoods 

around the reference objects

• OR-semantics: object must be close to at least one 

reference object, i.e., the minimum distance to a 

reference object must be as small as possible. This 

corresponds to the union of the neighborhoods around 

the reference objects

• AVERAGE-semantics: all reference objects matters 

and we need a good compromise, i.e., the sum of 

distances to reference objects must be as small as 

possible. This corresponds to an elliptical area with the 

two reference objects being its focal points

– Other semantics and definitions for a distance combining 

function are possible

dim 1

dim 2

𝐷𝑎𝑛𝑑

dim 1

dim 2

𝐷𝑜𝑟

dim 1

dim 2

𝐷𝑎𝑣𝑔
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• Evaluation: Ciaccia (1998) demonstrated how to evaluate queries with several reference objects

– In order to be applicable, the distance combining function must be monotonic

This is not a hard constraint but rather natural: if the distance 𝑥 and 𝑦 are larger than their 

counterparts 𝑥′ and 𝑦′, then the combined distance for 𝑥 and 𝑦 also must be larger than the one 

of 𝑥′ and 𝑦′. All the functions we considered before fulfill this constraint.

– The evaluation of multi-reference objects is an extension of the underlying search algorithm (e.g., 

the optimal NN-search algorithm or the brute-force scanning with the VA-File): whenever a 

distance between query and data point, a lower/upper bound on such a distance, or distances to 

minimum bounding regions is required, then replace that function with

• compute distances/bounds to each reference object 

• combining the distances/bounds with the distance combining function

• continue this value in the algorithm

– In other words, only the function to compute distances changes but the algorithm stays the same. 

It is straightforward to write such a generic NN-search algorithm for all the methods we 

considered so far. 

– The proof of correctness is straightforward based on the constraint above. Monotonicity ensures 

that, for instance, bounds are still under/over estimating real distances and that the stop criteria 

in the NN-search of Hjaltson an Samet still holds true.

– Experience shows that the number of reference objects does have a small impact (next to 

additional computational efforts for distances) on search performance: the more reference 

objects we select, the more data points/leaves need to be visited to find the nearest neighbor

6.4.1 Multi-reference Queries

𝑥 > 𝑥′ and 𝑦 > 𝑦′: 𝐷 𝑥, 𝑦 > 𝐷(𝑥′, 𝑦′)
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6.4.2 Multi-feature Queries

• A multi-feature query asses similarity values 

with two or more features. Let 𝒒(1), … , 𝒒(𝑀) be 

the 𝑀 features of the reference object

• The right hand diagram shows the evaluation 

scheme from the top (feature vectors) to the 

bottom (score) for the i-th object with feature 

representations 𝒑𝑖
(1)
, … , 𝒑𝑖

(𝑀)

– The top part (blue boxes) evaluates a 

distance between 𝒑𝑖
(𝑗)

and 𝒒(𝑗) for each of 

the feature. We use the distance measure 

𝐿(𝑗) as defined for the feature 𝑗.

– The bottom part combines normalized 

distances (^-function) with a distance 

combination function 𝐷 and applies a 

correspondence function ℎ to map distance 

to scores. Examples for distance combining 

functions are:

• 𝐷𝑎𝑛𝑑: 𝛿 𝒑𝑖 = max
𝑗

෢𝐿(𝑗)(𝒑𝑖
(𝑗)
, 𝒒(𝑗))

• 𝐷𝑜𝑟 ∶ 𝛿 𝒑𝑖 = min
𝑗

෢𝐿(𝑗)(𝒑𝑖
(𝑗)
, 𝒒(𝑗))

• 𝐷𝑎𝑣𝑔: 𝛿 𝒑𝑖 =
1

𝑀
σ𝑗

෢𝐿(𝑗)(𝒑𝑖
(𝑗)
, 𝒒(𝑗))

6.4.2 Multi-feature Queries

𝑞1
(1) 𝑞𝑑1

(1)
𝑞1
(𝑀) 𝑞𝑑𝑀

(𝑀)

𝑝𝑖,1
(1)

𝑝𝑖,𝑑1
(1)

𝑝𝑖,1
(𝑀)

𝑝𝑖,𝑑𝑀
(𝑀)

- - - -

𝐿(1) 𝐿(𝑀)

𝐷

𝒉

[0,1]

... ...

... ...

...

feature 1 feature 𝑀

^ ^
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• Interpretation: assume we have two features

– Each feature has its own space and may have different 

dimensionality. Unlike with multi-reference queries, we 

cannot visualize the combined space. Instead, the diagrams 

on the right show the data objects in a two dimensional 

diagram with each dimension corresponding to the distance 

between data objects and query object along a feature

– Depending on query semantics, the shown areas contain the 

best matches:

• AND-semantics: distances for both features must be small, 

i.e., the maximum distance over features must be as small 

as possible. This is the area close to the left lower corner

• OR-semantics: distances for at least one feature must be 

small, i.e., the minimum distance over features must be as 

small as possible. This corresponds to union of the areas 

that lie close to an axis.

• AVERAGE-semantics: distances of both features matter 

and contribute to the result, i.e., the sum of distances for 

the features must be as small as possible. This is the 

triangle shaped area in the left lower corner.

– Other semantics and definitions for a distance combining 

function are possible

feature 1

feature 2

𝐷𝑎𝑛𝑑

feature 1

feature 2

𝐷𝑜𝑟

feature 1

feature 2

𝐷𝑎𝑣𝑔
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• Evaluation:

– Before we can apply a distance combining function, we need to normalize the distances:

• Note that this was not necessary with multi-reference queries as the sub-queries compute 

distance in the same space and hence already yield comparable distances

• With multi-feature queries and if the features come from different spaces, distances can vary 

greatly from feature to feature. If we do not apply a normalization function, a distance 

combining function like 𝐷𝑜𝑟 is likely to prefer one feature over others, if that one feature yields 

smaller distances.

• Normalization includes Gaussian normalization (estimate mean and standard variance through 

sampling per feature) or a min-max normalization. Other normalization schemes that make 

distances comparable are feasible as well 

– For index structures with sequential organization, we can order data points in each feature file in 

the same order. As we scan through all feature files in parallel, we can apply the same method 

as discussed for multi-reference queries

– If at least one feature is not organized sequentially, we need to somehow combine the results of 

sub-queries over a single feature. Consider the search for text with an inverted file and the 

search for color with an R-tree.

• OR-semantics: if distances are made comparable, first compute all queries for each feature 

and then take the object with the smallest distance for any of the features

• This approach is not possible for AND-semantics and AVERAGE-semantics. In such cases, we 

need to scan through the results of all sub-queries until we find a data objects for which we can 

prove that it is better than all other objects. Fagin has defined in 1996 a generic algorithm that 

can handle queries with arbitrary distance combining functions as long as monotonicity applies.

6.4.2 Multi-feature Queries
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• Fagin (1996): given a monotonic distance combining function 𝐷 fulfilling

– The algorithm operates in three phases:

• 1st Phase (sorted access): each sub-query produces a stream of data objects ordered by 

increasing distances. We read from each stream a number of elements and all the objects 

retrieved form the set 𝔸. Let 𝕃 be the set of objects that was returned for all sub-queries. As 

soon as 𝕃 is non-empty, the first phase ends (for k-NN search we stop if 𝕃 contains k objects).

• 2nd Phase (random access): Determine for each object in 𝔸 the remaining unknown 

distances for all sub-queries

• 3rd Phase (computation): Compute overall distances with the distance combining function 𝐷
for all objects in 𝔸 and return the object with the smallest overall distance

6.4.2 Multi-feature Queries

𝑥 > 𝑥′ and 𝑦 > 𝑦′: 𝐷 𝑥, 𝑦 > 𝐷(𝑥′, 𝑦′)

color shape texture

a, 0.4 a, 0.6 d, 0.1

b, 0.5 d, 0.7 b, 0.2

c, 0.7 b, 0.8 e, 0.7

d, 0.9 z, 0.9 z, 0.8

... ... ...

1st Phase: read the first three

entries of each stream; b was

returned by all streams

𝕃 = {𝑏},  𝔸 = {𝑎, 𝑏, 𝑐, 𝑑, 𝑒}

2nd Phase: determine missing 

distances of objects in 𝔸.

3rd Phase: compute overall distances

and determine the best object from 𝔸.
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– Proof of correctness: as soon as we have found an object 𝑜 in the result stream for all sub-

queries (𝕃 = {𝑜}), we have a first overall distance using the distance combining function. 

• For objects in 𝔸, we do not know yet in Phase 1 whether they are better or worse than the 

object in 𝕃; hence, we compute all remaining distances for objects in 𝔸 and return the best

• For all objects not in 𝔸, we know that their distances must be larger for all features than for the 

object 𝑜. Due to the monotonicity constraint for distance combining function, we also know that 

their overall distance must be larger than the one of 𝑜. Hence, we can safely exclude them 

from further calculations.

• QuickCombine from Güntzer (2000) is an extension of Fagin’s algorithm which reduces the number 

of computations in the 2nd and 3rd phase.

– For objects in 𝔸 (and not in 𝕃), we need to evaluate all missing distances and apply the distance 

combining function. Assume a ∈ 𝔸 has no distance for feature 𝑗. Instead of computing the real 

distance, we can first use the largest distance for feature 𝑗 as seen in its stream. This is a lower 

bound on the real distance for feature 𝑗 (a follows later in the stream and must have a larger 

distance as the stream is ordered by increasing distances).

– Applying the monotonicity constraint for distance combining function, we can compute a lower 

bound on the real overall distance. If this distance is larger then the currently best overall 

distance, we can dismiss the object a. If the distance is smaller, then a remains a candidate and 

we need to compute real distances for each feature

– QuickCombine further optimizes the order to read from the streams to increase the pruning of 

candidates in phase 2 and 3. Evaluations have shown a speed-up of a factor of 100

• The algorithms work sufficiently well under “good” conditions. It is, however, possible to construct 

examples where large fractions of objects are in 𝔸 with little options to prune. The algorithm 

performs sub-linearly in the number of objects, but easily can take several minutes to compute.

6.4.2 Multi-feature Queries
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6.4.3 Queries with Predicates

• Queries with predicates filter the results and let only objects pass 

through that fulfill the predicate. In other words, if the predicate 

evaluates to false, the score is set 0, otherwise the score is 

passed on as is

• There are two evaluation schemes depending on how selective the 

predicate is

– If the majority of the objects passes the predicate test, the best 

approach is to evaluate predicates as a last step (see right 

upper image). The scores are adjusted based on the outcome 

of the predicate test. Since the predicate is not selective, we 

may have to go through a few objects only to find the best 

match that fulfills the predicate

– If a minority of the objects passes the predicate test, we better 

first evaluate the set of objects that fulfill the predicate (e.g., 

SQL query against the meta data of objects). Then we compute 

similarity scores for each of these objects. Since the predicate 

is not selective, applying the test at the end is not effective as 

we have to produce hundreds (or even thousands) of results 

before a first object fulfills the predicate

• We can also consider Boolean retrieval over terms as a special 

form of a predicate

6.4.3 Queries with Predicates
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6.4.4 Weighting Features and Reference Objects

• When composing a complex query, we want to weigh individual features and reference objects 

differently. However, weighting is only straightforward with average distance combining function but 

not with maximum/minimum:

– Consider two features with normalized distances with a mean value of 10 and a standard 

deviation of 1. That is, almost all distances lie between 6 and 14. 

– Let us now weigh feature 1 with 0.8 and feature 2 with 0.2. Distances of feature 1 now range 

between 4.8 (6*0.8) and 11.2 (14*0.8), while distances of feature 2 range between 1.2 (6*0.2) 

and 2.8 (14*0.2). What happens if we apply the maximum and minimum function?

– If we apply AND-semantics (maximum), feature 2 dominates the results. Since its distances are 

mostly above 4.8 and distances for feature 1 seldom exceed 2.8, the score is in almost all cases 

derived only from feature 2. It is as if feature 1 is not taken into account at all. However, our 

weighting does prefer feature 1 but not to such an extend

– If we apply OR-semantics (minimum), feature 1 dominates the results. This is because distances 

for feature 1 are rarely below 4.8 while the distance for feature 1 are mostly below 2.8. In this 

case, feature 2 does not contribute much to the result, contrary to our intention to give it more 

weight than feature 1.

• From these observations, we conclude that, in general, the weighted distance combining function 

𝐷𝒘(𝑥1, … , 𝑥𝐾) with weights 𝒘 cannot be simply derived from its unweighted form with weighted input 

distances:

6.4.4 Weighting Features and Reference Objects

𝐷𝒘(𝑥1, … , 𝑥𝐾) ≠ 𝐷(𝑥1 ⋅ 𝑤1, … , 𝑥𝐾 ⋅ 𝑤𝐾)
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• Fagin (1997) described a generic way how to solve the dilemma; his approach works for any 

distance combining function that fulfills the monotonicity constraint.

– Fagin postulated that the weighted combining function 𝐷𝒘(𝑥1, … , 𝑥𝐾) must fulfill the monotonicity 

constraint and, in addition, must be steady if distances or weights change (no “jumps”)

– Without loss of generality, distances are ordered by increasing value of their weights. 

Furthermore, we add a sentinel weight 𝑤𝐾+1 = 0 to simplify the formula.

– Fagin was showing that the only weighted distance combining function that fulfills the above 

criteria is given as follows:

Written out

– Let us now apply it to our example from before with weights 𝒘 = [0.8, 0.2]

• AND: 𝐷𝑚𝑎𝑥
𝒘 𝑥1, 𝑥2 = 0.8 − 0.2 ⋅ max 𝑥1 + 2 ⋅ 0.2 ⋅ max 𝑥1, 𝑥2 = 0.6 ⋅ 𝑥1 + 0.4 ⋅ max 𝑥1, 𝑥2

• OR: 𝐷𝑚𝑖𝑛
𝒘 𝑥1, 𝑥2 = 0.8 − 0.2 ⋅ min 𝑥1 + 2 ⋅ 0.2 ⋅ min 𝑥1, 𝑥2 = 0.6 ⋅ 𝑥1 + 0.4 ⋅ min 𝑥1, 𝑥2

• AVG: 𝐷𝑎𝑣𝑔
𝒘 𝑥1, 𝑥2 = 0.8 − 0.2 ⋅ 𝑥1 + 2 ⋅ 0.2 ⋅

𝑥1+𝑥2

2
= 0.8 ⋅ 𝑥1 + 0.2 ⋅ 𝑥2

– As we see, in all forms 𝑥1 and 𝑥2 can contribute to the overall result. With OR/AND semantics, 𝑥1
is always taken into account, while 𝑥2 only contributes if it is smaller/larger than 𝑥1.

6.4.4 Weighting Features and Reference Objects

𝐷𝒘 𝑥1, … , 𝑥𝐾 =෍

𝑖=1

𝐾

𝑖 ⋅ 𝑤𝑖 − 𝑤𝑖+1 ⋅ 𝐷 𝑥1, … , 𝑥𝑖

𝐷𝒘 𝑥1, … , 𝑥𝐾 = 𝑤1 −𝑤2 ⋅ 𝐷 𝑥1 + 2 ⋅ 𝑤2 −𝑤3 ⋅ 𝐷 𝑥1, 𝑥2 +⋯+𝐾 ⋅ 𝑤𝐾 ⋅ 𝐷 𝑥1, … , 𝑥𝐾
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