Logistic Regression




Two Worlds: Probabilistic & Algorithmic

We know two conceptual approaches to classification:

— decision

class density classification
data — _ _ >
estimation rule
T
learning
classification
data > .
function
?
learning

» decision

Bayes Classifier

Probabilistic classifier with a
generative setup based on
class density models

Bayes (Gauss), Naive Bayes

“Direct” Classifiers

Find best parameter (e.g. w)
with respect to a specific loss
function measuring
misclassification

Perceptron, SVM, Tree, ANN

Can we have a probabilistic classifier with
a modelling focus on classification?




Advantages of Both Worlds

* Posterior distribution has advantages over classification label:
* Asymmetric risks: need classification probability

* Classification certainty: Indicator if decision in unsure

* Algorithmic approach with direct learning has advantages:
* Focus of modelling power on correct classification where it counts

* Easier decision line interpretation

e Combination?
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Towards a “"Direct” Probabilistic Classifier

* |dea 1: Directly learn a posterior distribution

For classification with the Bayes classifier, the posterior distribution is
relevant. We can directly estimate a model of this distribution. We know from
Naive Bayes that we can probably expect a good performance from the
posterior model.

* |dea 2: Extend linear classification with probabilistic interpretation

The linear classifier outputs a distance to the decision plane. We can use this
value and interpret it probabilistically: “The further away, the more certain”



Logistic Regression

The Logistic Regression will implement both ideas: It is a model of a
posterior class distribution for classification and can be interpreted
as a probabilistic linear classifier. But it is a fully probabilistic model,
not only a “post-processing” of a linear classifier.

It extends the hyperplane decision idea to Bayes world

e Direct model of the posterior for classification
* Probabilistic model (classification according to a probability distribution)
* Discriminative model (models posterior rather than likelihood and prior)
* Linear model for classification

e Simple and accessible (we can understand that)
* We can study the relation to other linear classifiers, i.e. SVM



History of Logistic Regression

 Logistic Regression is a very “old” method of statistical analysis
and in widespread use, especially in the traditional statistical
community (not machine learning).
1957/58, Walker, Duncan, Cox

* A method more often used to study and identify explaining factors

rather than to do individual prediction.
Statistical analysis vs. prediction focus of modern machine learning

Many medical studies of risk factors etc. are based on logistic regression



Statistical Data Models

We do not know P(X,Yy) but we can assume a certain form.
---> This is called a data model.

Simplest form besides constant (one prototype) is a linear model.

d
Lin, (X)=> WX +W, = (W, X)+ W, = W' X +W,
=1

afiaM
= Lin, (x) = (W, X) + W, = (,X)

» Linear Methods:

Classification: Logistic Regression (notypo!)
Regression: Linear Regression



Repetition: Linear Classifier

Linear classification rule:

gx) =wlx+w,

gx)=0=> @
Jgx)<0 > @

Decision boundary is a a hyperplane
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Repetition: Posterior Distribution

 Classification with Posterior distribution: Bayes

Based on class densities and a prior

P(Cylx) =

p(x|Cy)P(Cy)

p(x[C1)P(Cy) + p(x|C)P(C)

class densities

p(z(C1)

p(z|Cy)
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P(Cylx) =
? p(x|C)P(Cy) + p(x|C;)P(Cy)
| . B/sho,olPRML
p(Crlz) p(Ca|z)




Combination: Discriminative Classifier

Decision boundary

Bishop PRMII
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Probabilistic interpretation of classification
output: ~distance to separation plane
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Notation Changes

* We work with two classes
Data with (numerical) feature vectors X and labels y € {0, 1}

We do not use the notation of Bayes with w anymore. We will need the explicit label value of y
in our models later.

 Classification goal: infer the best class label {0 or 1} for a given feature point

y" = arg ygg;gl}P(ylx)

* All our modeling focuses only on the posterior of having class 1:
Ply=1|x)

* Obtaining the other is trivial: Py=0|x)=1—-P(y=1|x)



Parametric Posterior Model

We need a model for the posterior distribution, depending on the
feature vector (of course) and neatly parameterized.

Py=1|x,0) = f(x; 6)

The linear classifier is a good starting point. We know its
parametrization very well:

g(x; w,wy) = whx + wy
We thus model the posterior as a function of the linear classifier:

P(y = 1| x,w,wp) = f(w'x + wy)

Posterior from classification result: “scaled distance” to decision plane



Logistic Function

To use the unbounded distance to the decision plane in a probabilistic
setup, we need to map it into the interval [0, 1]

This is very similar as we did in neural nets: activation function

The logistic function o(x) squashes a value x € R to [0, 1]

1

700 =T e

The logistic function is a smooth, soft threshold
o(x) 1 x-
o(x) >0 x- —o

o(0) =~
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The Logistic Function
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The Logistic "Regression”




The Logistic Regression Posterior

We model the posterior distribution for classification in a two-

classes-setting by applying the logistic function to the linear
classifier:

P(y =1] x) = a(g(x))

1

P j— 1 ) ) p— T p—
0 =11 xw,we) = fWx+wo) = ——— s

This a location-dependent model of the posterior distribution, parametrized by a
linear hyperplane classifier.



Logistic Regression is a Linear Classifier

The logistic regression posterior leads to a linear classifier:

1
1+ exp(—(Wi'x + wy))

P(y = 1| x,W,Wo) =

P(y=0| x,w,wy) =1—-P(y =1| x,w,w,)

1
Ply=1| x,w,wy) > > = y = 1 classification; y = 0 otherwise

1
Classification boundary is at: P(y = 1] x,w,wg) = E

1 1
- _ T —
1+ exp(—(Wlx+wy)) 2 = wx+wy=0

Classification boundary is a hyperplane




Interpretation: Logit

Is the choice of the logistic function justified?

* Yes, the logit is a linear function of our data:

Logit: log of the odds ratio: lnﬁ

P(y =1 |X) The linear function (~distance from
T
P( — le) X + Wy decision plane) directly expresses our
Yy = classification certainty, measured by the
“odds ratio”:

double distance < squared odds
e.g. 3:2->9:4

e But other choices are valid, too
They lead to other models than logistic regression, e.g. probit regression
-G lized Li Models (GLM — -1 T
eneralized Linear Models ( ) E[y] — f (W x + WO)



The Logistic Regression

* So far we have made no assumption on the data!

e We can get I'(X) from a generative model or model it
directly as function of the data (discriminative)

Logistic Regression:

Model: The logit  I(X) = log22=t%) = log =

P(y=0]x) —-p
is a linear function of the data
0 d
r(x)= Iogl— = > WX + W, =(W,X)
— P =




Training a Posterior Distribution Model

The posterior model for classification requires training. Logistic
regression is not just a post-processing of a linear classifier. Learning
of good parameter values needs be done with respect to the
probabilistic meaning of the posterior distribution.

* |In the probabilistic setting, learning is usually estimation

We now have a slightly different situation than with Bayes: We do not need
class densities but a good posterior distribution.

* We will use Maximum Likelihood and Maximum-A-Posteriori
estimates of our parameters w, w,

Later: This also corresponds to a cost function of obtaining w, wy,



Maximum Likelihood Learning

The Maximum Likelihood principle can be adapted to fit the
posterior distribution (discriminative case):

* We choose the parameters w, wy which maximize the posterior
distribution of the training set X with labels Y

w,W0=arg1‘}]1%xP(Y | X;w,wp)
WO

= argmax [Luex P(y| 2w, wp)  (iid)
wW,Wq

Piylx;wowg) = P(y=1]|xwwy)” P(y=0| x;w,wy)t™Y



Logistic Regression: Maximum Likelihood Estimate of w (1)

To simplify the notation we use W, X instead of w, wy

With P(yzl‘X)ZG(WTx) and P(yzo‘x)zl_J(WTX)
= P(y[x)=P(y=1[x)"P(y=0}x) " = p*@-p)"

The discriminative (log) likelihood function for our data

P(YIX) - le(yi‘xi): ﬂpiyi(l_ p,)"™

Z y;log(p,)+(1-y;)log(1-p;)

“cross-entropy” cost function

i Y, log(1 p'p ]+log(1— P, )

log P(Y|X)




Maximum Likelihood Estimate of w (2)

log-likelihood function continued

log L(Y,X) = log P(Y|X) =i Y, Iog( P j+|og(1— ;)

=1

1 .
Remember P, = G(WTX) = - and linear Logit log Pt T
1+e™"” 1=pi

N
logL(Y,X)=)" yw'x —log (1+ e % )

=1

Maximize the log-likelihood function with respect to W

O !
—log L(Y,X) =0
109 LY. X)



Maximum Likelihood Estimate of w (3)

19
ZlogL(Y,X) = = ] (1 )
awog ( Z yw'x. —log(1+e"

N -
e
T T
= EH, YiXi — Wi X;



Derivative of a Dot Product

Gradient operator i=|7 — J , 0 ,___,i
ow YV |ow; 0w, T owy
0 0 9, 0
—wlx=|—wlx,—wlx,...,—wlx
ow ow, ow, owg,
d
Per component 0 T 0 z
wix = Wi X, = X;
P an' aWi ek l
k=0
Final derivative inx = [x4,%5, ..., xq] = xT
ow 1,42 » vd




Maximum Likelihood Estimate of w (3)

0
—1 LYX
8wog(

 Non-linear equation in W : no closed form solution.

« The function L0og L is concave therefore a unique

maximum exists.

a N
— W x—Io (1+e )
aWZ Y, g

wT X,

T
1+eV %

- l+e

~wh;




Iterative Reweighted Least Squares

The concave log P(Y|X) can be maximized iteratively with the
Newton-Raphson algorithm: Iterative Reweighted Least Squares

0
whttl  wh — g1 o (InP(Y|X;w™h))

Derivatives and evaluation always with respect to w"



Hessian: Concave Likelihood

2 We use an old trick to keep it simple:
H = InP(Y|X _[W _ |1
awowT (Y1X) w=[y] x= [x]
9 (9 InP(Y|X) | = —Zx-x-Ta(wa-)@ —a(wlx;))) = —-XSXT
aW aWT . 2} l l

l

The Hessian is negative definite:
* The sample covariance matrix }.; x;x; is positive definite
« o(wTx)(1—o(wTx;)) is always positive

The optimization problem is said to be convex and has thus a
optimal solution which can be iteratively calculated.



Iterative Reweighted Least Squares

The concave log P(Y|X) can be maximized iteratively with the
Newton-Raphson algorithm: Iterative Reweighted Least Squares

0
whttl  wh — g1 o (InP(Y|X;w™h))

Derivatives and evaluation always with respect to w"

Method results in an iteration of reweighted least-squares steps
whtl = (XSXT)"1X S z
z=XTw"+ S (Y — P(w"))
« Weighted least-squares with z as target: (XSXT)™1X S z
e Z:adjusted responses (updated every iteration)

o Matrix: w1 =w" — (XSXT)"1(Y — a(w™ X)X



Example: Logistic
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Linearly Separable

* Maximum Likelihood learning is problematic in the linearly
separable case: w diverges in length
— leads to classification with infinite certainty

 Classification is still right but posterior estimate is not




Prior Assumptions

* Infinitely certain classification is likely an estimation artefact:

We do not have enough training samples
— maximum likelihood estimation leads to problematic results

e Solution: MAP estimate with prior assumptions on w
P(w) = N(w|O0, a?l) Smaller w are preferred (shrinkage)

P(y|x, W, WO) = py(l — p)l_y Likelihood model is unchanged

W, W = arg max P(Y|X;w,wy )P(w)
WO

= arg max P(w) P(ylx,w,wg)
wW,Wq
xeX



MAP Learning

nPw) | [ POrix w,wy) =

xeX

> (W', +wo) — In(L+ exp(wTx; +wo)) ) — 5 IwlP

9
We need: — [|lw||? = 2wT
ow

ailnP(Y|X) —Z((yl—a(w xl+W0))xT)——w =0

* |terative solution: Newton-Raphson
* Prior enforces a reqularization



Bayesian Logistic Regression

ldea: In the separable case, there are many perfect linear classifiers
which all separate the data. Average the classification result and
accuracy using all of these classifiers.

* Optimal way to deal with missing knowledge in Bayes sense

2 4 4 2 4
Bishop PRML Bishop PRML 39



Logistic Regression and Neural Nets

* The standard single neuron with the logistic activation is logistic
regression if trained with the same cost function (cross-entropy)

But training with least-squares results in a different classifier

* Multiclass logistic regression with soft-max corresponds to what is

called a soft-max layer in ANN. It is the standard multiclass output
in most ANN architectures.

X3 o P(y = 1lx,w,wy) = o(W'x + wy)



Non-Linear Extension

X

* Logistic regression is often extended to non-linear cases: x := [¥1X2
2
X2

Extension through adding additional transformed features

* Combination terms: x;x;

 Monomial terms: x?

Standard procedure in medicine: inspect resulting w to find important factors and
interactions x;x; (comes with statistical information).

» Usage of kernels is possible: training and classification can be
formulated with dot products of data points. The scalar products
can be “replaced” by kernel expansions with the kernel trick.



Kernel Logistic Regression

* Equations of logistic regression can be reformulated with dot

products:
N N

wlix = z a;xi x - 2 a;k(x;,x)
i=1

i=1

* No Support Vectors: kernel evaluations with all training points

SVM - 130 Support Points

N
Py=1x)=o0 zaik(xi,x)
i=1
IVM (import vector machine): T Erorozs
Extension with only sparse support points! BaesErer 028

Ji Zhu & Trevor Hastie (2005) Kernel Logistic Regression and the Import Vector Machine, Journal of
Computational and Graphical Statistics, 14:1, 185-205, DOI: 10.1198/106186005X25619 44



Discriminative vs. Generative

Comparison of logistic regression to naive Bayes

Ng, Andrew Y., and Michael |. Jordan. "On Discriminative vs. Generative
classifiers: A comparison of logistic regression and naive Bayes." Advances in

NIPS 14, 2001.

Conclusion:
* Logistic regression has a lower asymptotic error

* Naive Bayes can reach its (higher) asymptotic error faster

General over-simplification (dangerous!): use a generative model
with few data (more knowledge) and a discriminative model with a
lot of training data (more learning)



Logistic Regression: Summary

» A probabilistic, linear method for classification!
» Discriminative method (Model for posterior)

» Linear model for the Logit

log P _ (W, X)
1-p
» The posterior probability is given by the logistic function
of the Logit:
1

p(y zl‘X) = 5(<V~V’ i>) B 1+ exp(-(W’ )~(>)

» ML-estimation of W is unique but non-linear

» Logistic regression is a very often used method
» Extendable to multiclass

» General Purpose method, included in every standard software,
e.g. glminR, gimfit/gimval in Matlab  —its easy to apply!



