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Nonlinear Classifiers II
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Nonlinear Classifiers: Introduction

• Classifiers

• Supervised Classifiers

• XOR problem

• Linear Classifiers

• Perceptron

• Least Squares Methods

• Linear Support Vector Machine

• Nonlinear Classifiers

• Part I: Multi Layer Neural Networks

• Part II: Polynomial Classifier, RBF,  
Nonlinear SVM

• Decision Trees

• Unsupervised Classifiers
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Nonlinear Classifiers: Introduction

What would a linear 
SVMs do with this data?

x=0

• An example: Suppose we’re in 1-dimension
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Nonlinear Classifiers: Introduction

Not a big surprise

Positive “plane” Negative “plane”

x=0

• An example: Suppose we’re in 1-dimension



3

5

What can be done 
about this?

x=0

• Harder 1-dimensional dataset

Nonlinear Classifiers: Introduction

6

non-linear basis 
function

x=0
),( 2

kkk xxz

Nonlinear Classifiers: Introduction
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),( 2

kkk xxz
x=0

non-linear basis 
function

Nonlinear Classifiers: Introduction
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x=0

Nonlinear Classifiers: Introduction

x=0

• Linear classifiers are simple and computationally efficient. 

• However for nonlinearly separable features, they might lead 

to very inaccurate decisions. 

• Then we may trade simplicity and efficiency for accuracy 

using a nonlinear classifier.
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x1 x2 XOR Class

0 0 0 B

0 1 1 A

1 0 1 A

1 1 0 B

The XOR problem

• There is no single line (hyperplane) that separates class A 
from class B.  On the contrary, AND and OR operations 
are linearly separable problems.
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Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifiers

• Polynomial Classifier 

– Special case of a Two-Layer Perceptron 

– Activation function with non linear input

• Radial Basis Function Network

– Special case of a two-layer network 

– Radial Basis activation Function

– Training is simpler and faster

• Nonlinear Support Vector Machine 
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Polynomial Classifier: XOR problem

• XOR problem with polynomial function.

• With nonlinear polynomial function classes can be classified.

• Example XOR-Problem:

linear not separable!

X

A

A B

B

1x

2x
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Polynomial Classifier: XOR problem

 z x

H
1z

2z

3z

…but with a polynomial function!

A
B

X

A

A B

B

1x

2x

• XOR problem with polynomial function.

• With nonlinear polynomial functions, classes can be classified.

• Example XOR-Problem:

: X H 
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X H

1 2 3

1
( ) 1 1 2 0

4
g z z z z    

… that‘s separable in H

by the Hyperplane:

Polynomial Classifier: XOR problem

 z x

1

2

1 2

x

z x

x x

 
 
 
  

With                  we obtain:
(0,0)  (0,0,0) 
(0,1)  (0,1,0)
(1,0)  (1,0,0) 
(1,1)  (1,1,1)





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H

1 2 3

1 2 1 2 1 2

0 0 0 0 0 (true)

0 1 0 1 0 (false)

1 0 1 0 0 (false)

1 1 1 1 1 (true)

z z z

x x x x x x

A

B

B

A



X

1 2 1 2

1
( ) 2

4
g x x x x x   

is Polynom in X

Polynomial Classifier: XOR problem

X H

 z x

0( ) 0g z wz w  Hyperplane:

1 2 3

1
( ) 2 0

4
g z z z z    

is Hyperplane in H
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Decision Surface in X

2 1 1(x -0.25)/(2x -1)x  MatLab:
>> x1=[-0.5:0.1:1.5];

>> x2=(x1-0.25)./(2*x1-1);

>> plot(x1,x2);

Polynomial Classifier: XOR problem

X H

 z x

1 2 1 2

01
( ) 1 1 2

04

x A
g x x x x x

x B

 
   

 

16

Polynomial Classifier: XOR problem

 With nonlinear polynomial functions, classes can be classified 

in original space X

– Example: XOR-Problem

X  z x

H
1z

2z

3z

A
B

1x

2x

A

A B

B

was not linear separable!

… but linear separable in H !

… and separable in X with a 

polynomial function!

1x

2x

A

A B

B

X
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Polynomial Classifier

more general 

1
2

0

1 1 1 1

( )
l l l l

i i im i m ii i

i i m i i

g x w w x w x x w x


    

      

• Decision function is approximated by a polynomial function g(x) ,

of order p  e.g. p = 2: 

 

 

0

1 2 12 11 22

2 2

1 2 1 2 1 2 1 2

( ) ,

with 

          , , , , ,

          , , , ,  and  ,

T

T

T T

g x w z w

w w w w w w

z x x x x x x x x x

 



   

– Special case of a Two-Layer Perceptron 

– Activation function with polynomial input
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Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifiers

• Polynomial Classifier 

• Radial Basis Function Network

• Special case of a two-layer network 

• Radial Basis activation Function

• Training is simpler and faster

• Nonlinear Support Vector Machine 

• Application: ZIP Code, OCR, FD (W-RVM) 

• Demo: libSVM, DHS or Hlavac 
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Radial Basis Function 

• Radial Basis Function Networks (RBF)

• Choose  

2

2
with      ( ) exp

2

i

i

i

x c
g x



 
  
 
 

0

1

( ) ( )
k

i i

i

g x w w g x


 
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Radial Basis Function 

0

1

( ) ( )
k

i i

i

g x w w g x


 

2.5, 0.0, 1.0, 1.5, 2.0,
1,..., ,
5,

1/ 2

ic
i k
k



 





2.5, 0.0, 1.0, 1.5, 2.0
1,..., ,
5,

1/ 12

ic
i k
k



 





How to choose , , ?i ic k

2

2
with      ( ) exp

2

i

i

i

x c
g x



 
  
 
 

Examples:
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Radial Basis Function 

• Radial Basis Function Networks (RBF)

• Equivalent to a single layer network, with RBF 

activations and linear output node.
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Radial Basis Function: XOR problem 

2

1
     ,

0

0
       ,

1

1
2121 

















 cc

2

1

2

2

exp( )
( )

exp( )

x c
z x

x c


  
  
   

X

(1,1)A

(0,0)A (1,0)B

(0,1)B

2x

1x

1

1

2z

1z

1

1

(1,0)
(0,1)

B


(1,1)A

(0,0)A

H

 z x









































































368.0

368.0

1

0

    
368.0

368.0

0

1

135.0

1

1

1

   
1

135.0

0

0:

2 2

1 2( ) exp( ) exp( ) 1 0g x x c x c       

1 2( ) 1 0g z z z   

… not linear separable pattern set in X .

… separable using a nonlinear function (RBF) in X that separates  

the set in H with a linear decision hyperplane!

(1,1)A

(0,0)A
(1,0)B

(0,1)B

1x

1

1

2x X
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Radial Basis Function 

• Training of the RBF networks

1. Fixed centers:  Choose centers randomly among the data 

points.  Also fix σi’s.  Then                       is a typical linear 

classifier design.

2. Training of the centers ci:  This is a nonlinear optimization task.

3. Combine supervised and unsupervised learning procedures.

4. The unsupervised part reveals clustering tendencies of the data 
and assigns the centers at the cluster representatives.

0( )
T

g x w w z 

• Decision function as summation of k RBF’s

0 2
1

( ) ( )
( ) exp

2

Tk
i i

i

i i

x c x c
g x w w



  
   

 

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Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifier

• Polynomial Classifier 

• Radial Basis Function Network

• Nonlinear Support Vector Machine

• Application: ZIP Code, OCR, FD (W-RVM) 
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Nonlinear Classifiers: SVM

XOR problem:
• linear separation in high dimensional space H via nonlinear 

functions (polynomial and RBF’s) in the original space X.

• for this we found nonlinear mappings 

X X

  :x X H 

Is that possible without knowing the mapping function      ?!?

linear

H z x
H

direct ?

26

Non-linear Support Vector Machines

– Recall that, the probability of having linearly 
separable classes increases as the dimensionality
of feature vectors increases.  

Assume the mapping:

,   l kx R z R k l   

kR-> Then use linear SVM in
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Non-linear SVM

• Support Vector Machines:  

– Recall that in this case the dual problem 
formulation will be 

– the classifier will be
0

0

1

( )

 
s

T

N
T

ii i

i

g z w z w

y z z w


 

 

with kx z R 

 

, 1

                              

1
arg max   subject to  0, 0

2

where , 1,1 (class labels)

N N N
T

i i j i j i j i i i

i i j i

k

i

y y z z y

z R y



   


 
   

 

  

  
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=>  Something clever (kernel trick):  
Compute the inner products in the high dimensional  
space as functions of inner products performed in 
the low dimensional space!!!

Non-linear SVM

• Thus, only inner products in a high dimensional 
space are needed!
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– Is this POSSIBLE??  Yes.  Here is an example

  2

1 2

2

1

3

1 2

2

2

Let  ,  

Let  2

T
x x x R

x

x z x x R

x

 

 
 

   
 
  

Non-linear SVM

 
2

2

1 1 2 2( )
T

i j i j i jx x x x x x 

2 2 2 2

1 1 1 1 2 2 2 22i j i j i j i jx x x x x x x x  

T

i jz z

2( )
T T

i j i jz z x xIt is easy to show that

 

2

1

2 2

1 1 2 2 1 2

2

2

, 2 , 2

j

i i i i j j

j

x

x x x x x x

x

 
 

  
  
 
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• Mercer’s Theorem

To guarantee that the symmetric function                 (kernel) can be 
represented as  

that is an inner product in H,

it is necessary and sufficient that 

for any g(x) :

( ) ( ) ( , )i j i jr r

r

x x K x x  

( , ) ( ) ( ) 0i j i j i jK x x g x g x d x d x 

2( )g x d x  

Hxx  )(Let 

( , )i jK x x

Non-linear SVM

(1)

(2)
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• Kernel Function

– So, any kernel K(x,y) satisfying (1) & (2), 

corresponds to an inner product in SOME space!!!

– Kernel trick: We do not have to know the 

mapping function Ф(x), but for some kernel 

functions we try to linearly separate pattern sets 
in a high dimensional space only using a function 
of the inner product in the original space.  

Non-linear SVM

32

• Kernel Functions: Examples

• Polynomial:

Non-linear SVM

( , ) ( 1) ,   q 0
T q

i j i jK x x x x  

• Radial Basis Functions:
2

2
( , ) exp

i j

i j

x x
K x x



 
  
 
 

• Hyperbolic Tangent:

for appropriate values of b, g

(e.g. b =2 and g =1).

( , ) tanh( )
T

i j i jK x x x xb g 
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Support Vector Machines Formulation 

– Step 1: Choose appropriate kernel. This 
implicitly assumes a mapping to a 
higher dimensional (yet, not known)
space.

Non-linear SVM
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SVM Formulation

• Step 2: 

This results to an implicit combination

,

1
arg max( )

2

subject to:   0 ,   1,

(

2,...

0

,

,

)i i j i j

i i j

i

i i

i

i jK xy

C N

xy

i

y



  





 

  



 



)(
1

ii

N

i

i xyw
s






Non-linear SVM
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– SVM Formulation 

• Step 3: Assign to

1 0

1

2 0

1

  if  ( )  , ) 0

  

 if  ( )  , ) 0

s

s

N

ii i

i

N

ii i

i

g x y K( x x w

g x y K( x x w

 

 





  

  





  x

Non-linear SVM
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• SVM: The non-linear case

• The SVM Architecture

• SVM special case of a two-layer neural network with 
special activation function and a different learning 
method. 

• Their attractiveness comes from their good 
generalization properties and simple learning.

Non-linear SVM
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• Linear SVM – Pol. SVM   in the input space X

Non-linear SVM

38

• Pol. SVM – RBF SVM in the input space X

Non-linear SVM
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Nonlinear Classifiers: SVM

• Pol. SVM – RBF SVM in the input space X

40

Nonlinear Classifiers: SVM

• Software


