
1

1

Decision Trees

2

Decision Trees: Introduction

• Classifiers

• Supervised Classifiers

• Linear Classifiers

• Perceptron, Least Squares Methods

• Linear SVM

• Nonlinear Classifiers

• Part I: Multi Layer Neural Networks

• Part II: Pol. Class., RBF, Nonlinear SVM

• Nonmetric Methods - Decision Trees

• AdaBoost

• Unsupervised Classifiers

2

3

Decision Trees: Introduction

Example: Learning to classify fruits

Note, that same attributes (inner nodes) and class leafs
(outer nodes) can appear in different places in the tree.

4

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application

3

5

Decision Trees: Definition

 Decision Tree learning: algorithm approximates a
target concept using a tree representation, where each
internal node corresponds to an attribute, and every
terminal node corresponds to a class.

  Two types of nodes:

 Internal node: Splits into different branches
according to the different values the corresponding
attribute can take.

 Terminal Node (Leaf): Decides the class assigned to
the example.

6

Classifying Examples

Classification of an example X:

1. Start at the root of the tree.

2. Check the value of that attribute on X. Follow the branch

corresponding to that value and jump to the next node.

3. Continue until a terminal node is reached.

4. Take that class as the best prediction.

Luminosity

Mass

Type A Type B

Type C

> t1
≤ t1

> t2
≤ t2

X = (Luminosity ≤ t1, Mass > t2)

Assigned Class

4

7

Representation

• Decision trees adopt a DNF (Disjunctive Normal Form)

representation.

• Every branch from the root of the tree to a terminal node with

a fixed class is a conjunction of attribute values.

• Different branches ending in that class form a disjunction.

For class A:

(~x1 & ~x2) OR (x1 & ~x3)

x1

x2 x3

A B A C

1 0

1 1 0 0

 The axioms from the logic can be used,
 for generation and optimizing the trees.
 E.g. each logic expression can be transformed to a DNF

 Each knowledge represented as combination of logical
 statements (if … then … and … or …) can be modeled by
 a decision tree.

8

Appropriate Problems for Decision Trees

 Attributes are both numeric and nominal.

 Target function takes on a discrete number of values.

 A DNF representation is effective in representing the target
concept.

 Training Data may have errors.

 Some examples may have missing attribute values.

5

9

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application

10

Mechanism

There are different ways to construct trees from data.
We will concentrate on the top-down, greedy search approach:

Basic idea:

 1. Choose the best attribute a* to place at the root of the

tree.

 2. Separate training set D into subsets {D1, D2, ..., Dk} where

each subset Di contains examples having the same value

for a* .

 3. Recursively apply the algorithm on each new subset until
 examples have the same class or there are few of them.

6

11

Illustration

Attributes:

Size has two values: > t1 or ≤ t1

Humidity has three values: > t2, (> t3 and ≤ t2), ≤ t3

size

h
u
m

id
it
y

t1

t2

t3

 Class ωP : poisonous

Class ωN: not-poisonous

Mushroom sample:

12

Illustration

Suppose we choose size as the best attribute:

size

ωP

> t1
≤ t1 h

u
m

id
it
y

t1

t2

t3

 Class ωP: poisonous

 Class ωN: not-poisonous

?

7

13

Illustration

size

ωP

> t1 ≤ t1

Then humidity as the next best attribute:

h
u
m

id
it
y

t1

t2

t3

humidity

ωP
ωN ωN

>t2
≤ t3

> t3 & ≤ t2

14

Formal Mechanism

1. Create a root for the tree.

2. Stop-splitting rule:

• If all examples are of the same class return that class.

• If the number of examples is below a threshold or

 if no attributes are available return majority class.

3. Find the best attribute a*.

4. For each possible range of values in Sv for a* .

• Add a branch below a* labeled .

• Recursively apply the algorithm to Sv.

S
v

v 

8

15

Splitting Functions

What attribute is the best to split the data?

e.g. from information theory:

2

1

() () log (()),

M

v i v i v

i

H S P S P S 


 

A measure of impurity or entropy for a subset Sv,

associated with a node v is defined:

where M is the number of classes (events), denotes

the probability that a vector in the subset Sv belongs to

class .

()
i v

P S

i


16

Entropy

P(A) = 7/16

P(B) = 9/16

 => H(x) = 0.989 bit

There are two possible complete events (classes) A and B
(Example: flipping a biased coin).

0 0.5 1

1 bit

H(x)

P(A)

Entropy:

P(A) = 1/256,

P(B) = 255/256

 => H(x) = 0.0369 bit

P(A) = 1/2

P(B) = 1/2

 => H(x) = 1 bit

9

17

Splitting based on Entropy
Mushroom sample:

Size divides the sample in two.

S1 = { 6P, 0NP}

S2 = { 3P, 5NP}

size t1

t2

t3

h
u
m

id
it
y

S1
S2

H(S1) = 0

H(S2) = - (3/8)log2(3/8) - (5/8)log2(5/8)

 = 0.9544

H(S1) = 1  largest entropy (“impurity”)

H(S2) = 0  no “impurity”

H(S3) = - (2/5)log2(2/5) - (3/5)log2(3/5)

 = 0.9710  in between

Humidity divides the sample in three.

S1 = { 2P, 2NP}

S2 = { 5P, 0NP}

S3 = { 2P, 3NP}

size t1

t2

t3

h
u
m

id
it
y

S1

S3

S2

18

Information Gain

size t1

t2

t3

h
u
m

id
it
y

Information gain IG

(decrease in node impurity)

over attribute a: IG (a):

S
() (S) (S)

S

v

v

v

IG a H H  

• H(S) is the entropy of all samples.

• H(Sv) is the entropy of one subsample after partitioning

 S based on all possible values of attribute a.

• v =1,…,N (number of sub-nodes).

 The goal now becomes to adopt, from the set attributes,

 the one that performs the split leading to the highest IG.

A

*=arg max ()
a

a IG a


10

19

Example

H(S1) = 0

H(S2) = - (3/8)log2(3/8) - (5/8)log2(5/8) = 0.9544

S1/S = 6/14

S2/S = 8/14

IG(size) = 0.9403 - 0 - (8/14) 0.9544 = 0.3949

S
() (S) (S)

S

v

v

v

IG a H H  

H(S1) = 1,

H(S2) = 0

H(S3) = - (2/5)log2(2/5) - (3/5)log2(3/5) = 0.9710

S1/S = 4/14

S2/S = 5/14

S3/S = 5/14

IG(hum) = 0.9403 - 4/14 - (5/14) 0.9710 = 0. 3078

size t1

t2

t3

h
u
m

id
it
y

S1 S2

size t1

t2

t3

h
u
m

id
it
y

S1

S3

S2

  a* = size

H(S) = - (9/14)log2(9/14) - (5/14)log2(5/14) = 0.9403

20

Formal Mechanism

1. Create a root node for the tree.

2. Stop-splitting rule:

• If all examples are of the same class return that class.

• If the number of examples is below a threshold or

 if no attributes are available return majority class.

3. Compute the best attribute:

4. For each possible range of values in Sv for a*

• Add a branch below a* labeled .

• Recursively apply the algorithm to Sv .

A

*=arg max ()
a

a IG a


S
v

v 

11

21

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application

22

Hypothesis Space

• We search over the hypothesis space of all possible decision
trees.

• We keep only one hypothesis at a time, instead of having
several (greedy search).

• We don’t do backtracking in the search. We choose locally the

best alternative and continue growing the tree.

• We prefer shorter trees than larger trees.

• We prefer trees where attributes with highest Information
Gain are placed on the top.

12

23

Hypothesis Space

Decision Tress create decision boundaries with portions
perpendicular to the feature axes.

With a sufficiently large tree, any decision boundary can be
approximated arbitrarily well in this way.

24

Hypothesis Space

If the class of node decisions does not match the form of the
training data, a very complicated decision tree will result.

Here decisions are parallel to the axes while in fact the data
is better split by boundaries along another direction.

13

25

Hypothesis Space

If, however, “proper” decision forms are used (here, linear

combinations of the features), the tree can be quite simple.

26

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application

14

27

Discretizing Continuous Attributes

Example: attribute temperature.

1) Order all values in the training set.

2) Consider only those cut points where there is a change of class.

3) Choose the cut point that maximizes information gain.

temperature

97 97.5 97.6 97.8 98.5 99.0 99.2 100 102.2 102.6 103.2

28

Missing Attribute Values

We are at a node n in the decision tree.

Different approaches:

1) Assign the most common value for that attribute in

node n.

2) Assign the most common value in n among examples

with the same classification as X.

3) Assign a probability to each value of the attribute
based on the frequency of those values in node n.
Each fraction is propagated down the tree.

Example: X = (luminosity > T1, mass = ?)

15

29

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application

30

Short vs. Long Hypotheses

 We described a top-down, greedy approach to construct
decision trees denotes a preference of short hypotheses over
long hypotheses.

 Why is this the right thing to do?

Occam’s Razor:

Prefer the simplest hypothesis that fits the data.

Back since William of Occam (1320).
Great debate in the philosophy of science.

16

31

Issues in Decision Tree Learning

Practical issues while building a decision tree can be
enumerated as follows:

1) How deep should the tree be?

2) How do we handle continuous attributes?

3) What is a good splitting function?

4) What happens when attribute values are missing?

5) How do we improve the computational efficiency?

32

Issues in Decision Tree Learning

1) How deep should the tree be?

A tree over fits the data if we let it grow deep enough so that it
begins to capture “aberrations” in the data that harm the

predictive power on unseen examples:

size

t2

t3

h
u
m

id
it
y

Possibly just noise, but
the tree is grown deeper
to capture these examples

Causes?

a) Random errors or noise:
 Examples have incorrect
 class label or incorrect
 attribute values.

b) Coincidental patterns:
 Examples seem to deviate
 from a pattern due to
 the small size of the sample.

size

t2

t3

h
u
m

id
it
y

Two overlapping classes, but
strong overfitting occures
due to the few samples.

ideal split

17

33

Overfitting the Data: Definition

Assume a hypothesis space H. We say a hypothesis h in H

overfits a dataset D if there is another hypothesis h’ in H

where h has better classification accuracy than h’ on D but

worse classification accuracy than h’ on additional set D’.

testing data D’

overfitting

0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 1
.0

Size of the tree

training data D

Classification rate

 Overfitting is a serious problem that can cause strong
 performance degradation.

34

Solutions for Overfitting the Data

There are two main classes of solutions:

1) Stop the tree early before it begins to overfit the data.
 - In practice this solution is hard to implement because it

 is not clear what is a good stopping point.

2) Grow the tree until the algorithm stops even if the
overfitting problem shows up. Then prune the tree as a
post-processing step.

 + This method has found great popularity in the machine

 learning community.

a) Grow the tree to learn
the training data

b) Prune tree to avoid
 overfitting the data

18

35

Pruning

Three exemplary pruning approaches

A. Reduced Error Pruning
B. Error-Based Pruning
C. Rule Post-Pruning

Characteristics of pruning methods

• Use of a validation set
• Tends to under- or overprune
• Bottom-up or top-down tree traversal
• Computational complexity

36

A. Reduced Error Pruning

Formal Mechanism
1) Consider all internal nodes in the tree.
2) For each node check if removing it (along with the subtree

below it) and assigning the most common class to it
improves accuracy on the validation set.

3) Pick the node n* that yields the best performance and prune

its subtree.
4) Go back to (2) until no more improvements are possible.

Main Idea

Remove nodes of the tree as long as the classification
rate on the validation data increases.

0
.5

 0
.6

 0
.7

 0
.8

 0
.9

 1
.0

Size of the tree

Stop pruning the tree

C
la

s
s
if
ic

a
ti
o
n
 r

a
te

19

37

A. Reduced Error Pruning

Dataset D

Training TR

Testing TE

Small dataset

Advantages:
• Computational complexity is linear in the number of inner

nodes.
• Leads to the smallest version of the most accurate subtree

with respect to the validation set.

Disadvantages:
– All evidence of the training set is neglected during the

pruning process.
– Tends to overprune if validation set is not large enough.
– If the original data set is small, separating examples away

for validation may result in a very small training set.

 Threesfold Cross Validation:

 - share data in parts A, B and C
 - train A,B against C; A,C
 against B and C,B against A.
 - test on separate Test-Data

38

B. Error-Based Pruning
Core Idea

Estimate the error rate on unseen samples based on the training
samples.

• Assume training errors are binomial distributed.
• Calculate the error rate on unseen samples as upper bound

of confidence interval.
• Compare the errors at each inner node of:

1. the subtree (sum of errors in all leaves),
2. pruning the subtree,
3. replacing the subtree (take subtree of the inner node

with most frequent outcome)

1. 2. 3.

20

39

B. Error-Based Pruning

pr : upper bound of the confidence interval

S : set of N samples reaching a node

M : number of errors in a node using the majority class

er : estimate the number of errors on unseen data as er = pr|S|

p : probability of an error in the node estimated as p = |S|/M .

Calculate pr so that: 1-CF = P(p ≤ pr)
Assuming the errors are binomial distributed the above solution is
equivalent to solve for pr in:

0

1 , 0

1 , 0

N

r

M N ii

r ri

p for M

C F N
p p for M

i

Here N = |S|, the number of samples in the set and M, the number of
errors made in the node. There exist a variety of algorithms to solve
this equation for pr (Matlab: binofit(M,N,CF)).

40

B. Error-Based Pruning

CF = 25%

1. do not prune the subtree
 etot = 1.2929 + 1.5 + 1.6216 + 1.9217 = 6.3362

2. prune the subtree
 |S|=22 , M=6, p=0.2727
 pr=0.4158, er=9.1470

3. substitute with most
frequent following subtree
 etot = 2.9046 + 3.3253
 = 6.2299

A: 2
B: 3

A: 4
B: 13

A: 2
B: 0

A: 0
B: 3

A: 4
B: 0

A: 0
B: 13

A: 6
B: 16

A: 5
B: 1

A: 1
B: 15

A: 6
B: 16

pr=0.2078
er=3.3253

pr=0.6464
er=1.2929

pr=0.5
er=1.5

pr=0.4054
er=1.6216

pr=0.1478
er=1.9217

pr=0.4841
er=2.9046

Choose to substitute the green inner node with the yellow inner node!!!

21

41

B. Error-Based Pruning

Advantages:
• Allows to remove „intermediate“ tests wich appear useless.
• Has often a good performance in practice.

Disadvantages:
– The parameter CF determines if EBP over- or underprune.
– Strong assumption that errors are binomial distributed.
– Computationally less efficient than reduced error pruning.

C4.5 is an algorithm for decision trees that uses error-based
pruning with CF=25%.

42

C. Rule Post-Pruning

Core Idea:

1) Convert the tree into a rule-based system.

2) Prune every single rules first by removing redundant
 conditions using propositional logic.
3) Sort rules by accuracy.

Example:

Advantages:

 The language is more expressive
 Improves on interpretability
 Pruning is more flexible
 In practice this method yields

high accuracy performance

Rules:
~x1 & ~x2 -> Class A
~x1 & x2 -> Class B
 x1 & ~x3 -> Class A
 x1 & x3 -> Class C

Possible rules for pruning
(based on validation set):
~x1 -> Class A
~x1 & x2 -> Class B
~x3 -> Class A
 x1 & x3 -> Class C

x1

x2 x3

A B A C

1 0

1 1 0 0

Test the different rules and
select the most efficient ones.

22

43

Summary
• The generalization performance is not as good as margin

maximized classifiers, but

– Computationally dramatically cheap!!! (binary search!)

• Decision-tree induction is a popular approach to classification
that enables us to interpret the output hypothesis.
– Easy to understand,
– Easy to implement,
– Easy to use.

• The hypothesis space is powerful: all possible DNF formulas.

• Overfitting is an important issue in decision-tree induction.
Different methods exist to avoid overfitting like reduced-error
pruning and rule post-processing.

• Techniques exist to deal with continuous attributes and
missing attribute values.

44

What we haven’t discussed

• It’s easy to have real-valued outputs too - these are called

Regression Trees.

• Rule based Methods.

• Other trees, here derivation
trees e.g. for
definition of a grammar.

• Recognitions with Strings.

• Bayesian Decision Trees
can take a different approach
to preventing over-fitting.

• Alternatives to Information Gain
for splitting nodes (MaxP-chance and Chi-Squared testing).

23

45

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application

46

Ensemble Methods

Main Idea

To increase the predictive performance of a base learning
technique, ensemble methods combine the output of several
learned models instead of learning a single model.

1. Use a base procedure (e.g. decision trees) and perturb the
algorithm and/or the learning data to learn several models.

2. Combine the prediction (e.g. mean or majority prediction) of
all learned models to the final prediction of the ensemble.

Some variants of ensemble methods used with decision trees are
bagging, boosting and random-sub-space methods.

24

47

Ensemble Methods

Bagging: (bootstrap aggregating)

• For each classifier select randomly n training samples from the training set.

• Better accuracy than boosting when data is noisy.

• Classifiers can be learned in parallel.

Boosting

• Adjust weights for each training sample when a new classifier is trainined.

• Good accuracy but susceptible to noise.

• Classifiers can not be learned in parallel.

Random subspace

• For each classifier select randomly n attributes of all available.

• Accuracy lies between bagging and boosting.

• Poor accuracy if attributes are uncorrelated.

48

Random Forests

Main Idea

Combine the response of several decision trees to improve
accuracy and generalization.

Random forests belong to the ensemble methods. The base procedure of
learning a decision tree is perturbed using bagging and/or random
subspace methods. Further possibilities of perturbing the learning of a
decision tree are:

• Randomly generate decision functions when searching for the best split.

• Use only a subset of the training data to choose the best split.

• Select one of the n-best decision functions and not the best.

Advantages of randomization:

• Handle larger data sets

• Search larger function space

25

49

Random Forests

Formal Learning
1) Randomly select the training data for one tree.
2) Learn the tree based on the training data.

a) Create a root node for the tree.
b) If a stopping rule holds do not split the samples.
c) Generate randomly a set of decision functions.
d) Select the best decision function using the samples

reaching the node.
e) Assigning a new node to each outcome of the best

function.
f) Recursively apply b), c), d) and e) to each node.

3) Repeat 1) and 2) for every tree in the forest.

Formal Application
1) Recursively classify a new sample with each tree.
2) Return the class predicted by the majority of the trees.

50

Random Forests
Tree 1 Tree 2 Tree 3

Forest

... combine using majority class ...

true distribution
Good result?

26

51

Decision Trees: Agenda

• Definition

• Mechanism

• Splitting Functions

• Hypothesis Space and Bias

• Issues in Decision-Tree Learning

• Numeric and missing attributes

• Avoiding overfitting through pruning

• Ensemble Methods and Random Forests

• Application
• C4.5, See5, CART
• Spam, Expert Systems, Multiclass
 Classifiers

52

Decision Trees: Application

Spam detection (by Trevor Hastie, Stanford University)

goal: predict whether an email message is spam or good.

• Data from 4601 email messages.

• Input features: relative frequencies in a message of 57 of
 the most commonly occurring words and punctuation
 marks in all the training the email messages.

• For this problem not all errors are equal; we want to avoid
 filtering out good email, while letting spam get through is
 not desirable but less serious in its consequences.

• We coded spam as 1 and email as 0.

27

53

Decision Trees: Application

Spam detection – DT Training

• 48 quantitative predictors—the percentage of words in the
 email that match a given word. Examples include business,
 address, internet, free, and george.

• 6 quantitative predictors—the percentage of characters in
 the email that match a given character. The characters are
 ch;, ch(, ch[, ch!, ch$, and ch#.

• The average length of uninterrupted sequences of capital
 letters: CAPAVE.

• The length of the longest uninterrupted sequence of capital
 letters: CAPMAX.

• The sum of the length of uninterrupted sequences of capital
 letters: CAPTOT.

54

Decision Trees: Application

Spam detection – DT Training

• A test set of size 1536 was randomly chosen, leaving 3065
 observations in the training set.

• A full tree was grown on the training set, with splitting
 continuing until a minimum bucket size of 5 was reached.

• This bushy tree was pruned back using cost-complexity
 pruning, and the tree size was chosen by 10-fold cross-
 validation.

• We then compute the test error and ROC curve on the test
 data.

28

55

Decision Trees: Application

Spam detection – Training

• 39% of the training data were spam. Average percentage
 of words or characters in an email message equal to the
 indicated word or character. We have chosen the words and
 characters showing the largest difference between spam
 and email.

56

 Spam detection – Results

Decision Trees: Application

29

57

Spam detection – Results

• ROC curve for pruned tree on
 SPAM data

• Overall error rate on test
 data: 8.7%.

• Sensitivity
 (detection rate: DR)
 proportion of true spam identified

• Specificity 1- FAR (false alarm rate))
 proportion of true email
 identified.

Decision Trees: Application

We may want specificity to be high,
and suffer some spam

 Specificity : 95% ⇒ Sensitivity : 79%

58

• Spam detection – DT vs. SVM

Decision Trees: Application

• Comparing ROC curves on

 the test data is a good
 way to compare classifiers.

 SVM dominates DT here.

 But DT much faster!

30

60

Decision Trees: Literature

•L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stone.
Classification and Regression Trees. Wadsworth, Belmont,
CA, 1984.

•C4.5 : Programs for Machine Learning (Morgan Kaufmann
Series in Machine Learning) by J. Ross Quinlan

•Learning Classification Trees, Wray Buntine, Statistics and
Computation (1992), Vol 2, pages 63-73

•Kearns and Mansour, On the Boosting Ability of Top-Down
Decision Tree Learning Algorithms, STOC: ACM
Symposium on Theory of Computing, 1996“

