Nonlinear Classifiers |l

Nonlinear Classifiers: Infroduction

¢ Classifiers
e Supervised Classifiers

e XOR problem

¢ Linear Classifiers
e Perceptron
¢ Least Squares Methods
e Linear Support Vector Machine

¢ Nonlinear Classifiers
e Part I: Multi Layer Neural Networks

e Part II: Polynomial Classifier, RBF,

Nonlinear SVM
e Decision Trees




Nonlinear Classifiers: Infroduction

e An example: Suppose we're in 1-dimension

What would a linear
SVMs do with this data?

Nonlinear Classifiers: Infroduction

e An example: Suppose we're in 1-dimension

Not a big surprise

X_:Q C
Positive “plane Negative “plane”




Nonlinear Classifiers: Infroduction

e Harder 1-dimensional dataset

What can be done
about this?

Nonlinear Classifiers: Infroduction

0 non-linear basis
function

Zk:(xk’xlf)




Nonlinear Classifiers: Infroduction

non-linear basis
function

Zk=(Xk,X|f)

Nonlinear Classifiers: Infroduction
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e Linear classifiers are simple and computationally efficient.

e However for nonlinearly separable features, they might lead
to very inaccurate decisions.

e Then we may trade simplicity and efficiency for accuracy
using a nonlinear classifier.




The XOR problem
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0 0 0 B
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1 0 1 A

1 1 0 B

e There is no single line (hyperplane) that separates class A
from class B. On the contrary, AND and OR operations
are linearly separable problems.
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Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifiers

e Polynomial Classifier

— Special case of a Two-Layer Perceptron

— Activation function with non linear input

e Radial Basis Function

— Special case of a two-
- Radial Basis activation

Network

layer network
Function

- Training is simpler and faster

e Nonlinear Support Vector Machine
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Polynomial Classifier: XOR problem

e XOR problem with polynomial function.

¢ With nonlinear polynomial function classes can be classified.

¢ Example XOR-Problem:

X
Xl
B! °A linear not separable!
o X2
A B
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Polynomial Classifier: XOR problem

e XOR problem with polynomial function.

e With nonlinear polynomial functions, classes can be classified.

e Example XOR-Problem:

X

¢ X >H

...but with a polynomial function!
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Polynomial Classifier: XOR problem

X H

Y, 1

o 110

100 Y%

% ¢ (0,0) > (0,0,0)

With z=| x, we obtain: #(0,1) > (0,1,0)
X1X2 ¢(1/0) =4 (11010)

$(1,1) > (1,1,1)

... that's separable in H 9(2) :%_121_122 +22,-0

by the Hyperplane:
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Polynomial Classifier: XOR problem

X H
ys 1

(1] 110

100 %

Hyperplane: g(z)=wz+w,=0

g(;):%—zl—zz+223=0 X - 2 g
is Hyperplane in H X X | X X, XX, (0]
0 0[O0 O O | A(true)
g(x) =%—x1—x2 +2X%,X, 0 1|0 1 O |B(false)
1 01 0 0 |B(false)
is Polynom in X 1 101 1 1 |Adwe
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Polynomial Classifier: XOR problem

X H

“ Y !

o 110

100 Y%

Decision Surface in X —

e edt view esrt Took  window  rep

1 >0 xe B
g(g):z—lx1—1x2+2x1x2 <0 xe N

X, = (X1'0'25)/(2X1'1) MatLab:

>> x1=[-0.5:0.1:1.5];

>> x2=(x1-0.25) ./ (2*x1-1) ;
>> plot(x1,x2);
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Polynomial Classifier: XOR problem

» With nonlinear polynomial functions, classes can be classified
in original space X

- Example: XOR-Problem

was not linear separable!
... but linear separable in H !

... and separable in X with a
polynomial function!
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Polynomial Classifier

more general
e Decision function is approximated by a polynomial function g(x) ,

of order P e.g. Pp=2:

| 1 |
g(x) =w, +ZWiXi "‘Zl Z Wi Xi Xy + ZWiiXi2
i1 i1

i=1 m=i+1

g(x)=w'z+w,

with
;

w :[W1’W2’W

12’W

11'W22]’

A Z[X1’X2'X1X2'X12'X22:|T and )_(:[xi,xz]T

— Special case of a Two-Layer Perceptron
- Activation function with polynomial input
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Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifiers

e Polynomial Classifier

Radial Basis Function Network
e Special case of a two-layer network
e Radial Basis activation Function
e Training is simpler and faster

Nonlinear Support Vector Machine
Application: ZIP Code, OCR, FD (W-RVM)
Demo: libSVM, DHS or Hlavac
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Radial Basis Function

e Radial Basis Function Networks (RBF)

k
e Choose  9(X)=w,+ Y wg,(x)
i=1

. HZ_QiHZ
wi g;(x) exp[ 5 iz

T3
T,
1 ay

€ e [N cy
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Radial Basis Function

g(ﬁ) =W, + iwigi (X) with g; (X) = eXp{—Xz_;ziJ

Examples:

¢ =-25, 0.0, 1.0, 1.5, 2.0,
i=1..Kk,
k=5,

o=1/2

¢, =-25, 00, 1.0, 15, 2.0
i=1..Kk,
K15

c=1/12

How to choose C;0;,k?

10
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Radial Basis Function
e Radial Basis Function Networks (RBF)
e FEquivalent to a single layer network, with RBF
activations and linear output node.
Xy < > Iy
2, 0= L o8
4 S -J-—-
" : 7 Uy
" W
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Radial Basis Function: XOR problem

. {exp(—X—c1 )}

exp(—[x—c,|)

1] [0.368
-
0| |o.368
—o—> X, 0] [0.368
A(00| 1B -
.0) (1,0) 1 0.368

9(z)=2+12,-1=0
g(x) =exp(—|x—c,|*) +exp(-|x—c,[) -1=0

... not linear separable pattern set in X .

... separable using a nonlinear function (RBF) in X that separates
the set in H with a linear decision hyperplane!

11
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Radial Basis Function

e Decision function as summation of k RBF’s

[_ (x—g)T(x—gi)J

k
g(X) =W, + W, exp

2
i=1 20,

e Training of the RBF networks

1. Fixed centers: Choose centers randomly among the data
points. Also fix ¢;’s. Then g(x)=w,+w'z is a typical linear
classifier design.

2. Training of the centers C;: This is a nonlinear optimization task.

3. Combine supervised and unsupervised learning procedures.

The unsupervised part reveals clustering tendencies of the data
and assigns the centers at the cluster representatives.
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Nonlinear Classifiers: Agenda

Part II: Nonlinear Classifier

e Polynomial Classifier

e Radial Basis Function Network

¢ Nonlinear Support Vector Machine

e Application: ZIP Code, OCR, FD (W-RVM)

12
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Nonlinear Classifiers: SVM
XOR problem:

¢ linear separation in high dimensional space H via nonlinear
functions (polynomial and RBF’s) in the original space X.

« for this we found nonlinear mappings ¢(x): X —>H

X m X
o ~ 0
W(x) H
o linear /

Is that possible without knowing the mapping function ¢ ?!1? |
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Non-linear Support Vector Machines

- Recall that, the probability of having linearly
separable classes increases as the dimensionality
of feature vectors increases.

Assume the mapping:

xeR' > zeR¥, k>I

-> Then use linear SVM in

13



Non-linear SVM

e Support Vector Machines: with x—zeR*

- Recall that in this case the dual problem
formulation will be

N N N
arg max[z/l,—%z/ujyiyjz:zjj subjectto » A4y, =0, 4 =0
2 i 0 i-1

where z; € R, y e {-1,1} (class labels)

- the classifier will be g(2)=w'z+w,
NS

=D ANz 2+ W,
=1
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Non-linear SVM

e Thus, only inner products in a high dimensional
space are needed!

=> Something clever (kernel trick):
Compute the inner products in the high dimensional

space as functions of inner products performed in
the low dimensional space!!!

28
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Non-linear SVM ”

- Is this POSSIBLE?? Yes. Here is an example
Let x=[x, X,] eR?

2

X
Let x—>z=|~/2xx, |eR®

2
X2

It is easy to show that ;iTz, =(>_<iTX,-)2
2
(&TX,')Z :(Xilxj1+ XiZij)
= Xi21XJ?1 + 2Xi1Xj1Xi2Xj2 + Xizlegz
X3
:(Xizl’\/axilxizlxizz) Vaxyxg, | =2z
X2,

Non-linear SVM *

e Mercer’'s Theorem

Letx >g(x)eH

To guarantee that the symmetric function K()_(i,xj) (kernel) can be
represented as

D . (x)e. (X)) = K(x;, X;)

that is an inner product in H,

it is necessary and sufficient that
[K(6x)9(x)g(x;)dxdx; >0 1)

forany g(x): | 9°(%) dx<+o (2)

15
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Non-linear SVM

e Kernel Function

- So, any kernel K(x,y) satisfying (1) & (2),
corresponds to an inner product in SOME space!!!

- Kernel trick: We do not have to know the
mapping function @(x), but for some kernel
functions we try to linearly separate pattern sets
in @ high dimensional space only using a function
of the inner product in the original space.
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Non-linear SVM

e Kernel Functions: Examples

. . T
e Polynomial: K(x;,x;)=(x x;+1)% q>0

e Radial Basis Functions:

K@i,m_em{ b xf }

e Hyperbolic Tangent:

K(X;, X J)_tanh(ﬁx X;+y)

for appropriate values of ,3, V4
(e.g. f=2and y=1).

16
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Non-linear SVM

Support Vector Machines Formulation

- Step 1: Choose appropriate kernel. This
implicitly assumes a mapping to a
higher dimensional (yet, not known)
space.
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Non-linear SVM

SVM Formulation
e Step 2:

A=arg max(zﬂ"l _%Zﬂ’lﬂ’jyiyjK(XHXj))
4 i ij

subjectto: 0<A <C, i=12,..,N

Z&yi =0

This results to an implicit combination

V_VZ_’\IZS&Yi@()_(i)

17
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Non-linear SVM

- SVM Formulation

e Step 3: Assign X to

NS
o, if g()_():Zﬂ,lyi K(X;, X) +W, 20

i=1

NS
w, if g()_():zﬂﬁyi K(Xi,X)+w, <0

i=1
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Non-linear SVM

e SVM: The non-linear case

e The SVM Architecture

¢ SVM special case of a two-layer neural network with
special activation function and a different learning
method.

¢ Their attractiveness comes from their good
generalization properties and simple learning.

Ty < > 1 K(oe, o)
.

N Yz

&y > + K(ae, o) A4,

4 - 32

-
. W
A : s y
4 : s Wy

;- - Kty )

18



37

Non-linear SVM

e Linear SVM - Pol. SVM in the input space X

Training Error: 0.270 :
TestError 0288 iiiiiiiiiiiiiiiiiiiiain
Bayes Error:  0.210 0

Non-linear SVM
e Pol. SVM - RBF SVM in the input space X

P R .- S

Training Error: 0.160
Test Error 0.218
Bayes Error:  0.210
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Nonlinear Classifiers: SVM

e Pol. SVM - RBF SVM in the input space X

HH

“Training Error: 0.065
Test Error 0.307

Bayes Error:  0.210::::
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Nonlinear Classifiers: SVM

e Software

o SV Thorsten Joachims - free software in C. known for

quality and speed.

e LB SVA: free software based on Platt’s SMO algorithm and
Joachims code. written by Chih-Chung Chang and Chih-Jen
Lin.

o Equbits: Commercial software package which automates the

tuning and model selection with SVMs
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