Linear Classifiers

Previous lectures introduced the Bayes Classifier:

e Optimal accuracy in terms of minimizing the
classification error probability.

e If the probability distribution is appropriate for
the novel data.

In real world applications, it is very difficult to obtain
the appropriate probability distribution.

Therefore, instead of modeling the whole feature
space, we often prefer to learn the discrimination
function directly.

Linear Classifiers
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Linear Classifiers

Requirement: The data must be linearly separable.
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Linear Classifiers
% g(x)=w x+w, =0 4 R - R
g(X) =W, X, + W, X, +...+ WX +W, =0
f

in | dimensions

g(x)=0
If X; and X, are two points on the decision hyperplane:

WX, W = WX, W,

= \LVT ()_(1_)_(2) =0

hence W is perpendicular to the hyperplane




Linear Classifiers

g(X)=w' x+w, =0

B la(x)| g(x) is a measure of the distance
2= ”V_v” from the hyperplane to X.
Its sign marks on which side of the hyperplane X is.
|W0| If there is no axis intercept the
d= M hyperplane passes through the origin.

Linear Classifier: Margin Computation

Recall

g(x)=w'x+w, =0

The direction normal to the hyperplane is given by: W

Hence,

signed distance

g(x)=w' (X, +d

=g(X)=w'x, +W, +d-—r-
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The Percepitron

The Perceptron is a learning algorithm that adjusts the
weights w; of its weight vector w such that for all
examples X; :

T
w x>0 in €@ 1t is assumed that the problem is linearly
WT X<0 vxi € w, separable. Hence this vector W exists.

Wy X

Here, the intercept is included inw: W= w X= «
| |

W, 1

The Perceptron

> W must minimize the classification error.

> W is found using an optimization algorithm.

General steps towards a classifier:

1. Define a cost function to be minimized.

2. Choose an algorithm to minimize it.

3. The minimum corresponds to a solution.




The Perceptron Cost Function

Goal: W x>0 Vxea

W x<0 Vxeaw,

Cost function: Jw)=>s,w'x
xeY
Y subset of the training vectors which are
misclassified by the hyperplane
defined by W.
o, =1 if X, e butis classified in w,

Xi

o, =t1 if X € w, butis classified in o

Jw)>0 Vvw:YzJ

SW x>0 vVxeY = )
— o x>0 VXe JW)=0 ifY=0
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The Perceptron Algorithm

W) JWw)=> 8w x is continuous and

xeY iecewise linear.
Y changes P

\Y is constant

J(w) is minimized by gradient descent:

(update W by taking steps that are proportional to the
negative of the gradient of the cost function J(w))

oJ (w)
ow

W

W) =w)+Aw = Aw=-p,

Aw) _ 0 (25\,\, X)=>8,x W(t+1) = w(t) - p, Y5, X

aW xeY xeY xeY
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The Perceptron Algorithm

misclassified

e

Example: . i
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W(t+1) = w(t) - p, Y5, X Here, 5 ,=-1 because X c @,
xeY
Here, p,=0.2

12

The Perceptron Algorithm
Irrpre misclassifications

/)

Example:

(t+1)

Here, p,=1

Note that A must be chosen carefully, if it is too
large, more errors will occur.

P, is a critical parameter of the algorithm !
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The Perceptron Algorithm

The perceptron converges in a finite number
of iterations to a solution if:

t
lim» p, - p, is set to be large at the
k=0 beginning and gets smaller and
& smaller as the iterations proceed.
lim> p,° <400

k=0

t—w

. C
eg pt :?

The perceptron stops as soon as the last
misclassification disappears: Is this optimal?
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Perceptron: Online Learning

The misclassified training examples can be used
cyclically, one after the other.

The examples are reused until they are all classified
correctly.

w(t+1) = w(t) + P X if \Lv(t)T X <0 and X Ea
w(t+1) = w(t) - P X if \Lv(t)T X >0 and X € @,

w(t +1) = w(t) otherwise

This training of the Perceptron was called “reward
and punishment algorithm”.




The Perceptron as a Neural Network

Once the perceptron is trained, it is used to perform

the classification: if Wx>0 assign X t0 o,

if w'x<0 assign x to o,

The perceptron is the simplest form of a
“Neural Network”:

1

&Ly

Ny . T SR ) WX
<
751 \
i w, H H
\ activation
) function
synaptic
weights
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Least Squares Methods 1
Linear classifiers are attractive because:
e They are simple and

e computationally efficient.

The Perceptron is used in the case where the
training examples are linearly separable.

Can we still use a simple linear classifier
where the training examples are NOT linearly
separable ?




17

Least Squares Methods

We want that the difference between the output of

the linear classifier: WT X

and the desired outputs (class labels): y=+lif xe o,
to be small. y=-lif xe o,

What does small mean ?

We will describe two criterions:
1. Mean square error estimation, and

2. Sum of square error estimation.

18

Mean Square Error

Cost function: J(v_v):E[<y—v_vT>_()2}
Find: \L\/zargmvSnJ(\Lv)

aJ(w) _

J(W) is minimum when 0
ow
oJ(w [E E[xx,].. E[x%
(w) :_ZE[(y_WTX)XT} e I
oW W XX KX T= | s s e =R,
- _E[Xlxl] E[X%].. E[xx]
= —ZE[)_(Ty]Jrv_vTZE[)_(XT] is the auto-correlation matrix

is the cross-
correlation vector

[E[x]
R 1 T EX'yl=| ..
= WzE[)_q ] E[)_( y] | ELxY]
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Mean Square Error
Problem: E[p_(T]z? E[>_<y]=?

Computing E[)_(f] and E[xy] requires knowledge of
the probability distribution function of the feature
vectors.

If the pdf is known or we have a good method to
estimate it, we might as well use a Bayesian classifier,
which minimizes the classification error !

Here, we want to find a similar result without having
to know the probability distribution.

This leads us to the minimum sum of squares
estimation.
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Sum of Squares Error

Instead of J(V_V)=E[(y—v_vTx)1 use the following

N
cost function: J(w)= Z( Y, — WX, )2
i=1

W _,

J(w) is minimum when w -

1 T
oJ (w N T T i X :[)_(!)_( yeens X ]
W _ 23 (y-w'x,)x : b
8v_v -1 i Xis a NxI matrix, each row is
i the transpose on one |-dimensional
N N i training vector ( --> X is NxI). 1
T T T Doy - o
= —22 Y X; + Z\LV (le X; ] E X'is often referenced as Design Matrix E
i=1 i=1 H T 4
Y =D Yo ]
—_2XT y+ 2XTX w i desired responses column vector.

10
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Sum of Squares Error

oJ (w)

=2XTy-2X"Xw
ow
a‘]—(V_v)=0 = XTX\iV=XTy
ow
= V?/=(XTX)_1XTy §x+z(xTx)‘1xT
1 X" is the IXN Moore-Penrose
3 Pseudo-inverse of the Nx| matrix X.
= [W=X"y If X is a square matrix: X" =X
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Sum of Squares Error

Recall that the objective is to solve Xw=Yy

If N>I, which is often the case in Pattern Recognition,
then there are more equations than unknowns: the
system is over determined.

In general, there is no solution which satisfies all
equations.

The solution W= X"y corresponds to the minimum

sum of square solution: min||y — X@|’

11
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Sum of Squares Error - Example

Data: [04][06][0.1][0.27[0.3

“osllosl0407]]03 x

0.4770.67[0.7][0.8][0.7 ! o
“2106l02[]04[|06] 05
x X o]
N = 10, ! I
| =2+1= ]
o

N T 2
Task:  minimize J(v_v)=Z(yi—\Lv Xi)

i=1

= |w=(X"X)" X"y
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Sum of Squares Error - Example

w=(X"X)?X"y=?|
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=  w=(X"X)'X"y=| 024
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The Perceptron Cost Function

Goal: W x>0 Vxea

W x<0 Vxeaw,

I><

Cost function: Jw)=>s,w'x
xeY
Y subset of the training vectors which are
misclassified by the hyperplane

defined by W.

6, =-1 if X, e, butis classified in o,

o, =t1 if X € w, butis classified in o

Jw)>0 Vvw:YzJ

)
vxeY = .
= oW X>0 VXe IW)=0 ifY-=0
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Linear Support Vector Machine

Goal: wx+w, >0 Vxeap

+ o+

w, <0 Vxeo,

So far, we have seen two classifiers with the same
decision function:g(x)=w' x+w, =0

Their difference consisted in the cost function that
was optimized to find the weights:

T . o,=1 if xeo
. W) = W X ml N
Perceptron: Jw)=> sw x mit 5=+l if xen,

xeY

N
Sum of Squares: mv\ian(yi ~W' X, _Wo)2
i=1

13
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Perceptron Problem

s.=1 if x
Perceptron: J(w)=Y"s,w x x D EEA
5=+ if xeo,

Problem: There is an infinity of classifier that
agree with the above criterion.

Example:

/| The one we want is the
/| one that gives optimal
'| generalization performance.

7 Which one is it ?

Sum of Squares Estimator Problem
Sum of Squares: mvjnZ(yi - X, _W0)2

Problem: The estimator tries to place the hyperplane
so that all the examples have the same
distance from it (+1 for o, and -1 for o,)

Example' o A single training example
can pull the whole decision

° ‘plane

Even in a linearly separable case, the optimal least
squares estimator may get training errors !!!

14
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Linear Support Vector Machine (SVM)

Is it possible to design a linear classifier better than
the perceptron and the SSE?

What are the criterions?

1. The decision surface should not be affected
by examples far from it.

2. It should minimize the risk of error on
unseen data (maximize generalization).

3. It should be unique : Not affected by initial
values or optimization parameters
(unlike for the perceptron).

Linear SVM ?

1. The decision function should not be affected
by examples far from it.
decision independent of

-

—_— -

decision only —_
dependent on
difficult to classify *¢
examples a8t

15



Linear SVM

2. It should minimize the risk

31

of errors on unseen

data (maximize generalization).

Which of these two decision functions give the best

generalization performances?

1 N x

08~

% X
06— O
X
04
x

0z N O —

of X o Intuitively, the best
o2t e hyperplane is the one
that maximizes the

o © o distance to each class.
08 o A

0.8 D‘E lﬂﬂ 02 0 0.z 04 06 08 ;

Margin Maximization
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How can we formalize these two concepts
mathematically that the decision function is unique?

The optimal decision function | | *
is the one that separates
both classes and maximizes
the distance between the
decision hyperplane and the
closest examples.

0z

4

0.6

06

ol

The

0‘9 D:E ’ 0.4 0.2 ‘ ] 0‘2 0.‘4 0.‘5 n.‘a ;
double of this distance is called the margin.

16
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Margin Computation

Recall g(x)=w'x+w,=0

The direction normaI to the hyperplane is given by: W

Hence
! X=X, +0d— )

TIIWII NERRNEE I,

signed distance o5t X

g(x) = w' (x +d %

i T .
.
S g =W +w, +dow | °
MR

0.6

=d|w|

. L H i i i H
|| || 08 06 04 0z [} 02 0.4 0.6 o8 1

=0g(x)= gy
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Linear SVM Learning
Now, we want to:
1. find w and wy, such that the margin  2|d|=25-"

is maximized. ”W”

2. scale W and W,, such that g(x)= +1 for the closest examples
of w;and g(X)= -1 for the closest examples of ®,.

=> then the margin is 2|d|=2/|w|

This is equivalent to:

WX+W,>+1 VXxeam

T

W=min E||w||2 subject to {
w2 W X+W,<-1 VXeon,

These closest examples, with |9(X)| =1 are called support vectors.

17



Linear SVM

Note that:

35

1. This formulation provides a unique decision function, because

there is only one that maximizes the separation between
positive and negative examples.

2. This formulation assumes that the training vectors are

separable. We will see in the next section how to address the

non-separable case.

SVM Learning is a Constrained Optimization

Now, how to compute W and W, according to the criterion:

:
. 1, 2 i W X+W,2+1 VXeao
W=argmin=|w|" subject to

w2 W X+W,<-1 VXxeaw,

With labels y; = +1 for examples of w, andy,; = -1 for w,
this is equivalent to:

v_i/:argmin%v_vTv_v subject to vy, (\LvT>_<i +w0)21 i=1...,N

w

This is a constrained optimization.

36
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Lagrange Multipliers

v_V:argmin%v_vT\Lv subject to vy, (\LVT)_(i +w0)21 i=1...,N

1. The cost function, J(W) =w'w , is convex.

2. The constraints are linear.

> There is a unique solution,

> that can be found using the method of
Lagrange Multipliers.

Lagrangian Function:

L(w, w,, 4) :%V_VTV_V_ :/11 |:yi (\LVT)_(i +Wo)_1}

Constraint Optimization (insertion)

Problem: Given an objective function f(x) to be optimized and let
constraints be given by h,(x) =c¢, ,
moving constants to the left, ==> h,(X) — ¢, = g(X).
f(x) and g,(X) must have continuous first partial derivatives

A Solution:
Lagrangian Multipliers 0=v,f(x) + Zv,4 g(X)

or starting with the Lagrangian : L (x,4) = f(X) + X 4, g,(X).

with 7 L (x,2) = 0.

19



Constrained Optimization in general

Obijective: argmin J (8) subject to Y, (X; W+W,)>1 with 8 = (w,,w")"
’ < AO=b
N
Lagrangian: L(6,1)=J(0)->_4(A6-b)
i=1

Let us look at an example in 1 dimension.

There are two cases:

A6 =D A6 =b,
- V.
 AO>Db
o ]
Constrained Optimization: 40

First KKT Condition

Lagrangian: L(6,2)=3(6)- Y 4(A0-D)

First case:
The minimum of J(6) is inside the feasible region.

=> The constraint is inactive and
plays no role.

As if it was an unconstrained
problem.

= A =0

20



First KKT Condition *

Lagrangian: L(6,1)= J(e)—iﬂ,,(Ae—bi)

i=1

Second case:
The minimum of J(0) is outside the feasible region.

AG:b
Y => The constraint is active.
J(0) . - .
The constraint minimum is at the
boundary of the feasible region.

4 = Aé—bi =0
0 0
First KKT Condition ®

To summarize both cases, we have 4 =0 or Af—-b =0

This can be stated by the single condition:

A4(AO-b)=0

At the minimum, either the constraint is active or the
Lagrangian multiplier is null.

This is the first Karush-Kuhn-Tucker condition.

Let's now look at the second.

21



Second KKT Condition v
Objective: argmginJ(@) subject to A6=Db,
Lagrangian: L(@,/I)zJ(e)—ZN:A,(Ae—bi)

i=1

Let us look at an example in 2 dimensions:

0, _ min J(@)=c, <c, <C3 <C,
ISOcurves
_--of
- - :o 0 The gradient of J(#) is normal to
.~ o J0)=c, the active constraints at the
\ R
N minimum: 0J (0
/ S S o \\ ~ \](é)):c2 % = /llA;r
~<_ T~ -J0)=c,
=%~ j9)=c,
] ~
b, :>8L(49,1):0
00
] . a4
Third KKT Condition

Assume a 6 in the feasible region
0=0+p = Ap=A9—Ad=A9—-b >0

Recall that a]_@: AT A
06

92
d S pr O _ s
00
g5 0 R )
P P o 0J(0) 50 be_ca_lug,e 6 is a
00 minimizer
\ s = p'ATA20

Third KKT condition

22



KKT Conditions ®

For the problem argminJ(#) subject to A9>b
4
N
The Lagrangian is  L(6,4)=J(0)- > 4(A0-h)
i=1

é is @ minimizer if the three KKT conditions are
satisfied:

KKT1: A(A6-b)=0

KkT2: 9L@.4) _,
06

KKT3: 4 >0

KKT Conditions applied to the SYM ~ ©

v"v:argmin%wTw subject to y, (wai+w0)21 i=1...,N
w

N
= L(w,w,, 1) = EWTW_ZA' [Yi (WTXi +Wo)_1}
2 =
P The hyperplane, defined
c 0 I—(W: Wo,ﬂ) N > through w, is a linear
KKT2: T aw =0 =w= 221 YiXi combination of the
= examples.
oL(W,W,, A N
akr2: ZHEH g 5510y 0 g beusetio checcyou
0 i=1

. AT ~Y 1| The support vectors, for which 4 =0 ,
KKT1: 4 |:yi (W X+ WO) 1:| =0 are those for which the constrain is

active, i.e. vy, (wai +W0) -1

23
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Primal and Dual Problems

The number of support vectors: N, <N

If the features are discriminative: N; < N

min%v_vT\Lv subject to v, (v_ngi +W0)Zl i=1...,N

This is the primal problem, it can be solved
efficiently using its dual formulation:

N
max L(w, wy, 2) subjectto w = DAY
- N KKT
4Y; =0 conditions
=1

120
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Learning SVM using the Dual Problem

p
=
=
5
Il
=
;
M=
—_—
B
~
<
1<
+
o
<
=
I
P
| I

T N
= LWWo, ) = =2 D AN K X+ DA
(1] ]

24
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Learning SVM using the Dual Problem

2 (W% 4w, ) -1

N N
= LG, 2) =—%ZM— VY X X+ 204,
1] i

N N N
leargmax—%z},,ljyingij+Zﬂ,, subjectto > 4y, =0
2 i i i=1

4 =0

We only need to solve with respect to 4!

Learning SVM is a Quad. Prog. Probl.

i=1

~ N 1 N . N
A=arg inax(z/l, —EZJﬁﬂjyiijij] subjectto > 4y, =0 4 =0
i ij

This is a standard problem in optimization theory called Convex
Quadratic Programming.

Don't try to program this yourself ;-)
In Python, use cvx.solvers.qgp , in Scilab, quapro
In C++ use the library 0oQpP.

Once Ais found: wzi,@lyixi VY
i=1
ﬂ,l[yi WTxi+WO)—1]:O — W,

25



SVM with Non-Separable Classes

51

Now what do we do in this case ?
What's the margin here ? *

It is impossible to draw a -
separating hyperplane. -

So far, we dealt with the easy case
of separable classes.

Soft Margin

As before, the margin is
the distance between the
hyperplanes defined by

WX +w, =+1

The margin is soft if one
of the points violates

Y (WX +w ) 21

08

08

o4t

52

There are 3 types of points:

© outside the band and correctly classified

i (WX +wp) 1

@ inside the band and correctly classified 0<y,(w'x+w,)<1

@ misclassified

Y, (WTXi+WO)<0
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Slack Variables

- Outside the band and correctly classified v, (w'x+w,)>1
- Inside the band and correctly classified o<y, (w'x +w,)<1
- Misclassified Y (W +w, ) <0

The 3 cases can be addressed by a single

constraint:  y(w'x +w,)=1-¢
t
slack variables
- Outside the band and correctly classified & =0
- Inside the band and correctly classified 0<4g =1
- Misclassified E>1

¢ measures the deviation of a data point from the
ideal condition of pattern separability.

54

Slack Variables

¢ measures the deviation of a data point from the
ideal condition of pattern separability.

> New Goal: min|w| and min#[& >0]

27
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Non-Separable SVM Objective
> New Goal: min|w| and min#[& >0]

How can we do that mathematically?

Minimize the average training set error:

.1 N
m|n§||v_v||2 +CYI(E)
= indicator |(§)—{1 &>0

Trade off function 0 &=0
parameter !

Problem: This is a non-convex optimization that is NP hard,
i.e. impossible to solve !

Moreover, this doesn’t distinguish between disastrous errors and
near misses.

N
Instead we do: min%HV_VH2 +CY &
i=1

Non-Separable SVM Dual Problem
Objective:

N
an%||W||2+CZ§i subject to yi(v_vT>_<i+w0)21—§i i=1...,N
B = and & >0

As before, this is solved using the Lagrangian and the KKT
conditions.

(For a complete derivation of the Lagrangian see e.g. “A Tutorial on
Support Vector Machines for Pattern Recognition” by C.].C Burges )
The dual problem turns out to be:

R N N N
/’L:argmax—%Zﬂ,,;tjying(iTl(j +> 4 subjectto Y Ay, =0
A i i i=1

0<4,
Who can spot the difference with
the original dual problem? This is a huge difference !

28
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Separable vs Non-Separable SVM

Primal problem:

N
TLn%||w||2+CZ§i subject to v, (v_vT5i+w0)21—§i i=1...,N
B = and & >0
Dual problem:

0

R N N N
A:argmax—%Zﬂ,,/ijyingiT)_(j +Y 4 subjectto Y Ay,
A ij i i=1

0<4<C

The separable case is a special case of this case. What
should be done to get back to the separable case?

If C =00, we get back to the separable case.

58

Influence of the Parameter C

N
min Z|w| +CY &
we 2 io1

improves reduce training errors
generalization

If C is high ... ?

fewer training errors,
lower generalization performance,
less support vectors.

If Cislow ... ?
the opposite !

C is generally adjusted by trial/error on a validation
set.

29
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Non-Separable SVM

As before, once 1 is found:

=
o

N
YiX; —>W
]

=2,

AL (W)= (1-8) ] =0 >y

The support vectors are those for which i, #0 !
But what are the values of & ?

From the KKT-conditions of the full Lagrangian for the
non-separable SVM follows:

A

Vi with 4, <C — £ =0

= A %W i) -1]=0 W,

60

Applications

Linear classifiers are best applied to ...
... linear problems !

However, in practice, it is difficult to find linear
problems. But even if the problem is not
linearly separable, Sum of Square Classifier
and Non-Separable Linear SVM may be applied.

Though, due to the simplicity of the classifier,
we expect sub-optimal results.

30
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Zip Code Recognition

Example of application: Zip Code Recognition

A Standardized set of normalized digit data is

available at:
http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/

e 7291 digits used for training
e 2007 digits used for testing
e 1 digit = 16x16 grey level value

Example:

62

Lip Code Feature

Using as feature vector, the simplest of its
features: the pixel intensities

0
| 0
‘ 15 i=1..., N =7291
i ! 24 X €R”
2 =i = 13 =X we R
Seppemeth . 0 W, € R
R
L L O .

31


http://www-stat-class.stanford.edu/~tibs/ElemStatLearn/
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Multiple Classes

In this example, there are 10 classes, but all the linear
classifiers that we have reviewed can only discriminate
between 2 classes.

So what can we do ?

We use the one against all strategy:
We build 10 classifiers:

0 S o___—>0,xis the digit 0
X)=x"W’ +w
9°(%) 07——<0, x is any other digit

9 T >0, x is the digit 9
X)=x'wW +w—" ~
9°(x) 07——<0, x is any other digit

Zip Code Sum of Squares Classifiers

Example 1: Sum of Squares classifier (0 versus rest)

X =[X1,1 Xp oo Xiose 1] X is the 7291x257 data matrix.
+ly—eg.x Y is the 7291x1 column vector
represents the ; :
~ -1 digit 0 representing class belonging.
Y= . +1 for the digit 0

-1 for any digitin [1, 9]

=)oy

Wo

T

Optimal sum of squares classifier

32
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Zip Code Linear SVM Classifier

Example 2: Linear SVM Classifier
Training:

R N N N
;t=argmax—%2)u,/1jyiyj>_<?§j + > 4 subjectto Y Ay, =0
g i i i—1

=z

0 s . . 0<A4<C
W=D AYiX —> W

1<

A6 +w)-1]=0  —w

1]
-

Classifying:

T 0 o_—>0, X is the digit 0
X W +W Ny
== 0 <0, X is any other digit
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Conclusion

Linear classifiers are:
¢ Efficient,

e Simple and easy to train and classify.

However, they do not attain the best
performance when the features are not linearly
separable. This is because the model is too
simplistic: The number of degrees of freedom is
just 1+dimensionality of the feature space.
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