Decision Trees

Decision Trees: Introduction

- Classifiers
 - Supervised Classifiers
 - Linear Classifiers
 - Perceptron, Least Squares Methods
 - Linear SVM
 - Nonlinear Classifiers
 - Part I: Multi Layer Neural Networks
 - Part II: Pol. Class., RBF, Nonlinear SVM
 - Nonmetric Methods Decision Trees
 - AdaBoost
 - Unsupervised Classifiers

1

- Definition
- Mechanism
 - Splitting Functions
 - Hypothesis Space and Bias
- Issues in Decision-Tree Learning
 - Numeric and missing attributes
 - Avoiding overfitting through pruning
- Ensemble Methods and Random Forests
- Application

Mechanism

There are different ways to construct trees from data. We will concentrate on the top-down, greedy search approach:

Basic idea:

- 1. Choose the best attribute a^* to place at the root of the tree.
- 2. Separate training set *D* into subsets $\{D_1, D_2, ..., D_k\}$ where each subset D_i contains examples having the same value for a^* .
- 3. Recursively apply the algorithm on each new subset until examples have the same class or there are few of them.

9

- Definition
- Mechanism
 - Splitting Functions
 - Hypothesis Space and Bias
- Issues in Decision-Tree Learning
 - Numeric and missing attributes
 - Avoiding overfitting through pruning
- Ensemble Methods and Random Forests
- Application

Hypothesis Space

- We search over the hypothesis space of all possible decision trees.
- We keep only one hypothesis at a time, instead of having several (greedy search).
- We don't do backtracking in the search. We choose locally the best alternative and continue growing the tree.
- We prefer shorter trees than larger trees.
- We prefer trees where attributes with highest Information Gain are placed on the top.

21

- Definition
- Mechanism
 - Splitting Functions
 - Hypothesis Space and Bias
- Issues in Decision-Tree Learning
 - Numeric and missing attributes

Avoiding overfitting through pruning

29

30

- Ensemble Methods and Random Forests
- Application

Short vs. Long Hypotheses

- We described a top-down, greedy approach to construct decision trees denotes a preference of short hypotheses over long hypotheses.
- → Why is this the right thing to do?

Occam's Razor: Prefer the simplest hypothesis that fits the data.

Back since William of Occam (1320). Great debate in the philosophy of science.

Issues in Decision Tree Learning

31

Practical issues while building a decision tree can be enumerated as follows:

- 1) How deep should the tree be?
- 2) How do we handle continuous attributes?
- 3) What is a good splitting function?
- 4) What happens when attribute values are missing?
- 5) How do we improve the computational efficiency?

39 B. Error-Based Pruning : upper bound of the confidence interval p_r : set of N samples reaching a node S M : number of errors in a node using the majority class e_r : estimate the number of errors on unseen data as $e_r = p_r |S|$ р : probability of an error in the node estimated as p = |S|/M. Calculate p_r so that: $1-CF = P(p \le p_r)$ Assuming the errors are binomial distributed the above solution is equivalent to solve for p_r in: $CF = \begin{cases} 1 - p_{r}^{N} & , \text{ for } M = 0\\ \sum_{i=0}^{M} {N \choose i} p_{r}^{i} & 1 - p_{r}^{N-i} & , \text{ for } M > 0 \end{cases}$ Here N = |S|, the number of samples in the set and M, the number of errors made in the node. There exist a variety of algorithms to solve this equation for p_r (Matlab: *binofit(M,N,CF)*).

Summary

- The generalization performance is not as good as margin maximized classifiers, but
 - Computationally dramatically cheap!!! (binary search!)

- Decision-tree induction is a popular approach to classification that enables us to interpret the output hypothesis.
 - Easy to understand,
 - Easy to implement,
 - Easy to use.
- The hypothesis space is powerful: all possible DNF formulas.
- Overfitting is an important issue in decision-tree induction. Different methods exist to avoid overfitting like reduced-error pruning and rule post-processing.
- Techniques exist to deal with continuous attributes and missing attribute values.

- Definition
- Mechanism
 - Splitting Functions
 - Hypothesis Space and Bias
- Issues in Decision-Tree Learning
 - Numeric and missing attributes
 - Avoiding overfitting through pruning
- Ensemble Methods and Random Forests

45

46

• Application

Ensemble Methods

Main Idea

To increase the predictive performance of a base learning technique, ensemble methods combine the output of several learned models instead of learning a single model.

- 1. Use a base procedure (e.g. decision trees) and perturb the algorithm and/or the learning data to learn several models.
- 2. Combine the prediction (e.g. mean or majority prediction) of all learned models to the final prediction of the ensemble.

Some variants of ensemble methods used with decision trees are **bagging**, **boosting** and **random-sub-space** methods.

Ensemble Methods

Bagging: (bootstrap aggregating)

• For each classifier select randomly *n* training samples from the training set.

47

48

- Better accuracy than boosting when data is noisy.
- Classifiers can be learned in parallel.

Boosting

- Adjust weights for each training sample when a new classifier is trainined.
- Good accuracy but susceptible to noise.
- Classifiers can not be learned in parallel.

Random subspace

- For each classifier select randomly *n* attributes of all available.
- Accuracy lies between bagging and boosting.
- Poor accuracy if attributes are uncorrelated.

Random Forests

Main Idea

Combine the response of several decision trees to improve accuracy and generalization.

Random forests belong to the ensemble methods. The base procedure of learning a decision tree is perturbed using bagging and/or random subspace methods. Further possibilities of perturbing the learning of a decision tree are:

- Randomly generate decision functions when searching for the best split.
- Use only a subset of the training data to choose the best split.
- Select one of the *n*-best decision functions and not the best.

Advantages of randomization:

- Handle larger data sets
- Search larger function space

- Definition
- Mechanism
 - Splitting Functions
 - Hypothesis Space and Bias
- Issues in Decision-Tree Learning
 - Numeric and missing attributes
 - Avoiding overfitting through pruning
- Ensemble Methods and Random Forests
- Application
 - C4.5, See5, CART
 - Spam, Expert Systems, Multiclass Classifiers

⁶⁰ Steiman, J. H. Friedman, R. A. Olshen, and C. J. Stone. Classification and Regression Trees. Wadsworth, Belmont, CA, 1984. C4.5 : Programs for Machine Learning (Morgan Kaufmann Series in Machine Learning) by J. Ross Quinlan Learning Classification Trees, Wray Buntine, Statistics and Computation (1992), Vol 2, pages 63-73 Kearns and Mansour, On the Boosting Ability of Top-Down Decision Tree Learning Algorithms, STOC: ACM Symposium on Theory of Computing, 1996"