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Two Worlds: Probabilistic & Algorithmic

Can we have a probabilistic classifier with 
a modelling focus on classification?

Bayes Classifier
Probabilistic classifier with a 
generative setup based on 
class density models
Bayes (Gauss), Naïve Bayes

“Direct” Classifiers
Find best parameter (e.g. 𝑤) 
with respect to a specific loss 
function measuring 
misclassification
Perceptron, SVM, Tree, ANN

We know two conceptual approaches to classification:

data
class density 
estimation

classification 
rule decision

learning

data
classification 

function
decision

learning
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Advantages of Both Worlds

• Posterior distribution has advantages over classification label:

• Asymmetric risks: need classification probability

• Classification certainty: Indicator if decision in unsure

• Algorithmic approach with direct learning has advantages:

• Focus of modelling power on correct classification where it counts

• Easier decision line interpretation

• Combination?
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Discriminative Probabilistic Classifier

𝑃 𝑥 𝐶1 𝑃 𝑥 𝐶2

𝑔 Ԧ𝑥 = 𝒘𝑇𝒙 + 𝑤0
𝑃 𝐶2 𝑥 ∝ 𝑃 𝑥 𝐶2 𝑃 𝐶2

Bayes Classifier
Linear Classifier
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Towards a “Direct” Probabilistic Classifier

• Idea 1: Directly learn a posterior distribution

For classification with the Bayes classifier, the posterior distribution is 
relevant. We can directly estimate a model of this distribution. We know from 
Naïve Bayes that we can probably expect a good performance from the 
posterior model.

• Idea 2: Extend linear classification with probabilistic interpretation

The linear classifier outputs a distance to the decision plane. We can use this 
value and interpret it probabilistically: “The further away, the more certain”
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Logistic Regression

The Logistic Regression will implement both ideas: It is a model of a 
posterior class distribution for classification and can be interpreted 
as a probabilistic linear classifier. But it is a fully probabilistic model, 
not only a “post-processing” of a linear classifier.

It extends the hyperplane decision idea to Bayes world

• Direct model of the posterior for classification
• Probabilistic model (classification according to a probability distribution)

• Discriminative model (models posterior rather than likelihood and prior)

• Linear model for classification
• Simple and accessible (we can understand that)

• We can study the relation to other linear classifiers, i.e. SVM
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History of Logistic Regression

• Logistic Regression is a very “old” method of statistical analysis 
and in widespread use, especially in the traditional statistical 
community (not machine learning).

1957/58, Walker, Duncan, Cox

• A method more often used to study and identify explaining factors 
rather than to do individual prediction.

Statistical analysis vs. prediction focus of modern machine learning

Many medical studies of risk factors etc. are based on logistic regression
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Statistical Data Models

Simplest form besides constant (one prototype) is a linear model.

( ) 0 0 0

1

,
d

T

w i i

i

Lin x w x w w x w w x w
=

= + = + = +

► Linear Methods:
Classification: Logistic Regression (no typo!)

Regression:  Linear Regression

01
,

w
x w

x w

   
= =   
   

( ) 0, ,wLin x w x w w x = + =

We do not know P(x,y) but we can assume a certain form.
--->    This is called a data model.



Repetition: Linear Classifier

Linear classification rule:
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𝑔 𝒙 = 𝒘𝑇𝒙 + 𝑤0

𝑔 𝒙 ≥ 0 ⇒
𝑔 𝒙 < 0 ⇒

Decision boundary is a a hyperplane



Repetition: Posterior Distribution

• Classification with Posterior distribution: Bayes

Based on class densities and a prior
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𝑃 𝐶2 𝒙 =
𝑝 𝒙 𝐶2 𝑃 𝐶2

𝑝 𝒙 𝐶1 𝑃 𝐶1 + 𝑝 𝒙 𝐶2 𝑃 𝐶2
𝑃 𝐶1 𝒙 =

𝑝 𝒙 𝐶1 𝑃 𝐶1
𝑝 𝒙 𝐶1 𝑃 𝐶1 + 𝑝 𝒙 𝐶2 𝑃 𝐶2

Bishop PRML



Combination: Discriminative Classifier
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Probabilistic interpretation of classification 
output: ~distance to separation plane

Decision boundary

Bishop PRML



Notation Changes

• We work with two classes
Data with (numerical) feature vectors Ԧ𝑥 and labels 𝒚 ∈ {𝟎, 𝟏}

We do not use the notation of Bayes with 𝜔 anymore. We will need the explicit label value of 𝒚
in our models later.

• Classification goal: infer the best class label {𝟎 𝒐𝒓 𝟏} for a given feature point

𝑦∗ = arg max
𝑦∈{0,1}

𝑃(𝑦|𝒙)

• All our modeling focuses only on the posterior of having class 1: 

𝑃 𝑦 = 1 𝒙

• Obtaining the other is trivial:          𝑃 𝑦 = 0 𝒙 = 1 − 𝑃(𝑦 = 1 |𝒙 )
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Parametric Posterior Model

We need a model for the posterior distribution, depending on the 
feature vector (of course) and neatly parameterized. 

The linear classifier is a good starting point. We know its 
parametrization very well:

We thus model the posterior as a function of the linear classifier:

Posterior from classification result: “scaled distance“ to decision plane

𝑃 𝑦 = 1 𝒙, 𝜽 = 𝑓 𝒙; 𝜽

𝑔 𝒙; 𝒘,𝑤0 = 𝒘𝑇𝒙 + 𝑤0

𝑃 𝑦 = 1 𝒙,𝒘,𝑤0 = 𝑓(𝒘𝑇𝒙 + 𝑤0)
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Logistic Function

To use the unbounded distance to the decision plane in a probabilistic 
setup, we need to map it into the interval [0, 1]

This is very similar as we did in neural nets: activation function

The logistic function 𝜎 𝑥 squashes a value 𝑥 ∈ ℝ to 0, 1

𝜎 𝑥 =
1

1 + e−𝑥

The logistic function is a smooth, soft threshold
𝜎 𝑥 → 1 𝑥 → ∞
𝜎 𝑥 → 0 𝑥 → −∞

𝜎 0 =
1

2
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The Logistic Function



18

The Logistic “Regression”



The Logistic Regression Posterior

We model the posterior distribution for classification in a two-
classes-setting by applying the logistic function to the linear 
classifier:

𝑃 𝑦 = 1 𝑥 = 𝜎 𝑔 𝑥

𝑃 𝑦 = 1 𝒙,𝒘,𝑤0 = 𝑓(𝒘𝑇𝒙 + 𝑤0) =
1

1 + 𝑒−(𝒘
𝑇𝒙+𝑤0)

This a location-dependent model of the posterior distribution, parametrized by a 
linear hyperplane classifier.
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Logistic Regression is a Linear Classifier

The logistic regression posterior leads to a linear classifier:
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𝑃 𝑦 = 1 𝒙,𝒘,𝑤0 =
1

1 + exp −(𝒘𝑇𝒙 + 𝑤0)

𝑃 𝑦 = 0 𝒙,𝒘,𝑤0 = 1 − 𝑃 𝑦 = 1 𝒙,𝒘,𝑤0

𝑃 𝑦 = 1 𝒙,𝒘,𝑤0 >
1

2
⇒

Classification boundary is at:

⇒
1

1 + exp −(𝒘𝑇𝒙 + 𝑤0)
=
1

2 𝒘𝑇𝒙 + 𝑤0 = 0

𝑦 = 1 classification; 𝑦 = 0 otherwise

𝑃 𝑦 = 1 𝒙,𝒘,𝑤0 =
1

2

Classification boundary is a hyperplane

⇒



Interpretation: Logit

Is the choice of the logistic function justified?

• Yes, the logit is a linear function of our data:

Logit: log of the odds ratio: ln
𝑝

1−𝑝

• But other choices are valid, too
They lead to other models than logistic regression, e.g. probit regression

→ Generalized Linear Models (GLM)

21

ln
𝑃(𝑦 = 1|𝒙)

𝑃(𝑦 = 0|𝒙)
= 𝒘𝑇𝒙 + 𝑤0

The linear function (~distance from 
decision plane) directly expresses our 
classification certainty, measured by the 
“odds ratio”: 
double distance ↔ squared odds
e.g. 3: 2 → 9: 4

𝐸[𝑦] = 𝑓−1 𝒘𝑇𝒙 + 𝑤0
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The Logistic Regression

• So far we have made no assumption on the data!

• We can get r(x) from a generative model or model it 

directly as function of the data (discriminative)

Logistic Regression:

Model: The logit    r(x) = log
𝑃(𝑦=1|𝒙)

𝑃(𝑦=0|𝒙)
= log 𝑝

1−𝑝

is a linear function of the data

< = >

( ) 0

1

log ,
1

d

i i

i

p
r x w x w w x

p =

= = + =
−



( ) ( )1 ,P y x w x= =( ) ( )
( )
1

1 ,
1 exp ,

P y x w x
w x

= = =
+ −



Training a Posterior Distribution Model

The posterior model for classification requires training. Logistic 
regression is not just a post-processing of a linear classifier. Learning 
of good parameter values needs be done with respect to the 
probabilistic meaning of the posterior distribution.

• In the probabilistic setting, learning is usually estimation

We now have a slightly different situation than with Bayes: We do not need 
class densities but a good posterior distribution.

• We will use Maximum Likelihood and Maximum-A-Posteriori 
estimates of our parameters 𝒘,𝑤0

Later: This also corresponds to a cost function of obtaining 𝒘,𝑤0

23



Maximum Likelihood Learning

The Maximum Likelihood principle can be adapted to fit the 
posterior distribution (discriminative case):

• We choose the parameters 𝒘,𝑤0 which maximize the posterior 
distribution of the training set 𝑿 with labels 𝒀:

𝑃 𝑦 𝒙;𝒘,𝑤0 = 𝑃 𝑦 = 1 𝒙;𝒘,𝑤0
𝑦 𝑃 𝑦 = 0 𝒙;𝒘,𝑤0

1−𝑦

𝒘,𝑤0 = argmax
𝒘,𝑤0

𝑃 Y 𝑋;𝒘,𝑤0

= argmax
𝒘,𝑤0

ς𝒙∈𝑋𝑃 𝑦 𝒙;𝒘,𝑤0 (iid)
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Logistic Regression: Maximum Likelihood Estimate of w (1)

To simplify the notation we use w, x instead of 𝒘,𝑤0

The discriminative (log) likelihood function for our data

( ) ( )
1

N

i
i iP Y X P y x

=

= 

( ) ( ) ( )
1 11 0 (1 )

y y y yP y x P y x P y x p p
− − = = = = −

1

1
(1 )i i

N

i

y y

i ip p
=

−
= −

( )log P Y X =

( )
1

log log 1
1

N
i

i i

i i

p
y p

p=

 
= + − 

− 


( ) ( ) ( )
1

log 1 log 1
N

i i i i

i

y p y p
=

+ − −

( ) ( )1 TP y x w x= = ( ) ( )0 1 TP y x w x= = −With and

“cross-entropy” cost function 
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log-likelihood function continued

( ) ( )log , logL Y X P Y X = ( )
1

log log 1
1

N
i

i i

i i

p
y p

p=

 
+ − 

− 


( ) ( )
1

log , log 1
N

T

i i

i

T
iw x

L Y X y w x e
=

= − +

Maximize the log-likelihood function with respect to w

( )log , 0L Y X
w


=



!

Maximum Likelihood Estimate of w (2)

( )
1

1
T

T

i w x
p w x

e


−
= =

+
Remember and linear Logit l𝑜𝑔

𝑝𝑖
1 − 𝑝𝑖

= 𝑤𝑇𝑥



( ) ( )
1

log , log 1
N

T

i i

i

T
iw x

L Y X y w x e
w w =

 
= − +

 


1 1

N
T T

i i i

i

T
i

T
i

w x

w x

e
y x x

e=

= −
+



Maximum Likelihood Estimate of w (3)

27



Derivative of a Dot Product

𝜕

𝜕𝒘
= 𝛻𝐰 =

𝜕

𝜕𝑤1
,
𝜕

𝜕𝑤2
, … ,

𝜕

𝜕𝑤𝑑

𝜕

𝜕𝒘
𝒘𝑇𝒙 =

𝜕

𝜕𝑤1
𝒘𝑇𝒙,

𝜕

𝜕𝑤2
𝒘𝑇𝒙,… ,

𝜕

𝜕𝑤𝑑
𝒘𝑇𝒙

𝜕

𝜕𝑤𝑖
𝒘𝑇𝒙 =

𝜕

𝜕𝑤𝑖
෍

𝑘=0

𝑑

𝑤𝑘𝑥𝑘 = 𝑥𝑖

𝜕

𝜕𝒘
𝒘𝑇𝒙 = 𝑥1, 𝑥2, … , 𝑥𝑑 = 𝒙𝑇

Gradient operator

Final derivative

Per component
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( ) ( )
1

log , log 1
N

T

i i

i

T
iw x

L Y X y w x e
w w =

 
= − +

 


0=
!

1 1

N
T T

i i i

i

T
i

T
i

w x

w x

e
y x x

e=

= −
+



( )( )
1

N
T T

i i i

i

y w x x
=

= −

• Non-linear equation in w : no closed form solution.

• The function Log L is concave therefore a unique 

maximum exists.

Maximum Likelihood Estimate of w (3)

1

1 1

T
i

T T
i i

w x

w x w x

e

e e
−

=
+ +

29



Iterative Reweighted Least Squares

The concave log 𝑃 𝒀|𝑿 can be maximized iteratively with the 
Newton-Raphson algorithm: Iterative Reweighted Least Squares

𝒘𝑛+1 ← 𝒘𝑛 −𝑯−1
𝜕

𝜕𝒘
ln 𝑃 𝒀|𝑿;𝒘𝑛

31

Derivatives and evaluation always with respect to 𝒘𝑛



Hessian: Concave Likelihood

𝑯 =
𝜕2

𝜕𝒘𝜕𝒘𝑇
ln 𝑃 𝑌|𝑋

𝜕

𝜕𝒘

𝜕

𝜕𝒘𝑇
ln 𝑃 𝑌 𝑋 = −෍

𝑖

𝒙𝑖𝒙𝑖
𝑇𝜎 𝒘𝑇𝒙𝑖 1 − 𝜎 𝒘𝑇𝒙𝑖 = −𝑿𝑺𝑿𝑇

We use an old trick to keep it simple:

𝒘 ≔
𝑤0
𝒘

, 𝒙 ≔
1
𝒙

The Hessian is negative definite:

• The sample covariance matrix σ𝑖 𝒙𝑖𝒙𝑖
𝑇 is positive definite

• 𝜎 𝒘𝑇𝒙𝑖 1 − 𝜎 𝒘𝑇𝒙𝑖 is always positive

The optimization problem is said to be convex and has thus a 
optimal solution which can be iteratively calculated.
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Iterative Reweighted Least Squares

The concave log 𝑃 𝒀|𝑿 can be maximized iteratively with the 
Newton-Raphson algorithm: Iterative Reweighted Least Squares

𝒘𝑛+1 ← 𝒘𝑛 −𝑯−1
𝜕

𝜕𝒘
ln 𝑃 𝒀|𝑿;𝒘𝑛

33

Derivatives and evaluation always with respect to 𝒘𝑛

Method results in an iteration of reweighted least-squares steps
𝑤𝑛+1 = 𝑋𝑆𝑋𝑇 −1𝑋 𝑆 𝑧

𝑧 = 𝑋𝑇𝑤𝑛 + 𝑆−1 𝑌 − 𝑃 𝑤𝑛

• Weighted least-squares with 𝒛 as target: 𝑋𝑆𝑋𝑇 −1𝑋 𝑆 𝑧
• 𝒛: adjusted responses (updated every iteration)

• Matrix : 𝑤𝑛+1 = 𝑤𝑛 − 𝑋𝑆𝑋𝑇 −1(𝑌 − 𝜎 𝑤𝑛𝑇𝑋 )𝑋𝑇



Example: Logistic Regression

35

0.25 0.75

Solid line: classification (𝑝 = 0.5)

Probabilistic result: posterior of 
classification everywhere

Dashed lines: 𝑝 = 0.25, 𝑝 = 0.75 lines

The posterior probability 
decays/increases with distance to 
the decision boundary

0.125 0.875



Linearly Separable

• Maximum Likelihood learning is problematic in the linearly 
separable case: 𝑤 diverges in length
→ leads to classification with infinite certainty

• Classification is still right but posterior estimate is not
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Prior Assumptions

• Infinitely certain classification is likely an estimation artefact:
We do not have enough training samples
→ maximum likelihood estimation leads to problematic results

• Solution: MAP estimate with prior assumptions on 𝑤
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𝑃 𝑤 = 𝑁 𝑤|0, 𝜎2𝐼

𝑃 𝑦|𝒙,𝒘,𝑤0 = 𝑝𝑦 1 − 𝑝 1−𝑦

𝒘,𝑤0= argmax
𝒘,𝑤0

𝑃 Y 𝑋;𝒘,𝑤0 𝑃 𝒘

= argmax
𝒘,𝑤0

𝑃 𝒘 ෑ

𝒙∈𝑋

𝑃 𝑦 𝒙,𝒘,𝑤0

Smaller 𝑤 are preferred (shrinkage)

Likelihood model is unchanged



MAP Learning
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ln 𝑃 𝒘 ෑ

𝒙∈𝑋

𝑃 𝑦 𝒙,𝒘,𝑤0 =

෍( 𝑦𝑖 𝒘
𝑇𝒙𝑖 +𝑤0 − ln 1 + exp 𝒘𝑇𝒙𝑖 +𝑤0 ) −

1

2𝜎2
𝒘 2

𝜕

𝜕𝒘
ln 𝑃 𝑌|𝑋 =෍

𝑖

( 𝑦𝑖 − 𝜎 𝒘𝑇𝒙𝑖 +𝑤0 𝒙𝑖
𝑇 ) −

1

𝜎2
𝒘𝑇 =

!
0

We need: 
𝜕

𝜕𝒘
𝒘 2 = 2𝒘𝑇

• Iterative solution: Newton-Raphson
• Prior enforces a regularization



Bayesian Logistic Regression

Idea: In the separable case, there are many perfect linear classifiers 
which all separate the data. Average the classification result and 
accuracy using all of these classifiers.

• Optimal way to deal with missing knowledge in Bayes sense

39Bishop PRML Bishop PRML



Logistic Regression and Neural Nets

• The standard single neuron with the logistic activation is logistic 
regression if trained with the same cost function (cross-entropy)

But training with least-squares results in a different classifier

• Multiclass logistic regression with soft-max corresponds to what is 
called a soft-max layer in ANN. It is the standard multiclass output 
in most ANN architectures.
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𝑃 𝑦 = 1 𝒙,𝒘,𝑤0 = 𝜎 𝒘𝑇𝒙 + 𝑤0

𝑥1
𝑥2
𝑥3
𝑥4
𝑥5

𝒘

𝚺
𝜎

𝑤0



Non-Linear Extension

• Logistic regression is often extended to non-linear cases:

Extension through adding additional transformed features

• Combination terms: 𝑥𝑖𝑥𝑗

• Monomial terms: 𝑥𝑖
2

Standard procedure in medicine: inspect resulting 𝑤 to find important factors and 
interactions   𝑥𝑖𝑥𝑗 (comes with statistical information).

• Usage of kernels is possible: training and classification can be 
formulated with dot products of data points. The scalar products 
can be “replaced” by kernel expansions with the kernel trick.

43

𝒙 ≔

𝒙
𝑥1𝑥2
𝑥2
2



Kernel Logistic Regression

• Equations of logistic regression can be reformulated with dot 
products: 

𝒘𝑻𝒙 =෍

𝑖=1

𝑁

𝛼𝑖𝒙𝑖
𝑇𝒙 →෍

𝑖=1

𝑁

𝛼𝑖𝑘 𝒙𝑖 , 𝒙

• No Support Vectors: kernel evaluations with all training points
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𝑃 𝑦 = 1 𝒙 = 𝜎 ෍

𝑖=1

𝑁

𝛼𝑖𝑘 𝒙𝑖 , 𝒙

IVM (import vector machine): 
Extension with only sparse support points
Ji Zhu & Trevor Hastie (2005) Kernel Logistic Regression and the Import Vector Machine, Journal of
Computational and Graphical Statistics, 14:1, 185-205, DOI: 10.1198/106186005X25619 



Discriminative vs. Generative

Comparison of logistic regression to naïve Bayes

Ng, Andrew Y., and Michael I. Jordan. "On Discriminative vs. Generative 
classifiers: A comparison of logistic regression and naive Bayes." Advances in 
NIPS 14, 2001.

Conclusion: 

• Logistic regression has a lower asymptotic error

• Naïve Bayes can reach its (higher) asymptotic error faster

General over-simplification (dangerous!): use a generative model 
with few data (more knowledge) and a discriminative model with a 
lot of training data (more learning)
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Logistic Regression: Summary

 A probabilistic, linear method for classification!

 Discriminative method (Model for posterior)

 Linear model for the Logit

 The posterior probability is given by the logistic function

of the Logit:

 ML-estimation of     is unique but non-linear

 Logistic regression is a very often used method

 Extendable to multiclass

General Purpose method, included in every standard software, 

e.g.   glm in R, glmfit/glmval in  Matlab – its easy to apply!

log ,
1

p
w x

p
=

−

( ) ( )
( )
1

1 ,
1 exp ,

P y x w x
w x

= = =
+ −

w


