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Topic overview

e Neural Networks (recap) and Deep Learning

e Improving DNN: Hyperparameter tuning, regularization,
optimization

e Convolutional Neural Networks (CNN)

e CNN popular architectures

e Sequence Models/Recurrent neural networks (RNN)

e Beyond the basics (object detection and segmentation)
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Topic overview

e Convolutional Neural Networks (CNN)
e Convolutions and cross correlation
e Image filtering examples
e Dimensionality reduction - Pooling
e Weight visualization
e Convolutional neural networks

e CNN popular architectures
e LeNet, AlexNet, ResNet, InceptionNet, U-Net
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Computer Vision Problems

Classification Instance
+ Localization

Classification Object Detection

Segmentation
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Motivation

e Animage is represented as a matrix of pixel values.
e We want the classification to be invariant to: rotation, shift, deformation, scaling
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Source: http://introtodeeplearning.com/
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Motivation

e Compare image features found in the images

Source: http://introtodeeplearning.com/
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Problem with a fully connected network

Image of dimensions 1000x1000x3 has 3 million feature inputs to a network.

x € R3M
W@ (1000,3M) = 3 billion parameters

With 1000 neurons in the first hidden layer, we will already have 3 billion parameters
to update.

Source: https://www.coursera.org/learn/convolutional-neural-networks/
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Fundamental Properties of Images

Property 1: Image statistics are locally correlated/structured.
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Fundamental Properties of Images

Property 2: Redundancy of structures.
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Fundamental Properties of Images

Property 3: Global Correlation.

10



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019

Fundamental Properties of Images

Property 4: Compositionality of objects - a small set of building blocks (L1) is enough to
build complex objects (L5) vis recursive composition.
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Convolutional Neural Networks

* Key Idea: Constrain the networks architecture to reduce the
amount of network parameters.

* The network is constrained such that:
* Hidden units are locally connected
* Weights shared among hidden units
* Hidden layers are subsampled

* These changes to the network architecture reflect properties
which are specific to images.

12
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Intuition about deep representation

2
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Source: https://www.coursera.org/learn/neural-networks-deep-learning



https://www.coursera.org/learn/neural-networks-deep-learning

UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019

Image Filtering (linear)

14
For more details see: Digital Image Processing by R.C. Gonzales & R.E. Woods
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| Filtering (linear)

« Each novel output pixel value O(Xx,y) is as linear function of the

neighboring pixel values of I(x,y).
The linear weights are stored in the filter kernel K(s,t) (also
called filter or filter mask)

Z Zk St x—i—s,y—i—t]

s=—at=-b
10| 5 | 3 filter function
4 |51 7
1 (1|7
I Input Image O Output image
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For more details see: Digital Image Processing by R.C. Gonzales & R.E. Woods
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Spatial Filtering

:image origin

Nl [
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Image pixels —

Image
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Filter coefficients
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section under filter

16
For more details see: Digital Image Processing by R.C. Gonzales & R.E. Woods
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Linear Filtering as correlation or convolution

- Cross-correlation: Z Zk 11[x+s,y+t]

s=—at=—b

Symbol: O=k®I

. a b
- Convolution: O[x’y]:ZZk[S,t]][x_S’y_t]
Symbol: O=/Jx] s=-at==b

Convolution is commutative and associative

For symmetric kernels there is no difference !!!

17
For more details see: Digital Image Processing by R.C. Gonzales & R.E. Woods
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Convolution

18
For more details see: Digital Image Processing by R.C. Gonzales & R.E. Woods
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Linear filters: examples

Original Identical image
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Linear filters: examples

Original Shifted left
By 1 pixel
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Linear filters: examples

Original

Blur (with a mean filter)
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Linear filters: examples
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Padding

The image input and output from a convolution is not of the same

dimensions. To account for this, we can add padding to the input.

 "Valid" padding: No padding
« Output image dimensions: (nxn) x(fxf) — (n—f+1) x(n—f+1)
- "Same" padding: Pad so output size is the same as the input.

e Padding amount to input image: p= %
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Stride

* Stride decides the sliding amount:
e Padding: p
e Stride: s
e QOutput with padding and stride:

(nxn) *(f x f)

("+2P—f +1) x (% +1)

~

Stride =2
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Motivation

e Compare image features found in the images

filters

26

Source: http://introtodeeplearning.com/
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Use Spatial Structure

e Connect patches of input to neurons in hidden layer.
e Neuron connected to to a region of the input only "sees" this area.
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Source: http://introtodeeplearning.com/
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Use Spatial Structure

e Connect patches of input to neurons in hidden layer.
e Neuron connected to to a region of the input only "sees" this area.
e Configure the network as in a sliding window approach.
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e Use multiple filters to extract different features.
e Spatially share the parameters of each filter.
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Source: http://introtodeeplearning.com/
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Spatial Arrangement of Output Volume

depth

Layer Dimensions:
32 hxwxd

where h and w are spatial dimensions

Bt PO . d (depth) = number of filters
[—— height
——=0 0000 o
Filter step size
Receptive Field:
32 widih Locations in input image that

a node is path connected to

29

Source: http://introtodeeplearning.com/
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Pooling

* Dimensionality reduction method/down-sampling process, that
locally pools feature responses together
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Max Pooling

* Max pooling example for down-sampling. Locally pools maximum
feature responses together.
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Max Pooling

* Max pooling example for down-sampling. Locally pools maximum
feature responses together.

9102|1109
6(911(2]19]0 9
3119191213

ﬁ
0(2(9(9(1/60
11912191
913(10(23]9

32



UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019

Max Pooling

* Max pooling example for down-sampling. Locally pools maximum
feature responses together.
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Max Pooling

* Max pooling example for down-sampling. Locally pools maximum
feature responses together.
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Max Pooling

* Max pooling example for down-sampling. Locally pools maximum
feature responses together.
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Max Pooling

* Max pooling example for down-sampling. Locally pools maximum
feature responses together.
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Max Pooling

* Max pooling is a down-sampling process, that locally pools
feature responses together. Its main benefits are:

1. Dimensionality reduction
- Reduces the number of parameters
- Simplifies discovery of global patterns
2. Invariance to small changes of the input signal

o102 ([1((0]9

6 191121910

B EEE o j j ? Other used pooling strategies:
vjzje oL NI * Average Pooling
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Pooling Layer

Input Image Feature Maps

38
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Layered CNN Architecture

C1 C2 C3 C4 C5 F6 F7
\/
fully connected layers
A
\
Z=WTx] A=f(2) max(A)
linear filters activation spatial
function pooling 39



UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019

Classification

* Add an output layer and train the weights with backpropagation

V)

Cl C2 C3 C4 C5 F6 F7

e

» dog

40



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019

Visualization of the learned weights

* When trained for face detection:

ta |l a|lalls| rmo || 7

41

Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Lee, Honglak, et al. 2009
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Visualization of the learned weights

* When trained for different object classes:

elephants chairs faces, cars, airplanes, motorbikes

.-"—‘f

\\—'k -;f«ld_l o
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Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Lee, Honglak, et al. 2009
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1x1 Convolutions

Network in network

* Used for convolutions on the feature maps.

- Pooling shrinks the height and width of an image/feature map
- 1x1 Convolutions shrinks the number of filters

« Ex. 28x28x192 to 28x28x32

""."‘

43

Source: Network in Network, Min Lin et al, University of Singapore
https://towardsdatascience.com/a-comprehensive-introduction-to-different-types-of-convolutions-in-deep-learning-669281e58215
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e Used to automatically classify handwritten digits on bank cheques in USA.
e Convolutions for local receptive fields and weight sharing.

e OQutput: Gaussian (RBF) kernel before output layer.

e Average pooling for subsampling.

INPUT feature maps feature maps feature maps feature maps OUTPUT
28x28 4@24x24 4@12x12 12@8x8 12@4x4 10@1x1

Today a softmax
output is used.

C3: f. maps 16@10x10
C1: feature maps S4: f. maps 16@5x5

6@28x28 R e
311 : layer cg.
6@14x14 II— CS:1ayer Fg: layer OUTPUT

INPUT
32x32

84 10

Total:
60K parameters

|
Full coanection | Gaussian connections

Convolutions Subsampling Convolutions Subsampling Full connection 45

Source: Gradient-based learning applied to document recognition - LeNet-5, Y. LeCun, L. Bottou, Y. Bengio, P. Haffner
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e Max-pooling instead of average pooling.
e RelU instead of tanH activation function.
e Data augmentation to prevent overfitting.
e Mirroring, random crops, intensity change.

e Dropout (longer convergence time, but avoids overfitting).
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Source: ImageNet Classification with Deep Convolutional Neural Networks, Alex Krizhevsky, llya Sutskever, Geoffrey E. Hinton
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AlexNet - 2012

e Max-pooling instead of average pooling.
e RelU instead of tanH activation function.
e Data augmentation to prevent overfitting.
e Mirroring, random crops, intensity change.
e Dropout (longer convergence time, but avoids overfitting).
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60M parameters
Source: https://www.learnopencv.com/understanding-alexnet/
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Source: Very Deep Convolutional Networks for Large-Scale Image Recognition, Karen Simonyan & Andrew Zisserman, University of Oxford
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InceptionNet (GooglLeNet) - 2014

e Do not pick the operation to do - do them all.
e 1x1 convolution
e 3x3 convolution (same convolutions)
e 5x3 convolution (same convolutions)
e Pooling (with padding)
e Repeat the simple structure multiple times

Filter
concatenation

Bl e

1x1 convolutions 3x3 convolutions 5x5 convolutions 3x3 max pooling

| t 5x5
928 x 28 X 192 MAX-POOL/

Previous layer

49

Source: Going deeper with convolutions, Christian Szegedy et al. Google (2014)
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Filter
concatenation

]

1x1 convolutions

3x3 convolutions

5x5 convolutions

Previous layer

3x3 max pooling

Filter
concatenation

—

1x1

3x3 convolutions

5x5 convolutions

1x1 convolutions

)

[}

1x1 convolutions

wﬁons

Previous layer

LY

3x3 max pooling

DEEP NEURAL NETWORKS| PATTERN RECOGNITION 2019

(a) Inception module, naive version (b) Inception module with dimension reductions

- R —. R —.
CONV CONV CONV
5% 5, 1x1, 5 x5,
same 16, 32,
) 1x1x192 28x28X16  5x5x16 98 x 28 X 32
32 28 X 28 x 32 X 28 %

28 x 28 x 192

28 x 28 x 192

(28 x 28 x 32) x (b x5 x192) =120M (28 x 28 x 16) x 192 = 2.4M

(28 x 28 x 32) x (5 x 5 x 16) = 10M
2.4+ 10M = 12.4M

Source: Going deeper with convolutions, Christian Szegedy et al. Google (2014) 50

https://www.coursera.org/learn/convolutional-neural-networks
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InceptionNet (GooglLeNet) - 2014

e Side branches - use intermediate layers to do the prediction.
e Use final output and side branches to compute the total cost.

Ea
- . zd
9 i - A
£, = = Eq 2“
i i N B o om /B ; J
Inception-v1: Ep B g . B 1 g/ EH \p M
& 5 8 A B g 2 3 2 2 H E g
/M parameters u & " W g s N ZVEHZ NN
e e e N & N A\ Bl EN i E
IER T ) R IR T % z ] AR I e b4 z
2 28 z 52 2N @ ) v g 2N v g & & ' B N B g g
2 ) H 2 g o g @ H v ] g & v H g g 4 B EEE
: 5 B H A A oM iog B E Do it
2 st Ch  EN \Ed BN - = . .
\ Bt
- 3 o E =k
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AW NEE':‘Ii 1060
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N e

¢
Meme citation in original paper:
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Source: Going deeper with convolutions, Christian Szegedy et al. Google
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34-layer plain 34-layer residual
[ n7conv,64,/2 | [ 7 conv,
. . . . ‘n
e |dea: Skip connections - forward outputs from activations e
A2
to future layer inputs. —
Y
e Allows to train really deep networks: —
o It avoid vanishing gradients. Coss] [
e Skip connection doesn't hurt as it is easy to learn —
¥
. . . . [ 3conv128 | [ 3aconv, 28 |
the identity function: Cobe  Casw
| m«;;v‘m ] [ Zﬂeo;v.ln ]
[ 3sconv128 | [ 3a3conv, 28 |
¥
Skip is added before the second activation. } - } ‘l
A
| 33comw, 256,72 | (
x| a1+ — g(0+1) 4 o) ==
[ 3a3conv,25 | [ 33com, 256 |
weight layer Cowm ] [semss ]
[ 33conv,25 | [ 3a3com, 25 |
A2
Fix) yrely x i
i ht I . . 3)3 conv, 256 3x3 w!v. 256
DR identity — el =
A2 \
33 conv, 256 [ 33comv, 256
[ 33cnv2% | [ 33cnv, 256 |
f(X) + X [ 38conv,25 | =)
[33com, 512,12 | e
Figure 2. Residual learning: a building block. (e ] [owegs ] .
—iba e
Total (ResNet-152): [emia | [ 29emm |
[ 3sconv512 | [ 3acny 512 |
60M parameters - e 52

Source: Deep Residual Learning for Image Recognition, Kaiming He et al. Microsoft [ ] [0 ]
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34-layer residual

ResNet - 2015

method top-1 err. top-5 err.
VGG [41] (ILSVRC’ 14) - 8.43T
GoogleNet [44] (ILSVRC’14) - 7.89
VGG [41] (v5) 24 .4 A
PReLLU-net [13] 2159 s |
BN-inception [16] 21.99 5.81
ResNet-34 B 21.84 S: 71
ResNet-34 C 21.93 5.60
ResNet-50 20.74 5.25
ResNet-101 19.87 4.60
ResNet-152 19.38 4.49

Table 4. Error rates (%) of single-model results on the ImageNet

Source: Deep Residual Learning for Image Recognition, Kaiming He et al. Microsoft
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Skip connections

(a) without skip connections (b) with skip connections

Loss surface of ResNet-56 with/without skip connections.

54

Source: Visualizing the Loss Landscape of Neural Nets, NeurlPS 2018
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Neural Architecture Search - 2017

NAS for finding good architectures with gradient-based search

Sample architecture A
with probability p Generate hyperparameters

[ lof child network

Trains a child network
The controller (RNN) with architecture
A to get accuracy R

{ )

Compute gradient of p and
scale it by R to update
the controller

Learning for CIFAR-10 (image recognition) - Final test on ImageNet

55
Source: Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, Google Brain
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Neural Architecture Search - 2017

Sampling of simple convolutional network. Predicts:

e Filter height + width

e Stride width

e Number of filters/layer + repeats

o (Sklp) N-1 skip connections

Number Anchor Filter Filter Stride Stride Anchor Number Filter
“ |of Filters|, Point [v| Height |1 | Width [, | Height |1 | Width |\ Point [\ |of Filters|' | Height [\
R R R D I N L O N N I U
> > > > > > > I
K A VA A [ A A K K '
\ > > » > > > > > —)
LA LA LA LA LA LA LA LA LA L4
Layer N-1 -0 Layer N -0 Layer N+1

Splitting computation across multiple machines with a central parameter server.
Controller trains 12.800 architectures -> then trains child till convergence
800 networks being trained on 800 GPU's - concurrently at any time!

Running time ... 28 days!

56

Source: Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, Google Brain
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Neural Architecture Search - 2017

Model | Depth  Parameters | Error rate (%)

Network in Network (Lin et al.,|2013) - - 8.81
All-CNN (Springenberg et al., 2014) - - 7.25
Deeply Supervised Net (Lee et al., 2015) - - 7.97
Highway Network (Srivastava et al.,2015) & . 7.72
Scalable Bayesian Optimization (Snoek et al., 2015) - - 6.37
FractalNet (Larsson et al., 2016) 21 38.6M 522
with Dropout/Drop-path 21 38.6M 4.60
ResNet (He et al., 2016a) | 110 1.7M | 6.61
ResNet (reported by Huang et al. (2016¢)) | 110 1.7M | 6.41
ResNet with Stochastic Depth (Huang et al.,[2016¢) 110 1.7M 5:23
1202 10.2M 491

Wide ResNet (Zagoruyko & Komodakis,2016) 16 11.0M 4.81
28 36.5M 4.17

ResNet (pre-activation) (He et al.,)2016b) 164 1.7M 5.46
1001 10.2M 4.62

DenseNet (L = 40, k = 12) Huang et al. (2016a) 40 1.0M 5.24
DenseNet(L = 100, k = 12) Huang et al. (2016a) 100 7.0M 4.10
DenseNet (L = 100, k = 24) Huang et al. (2016a) 100 27.2M 3.74
DenseNet-BC (L = 100, k = 40) Huang et al. (2016b) 190 25.6M 3.46
Neural Architecture Search v1 no stride or pooling 15 42M 5.50
Neural Architecture Search v2 predicting strides 20 2.5M 6.01
Neural Architecture Search v3 max pooling 39 7.1M 4.47
Neural Architecture Search v3 max pooling + more filters 39 37.4M 3.65

Table 1: Performance of Neural Architecture Search and other state-of-the-art models on CIFAR-10.

57
Source: Neural Architecture Search with Reinforcement Learning, Barret Zoph, Quoc V. Le, Google Brain
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U-Net - 2015 :

Fig. 4. Result on the ISBI cell tracking challenge. (a) part of an input image of the
“PhC-U373” data set. (b) Segmentation result (cyan mask) with manual ground truth
(yellow border) (c) input image of the “DIC-HeLa” data set. (d) Segmentation result
(random colored masks) with manual ground truth (yellow border).

e Architecture for image segmentation - typical challenge within medical images.
e Works with very little available data and is trainable end-to-end.

e Encoder + decoder network.

e Only contains convolutional layers - no fully connected dense layers.

e Binary cross-entropy can be used to "classify" each pixel.

64 64
128 64 64 2
input
ima{)ge > sl output
: segmentation
tile all 9 ©
alf & & map
| < x
><‘ ™| (9 o
\ ©
3
' 128 128

2842

SJ:I:I =»conv 3x3, ReLU

s S copy and crop
1024 512
o Ieien # max pool 2x2
1024 43 5 4 up-conv 2x2
& é_ % =» conv 1x1 58

Source: U-Net Convolutional Network for Biomedical Image Segmentation, Olaf Ronneberger et al, University of Freiburg
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Transfer learning

e Use a pretrained network on another tasks

train model end-to-end

classification

layer
ImageNet dataset

reuse feature-

detector layers

in new model

A4 A4 v v
=
3 — L > classification
GeEd et
(trainable)

Cactus Aerial Photos

1 ]
I L

keep layers frozen (not trainable)

See python notebooks for example on this.
59

Source: https://towardsdatascience.com/easy-image-classification-with-tensorflow-2-0-f734fee52d13
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Adversarial attacks on images

* Adding the “right” noise induces miss-classification
ostrich

Source: Szegedy, Christian, et al. "Intriguing properties of neural networks." 2013
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Adversarial attacks on images

* Generating “adversarial” examples — classification confidence > 99%

These stickers made an
artificial-intelligence

v w . paaeaens|  system read this stop
centipede “ peacock ” sign as ‘speed limit 45'.

[ klng penguin H ‘ starfish ”

* Security risk for DNN systems: self-driving cars detecting a stop sign or a pedestrian.

* One does not even need to know the DNN and its weights. By sending enough
requests to the model, the internal mechanism can be inferred.

* Deep learning systems still does not understand the world!

Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. Nguyen, Anh, Jason Yosinski, and Jeff Clune. 2015 61
https://www.nature.com/articles/d41586-019-03013-5
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graphics and vision

Beyond image classification
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Object localization vs detection

Classification with

Image classification hahis
localization

Detection

Naive method:
Sliding window

e Single object for image classification and localization.
e Multiple objects for object detection.

e Localization: Predict class + bounding box details (height, width, center): b, , by, bh, by

[ P.] Probability of class existence? [0

Example: by ?

1. Pedestrian by ?

2. Car y= Zh Z

3. Motorcycle CZ’ ?

4. Background e 2
L C3 ] |7 ]

63

Source: https://www.coursera.org/learn/convolutional-neural-networks
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Region-CNN (R-CNN)

* Bypass the problem of selecting a large number of regions.
* Segment the image into regions which we use a CNN to classify.

Nothing interesting!

R-CNN: Regions with CNN features [boxreg || v |
Bbox reg M

warpeid region ﬂ‘ aeroplane? no. |

____________________

-

\>|person? yes. |

NV L \ :

2 1 L \F = = 41tvmonitor? no. |
1. Input 2. Extract region 3. Compute 4. Classify
image  proposals (~2k) CNN features regions

Source: Rich feature hierarchies for accurate object detection and semantic segmentation, Girshik et. al, 2013
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Region-CNN (R-CNN) problems

* |t takes a long time to train the network where 2000 region proposals
have to be classified.

* Not usable for real-time applications.

* No learning is happening for the region detections.

R-CNN: Regions with CNN features Bboxreg | svis |
Bbox reg || SVMs
warpef region ﬂ‘ aeroplane? no. |
-------------------- : . Conv
A i | 7 :

\ - :g f.'{}"_'l'»,u r \>|person? yes. |
» o, | CNN'N :
AR Y : 0 D ~ 41tvmonitor? no. |

1. Input 2. Extract region 3. Compute 4. Classify

image proposals (~2k) CNN features regions

Source: Rich feature hierarchies for accurate object detection and semantic segmentation, Girshik et. al, 2013
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Fully connected to convolutional

14x14 %3 10x 10 x 16 5x5x%16 400 y

softmax
(4)
POOL
5><5 2 X2 5><5’1x1‘x1
14x14 %3 10x10x 16 5X5x16 1x1x400 1x1x400 1x1x4

66

Source: https://www.coursera.org/learn/convolutional-neural-networks
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Convolutional sliding window

MAX POOL
— — — 0B — 1 —> |

14x14 X3 10x10%x16 5%5x%16 1X1x400  1x1x400 1x1x4
A -
H MAX
ﬁ = S
JEEEO0OH000 o0 SXS |||||||||||: ZXZ 5X5 1X1 1X1
16X16X%3 12x12%16 6X6X16 2X2%x400  2%x2x400 2X2X4
MAX
o l\i
5%5 2X2 5%5 1x1 1x1

28x28%3 24X24x16 12x12x16  8x8x400  8x8x400 8x8x4

Source: https://www.coursera.org/learn/convolutional-neural-networks
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Fast R-CNN

e "Fast" as the convolutional operation is implementing the sliding
window to classify all the proposed regions.

Outputs: bbox
softmax regressor
Rol L bk

ka1 — pooling |
P :_"E*“Rol layer |
k € projectioﬁ\
D e Conv X | Rol feature

; 1 feature map vector For each Rol

* Slow to propose regions

68
Source: Fast R-CNN, Girshik et. al, 2015
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* |dentify proposal regions from a convolutional neural network.

classifier

Rol pooling

R-CNN Test-Time Speed

R-CNN

propoy L/

Region Proposal Network

Fast R-CNN 2:3

feat
eature maps Faster R-CNN| 0.2

v 0 15 30 45

conv layers I

69

Source: Faster R-CNN: Towards real-time object detection with region proposal networks. Ren et. al, 2016
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YOLO - You Only Look Once

* R-CNN variant all use regions to localize the object within the image.

* YOLO instead look at the complete image and divides it into a grid.
* Much faster than faster R-CNN.
* Problem with small objects within the image.

i st |
4 &, o e e 1 B | ]
1t e 5 P

Bounding boxes + confidence

. P iRAEN
S x S grid on input A Final detections

Class probability map 70

Source: You Only Look Once: Unified real-time object detection, Redmon et al. 2015
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e Fully connected networks are not feasible to use on image
data.

e Use convolutional layers to detect features in images.
e Objects are built from simple features.
e CNNs are robust against object transformations.

e Convolutions in Neural networks is what is known from
literature as cross-correlation.

e Additional hyperparameters:
e Kernel/filter size, stride, padding.
e Use existing architectures with modifications for similar tasks.

e Use pre-trained networks and transfer learning - especially
when data is sparse.

71
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Credits

Books:

e https://www.deeplearningbook.org/
e http://neuralnetworksanddeeplearning.com/

Online Course from MIT:
e http://introtodeeplearning.com/

Online course from Stanford University:
e https://www.coursera.org/specializations/deep-learning?

Other

e ¢s231n.github.io
e appliedgo.net
* brohrer.github.io

* |learnopencv.com
72
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