Template Matching

So far, the classifiers were based on a large set of
example patterns.

All the variability of the patterns were learned from
a training set using statistical methods.

Sometimes, the designer of the classifier knows the
variations that the patterns might undergo.

Then, it is more efficient and more accurate to
design a classifier using this knowledge.

Template Matching in Images

e Where are the resistors? defects

e How many are they? detection in
e Are they correctly positioned? assembly line
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Template Matching in Images

Problem specificities:
e Rigid object -> One example is enough.

e The circuit board is always photographed

- from the same viewpoint -> No perspective

- with the same illumination -> No lighting variation.

Hence, we may use a simple technique called
Template Matching.

Template Matching in Images

Reference pattern : rdij) i=o,..,M-1 j=0,...,N-1
Test image: tG,j) i=0,..,I-1 j=0,...,J-1
\

Goal: detect the MxN
sub-images within {(i,j)
that match r(,)).

Strategy: superimpose I' on the test image and

translate it at all possible location (X,Y) and compute

the mismatch:
X+M-1y+N-1

DY) = > > [t i)-rG-xi-y) x=0,...1-1 y=0,..3-1

i=x j=y




Example

ifx>60
ifx<@

1
t is the threshold function: t(x,H)z{O

t( max(D)-D(x,y), 0)=

Cross Correlation

Problem: computing D(x,y) is slow.

X+M-1y+N-1

D(x,y)= D, 2 Jtli ) -r(i-x i-y)[f
i=x =y
X+M-1y+N-1 - —-1N-1 - x+M-1y+N-1 o . .
=2 D IEDIT+ X2 @ D -2 3 3 th pri-x j-y)
i=x  j=y i=0 j= i=x  j=y
does not depend
on (X,y)
x+M-1y+N-1 e
1f D, Dt )" does not vary much on the image
i=x j=y
then minimizing D(X,y) is the same
X+M-1y+N-1
as maximizing c(X,y): c(x,y) = z z t@i, Pri—-x, j-vy)

i=x =y




Fast Cross Correlation

X+M-1y+N-1
c(x,y) = Z Z t(Q, Hri—x, j-vy) is the cross-correlation
i oy between t(i,j) and r(i,]).

Do you recognize this formula?

This is actually the formula of a convolution: c(x,y)=t(x,y)®r(x,Yy)

An efficient way to compute a convolution is via the
Convolution Theorem:

c(x, y) = IDFT[ DFT[t(, y)]? DFT[r(x, y)]]
X normal product

the 2 sums are gone.

Normalized Cross Correlation

Now what if {(i,j) cannot be assumed to be constant
over the image?

X+M-1y+N-1

Then we cannot neglect the term >, . [tG, i)
i i=y

1I=X

In this case, instead of using the cross-correlation,
the normalized cross-correlation is used:

S - %)

Cy (X y)= \/HMWM =

IN-1

DI () DI ()]

i=x j=y i=0 j=0




Normalized Cross Correlation

X+M-1y+N-1

2 2t pri-xj-y)
CN (X, y): ><+N::—Iy+Nji1y M-1N-1
\/Z JZ; G, D) izon::"r(i,j)"

This formula may be cumbersome, to simplify it, the
normalized cross correlation of vectors a and b is:

o . ab
" [alle]
Cauchy-Schwarz inequality: |a"b|<]a][b]

Hence: -1<c, <1 and C\=1 only if a=ab with a positive scalar.
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Normalized Cross Correlation Result
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Blurring the Reference Pattern

To allow for small displacements (rotation or
perspective variation) of the object in the input
image, it helps to blur the reference pattern.

i1

Deformable Templates

Template Matching was
concerned with:

e rigid objects,
¢ viewed from the same angle,
¢ cannot handle occlusion

e with the same illumination

Deformable Template is a
method that allow the object
to deform:

e flexible objects,

e some viewpoint variations
are allowed,

¢ some occlusion is allowed

e same illumination




3

Examples of Objects that can Deform

The relative location of the The relative location of eyes,

limbs depends on the nose and mouth depends on

gesture of the person. the person and on the
viewpoint.
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Parts based Object Representation

Template Matching with a single template would not work on
these examples.

These examples are characterized by:

e The object is constituted by different parts.
e The appearance of each part is somewhat constant.

e The relative position of each part varies.

We want to localize the object by localizing each of its parts.
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Part based Object Representation

A face object is represented by the appearance of
the eyes, nose and mouth, and a shape model
that code how these parts can deform.

A body object is represented by the appearance of
the head, the torso and each limbs, and a shape
model that code how these parts can deform.
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The Problem as Flexible Model

springs

spﬁngs\\\\\*

Here, the shape of an object is represented by
"springs” connecting certain pair of parts.

This can be modeled as a Probabilistic Graphical Model
where a part is a node and a spring is an edge:

Graph:
G=(V,E)
V ={v,,...,v,} are the parts

(vi, vj)) € E are the edges connecting the parts.
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Part based Cost Function

We want to localize an object by finding the parts that
simultaneously:

e minimize the appearance mismatch of each part,
and

e minimize the deformation of the spring model.

m;(l) : cost of placing part i at location I, =(x,y,)"
d;(l;l;) : deformation cost.

Optimal location for the object is L =(I1*,...,I:) where

L*:argmin[imi(li)Jr > diT(li,lj)]

i-1 T (v.v;)eE

appearance  deformation
cost cost
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Part based Cost Function

L' =arg min(imi(lih > dij(li,lj)]

(vi.vj)eE

It would not be optimal to first detect each part then
to combine them. Why?

Because detecting a single part separately, is a more
difficult problem, as it involves less information.

This is why the cost function is minimized over all
possible locations for all parts taking into account
both appearance and deformation.
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Part based Cost Function

L*=argmin[imi(li)+ > dij(li,lj)]

L i=1 (v.vj)eE

my(l;) : cost of placing part i at location I..

This can be done by template matching for example.

Template Matching is not the best choice as it is
computationally expensive.

20

Template Matching for each Part

10
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Deformation Cost

Now, the question is: how to combine these appearance
results, using the shape information, in order to find the
global minimum of the cost function?

Z dij (Ii ) Ij) = d12(ll’ |2)+d13(|l’ I3) +d14(|1, |4)

(vi.vj)eE

e.g. using the Mahalanobis Distance

mean displacement of part 2 from
part 1

1 Ty-1 1 Az IF
dlz(ll, Iz) = (I2 _|2 _|1) P (|2 _|2 _|1) «—says whe_re part 2 is Ilk_ely to be
located given the location of part 1.

covariance matrix computed
on a training set.

Deformation Cost Computation
Example of computation of the deformation:

Given Ilz[z] what is the cost of having |, =(3)

d12 (Il’ Iz) = (Iz - Iz - |1)T z:1721(|2 - Iz - I1) =15

8 9

with the mean and
_ 1 the covariance fixed:
I, -1 _[ j

|, -

11
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Efficient Implementation

L =arg min[imi(li)Jr > dij(li,lj)]

(vi,vj)eE

Finding the global minimum of this cost function
requires computing it for all possible positions of I;

and ;. If h is the number of pixel, this algorithm
needs O(h?) evaluations. This is far too inefficient.

“Pictorial Structures for Object Recognition”
Felsenszwalb et al. in Intl. Journal of Computer Vision, Jan.
2005.

It is shown that it can be computed in O(nh) which is
much much better.

24

A Bayes Framework for
Deformable Templates matching.

“Pictorial Structures for Object Recognition”
Felsenszwalb et al. in Intl. Journal of Computer Vision, Jan.
2005.

12
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Statistical Framework

We want to maximize the posterior: p(L|I ,0)

L=(l,L.....1)" : 2D position of n parts in the image.
| : input image

0  : model parameters
(modeling appearance and shape)

Bayes Theorem: p(L|| ,0) oc p(l |L,¢9) p(L|6)

p(1|L,6) : likelihood of seeing a particular image given that
an object is at some position.
This is the appearance model.

p(L|@)  : prior probability that an object is at a particular
position.
This is the shape model.

. . 26
Image Likelihood
P(L[1,0) o p(1|L,6) p(L|6)
If the N parts are image patches that do not overlap, then we
may assume that they are statically independent:
p(1L.O) c [T P(1[l,0)  where | =(x,y,)" and L=(l,...,1I,)

Hence, the full posterior is:

p(L|1,0) (H p(ITIIi,H)j p(LTlé’)

| |
probability that part i is at probability of a shape
location I;, depends on the configuration.
image and on each part
individually (independent).

13
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Cost Function

Maximizing the posterior p(L|I ,0) is equivalent to minimizing its
negative logarithm:

L =arg max [lﬂ[ p(l ||i’0)j p(l,.....1,16)

L =arg mﬂn(—[iln p(l |Ii,0)]—ln pdly,..., 1, |¢9))
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Learning Model Parameters

0 are the model parameters. It regroups two kinds of parameters:
e Appearance parameters, denoted by U,

e shape parameters, denoted by C

6=(u,c)

We need to learn them from a training set of m labeled
examples:

I*....1"and L,...,L"

14
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Learning Model Parameters

We want to find the Maximum Likelihood estimate of 6, i.e.
the value " that maximizes:

p('l,...,|m,Ll,...,Lm|9)=H p('k,Lk |(9) -— assuming L ?
k=1
Recall that p(l,L|@)=p(l|L,0) p(L|#) hence:

ﬁ:argmgxﬁ p(Ik|Lk,49)ﬁ p(L“|0) 6 =(u,c)
k=1 k=1

0" =arg n]zixﬁ p(1¥ ‘Lk,u)lﬂ[ p(L[c)
! k=1 k=1

m
Hence, u"=argmax] | p(Ik‘Lk,u)
Yk

¢ =arg mgxﬁ p(L[c)
k=1

30

Estimating Appearance Parameters

u” =arg maxﬁ p(Ik‘Lk,u)
Y ka

Recall that we assumed the image
likelihood of the n parts to be independent: p(l|L,6) OCH p(1]l,,6)

u —argmaxHH p(1* ‘I,, ,

klll

—argmaxHH p(1* ‘II, ,

i=1 k=1

Hence, we can independently solve for each part:

u’ =arg maxﬁ p(* [ u)
U o

15



Estimating Appearance Parameters

Now, we need to choose a model for p(l ‘li Ju;)

Any model learnt on the lecture about Density Estimation can
be used: Gaussian, Mixture of Gaussians, non-parametric
model, etc.

Here, for simplicity we model a patch of the image centered at
the position |; with a Gaussian model with a unit covariance
matrix:

p(I [l u) = N(z, 1d)

1 m
We have learnt that the ML estimate is: g =—Z I,
mig °

where |, is the patch of the image | centered at |,

31

Gaussian Appearance Model
p(I [l u) =N (z, 1d)

Recall that L =arg mLin(—[ZIn p(l |Ii,¢9)J—In pdl,,...,1 |0)j
i= -
number of pixel in patch i.
1 2 d,
—Inp(l |Ii ) = E||IIi —,ui” +7In 21

Hence, using a Gaussian appearance model with an identity
covariance matrix is the same as doing template matching on
each part separately.

32
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Shape Model

Likewise we need to choose a model for the shape configuration

prior  p(L|c)

Again, any model learnt on the lecture about Density
Estimation can be used: Gaussian, Mixture of Gaussians,
non-parametric model, etc.

We have seen that the shape model can be learnt
independently from the appearance model:

¢ =arg mcaxﬁ p(L[c)
k=1

33

Gaussian Shape Model

For instance, we can choose a Gaussian model, for which
C= (IUL’EL)

= p(L|C) = N(ILIL'ZL)
We have learnt that the ML estimate are:

1 m 1 m
He :EZLk and ZL:EZ(Lk_;uL)(Lk_JuL)T
k=1 k=L

and its negative logarithm is:

1 _ 1
—In p(L|uL,2L)=§(L —u ) T L —yL)+nIn27z+EIn|ZL|

34
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Algorithm for 3 parts and h pixels

A, |9)]

for 1, =1 to h, pI 11[1,] = log of image likelihood of part 1 in 1, ; endfor

i=1

L =arg mLin[—(Zn:In p(l}l,,&)jln p(l,,..

best cost = Infinity;

for 1, =1 to h, pI 12[1,] = log of image likelihood of part 2 in 1, ; endfor

for 1, =1 to h, pI 13[1;] = log of image likelihood of part 3 in 1, ; endfor

for 1, =1 to h

_ _ n nested loops !!!
for 1, =1 to h

for 1, =1 to h ‘,/;::%Zi//////,

pL = log of probability of configuration (1,, 1,, 1)

cost = -pI 11[1;] - pI 12[1,] - pI 13[13] - pL
best_cost = min (cost, best_cost)
endfor

endfor

36

Prior Shape Model

p(L|t9) = p(|1’|21|3|0)
= p(|3||2’|119) p(|21|1|0)
= p(l3 |I2’I1’9) p(lz |I1v‘9) p(|1 |‘9)

Problem: It is very time consuming to evaluate P(L|0)
This is due to P(]l,.1,.0) . Why?

Let’s assume that there are h pixel positions in the input
image. To maximize p(L|9) over the whole image we must
evaluate p(,|,,l,,8) for all combinations of the 3 parts.

For 3 parts: h? evaluations.
exponential time algorithm
For n parts: h" evaluations.
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Conditional Independence

P(LIO) = p(L[l,. 1. 0) p(l, |1, 0) p(l, |6)

How can we speed that up?
Answer: assume conditional independence between parts.
Now, let’s assume that l; and |, are conditionally independent

given l;. This means that if |; is known, then knowing I, gives
us no additional information to estimate l;. Hence:

P, 1,1, 0) = p(, |1, 0)

= P(L[O) = p(,[l,.L,,0) p(l, [1,.0) p(1,[0)
= p(; [, 0)p(, [1,,0) p(l, 0)

38

Graphical Model

The conditional independence relations can be nicely
represented by a Graphical Model where a part is a node and
an edge connects two dependent parts:

Undirected Graph: G=(V,E)
V ={v,,...,.v,} are the parts

e; € E are the edges connecting the parts (v, v;) .

p(L|0) = p(, |I,,0) p]L. 6) p(l, |I,, 6) p(l, |6)

19



Graphical Model

The condition to have a polynomial time detection algorithm is
that the graph is acyclic.

This means that there can be no cycles in the graph,
i.e. no loops,

i.e. there can be no path starting and ending on one node.

Example:

m Not OK

39

Graphical Model

p(L|6) = p(l, |I,,0) p(l, |1, 0) pdl, I, 6) p(l,|6)

— T

This encodes relative This encodes absolute
information: information. This tells you
With this, if I tell you where is where is the tip of the nose
the nose, you can tell me on any image.
roughly where should be the

. . However, we assume the
eyes (without looking at the | h
image). nose could be anywhere.

Hence, we must model this
as a uniform PDF.

p(L|6) o P, I, 6)p(y 1., 6) Pl 1, 6) pliAE]

p(L®) < [T p@;]L.0) mant

(vi.vj)eE

40
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Part based Cost Function

We want to find the object configuration L* that maximizes the
posterior:

L =arg mexll[ p(11.0) TT p;]1.0)

(vi.vj)eE

This is the same as minimizing its negative logarithm:

L =arg min[—iln p(I,6)— > Inp(; |Ii,¢9)J

T (vi,vj)eE
probability that part i is at prot_)a_lbility of a relative
location I;, depends on the position between two
image and on each part parts.
independently.

42

Algorithm based on Cond. Indep.

(vi.vj)eE

L' =arg min[—znlln p(1[l,6)— > Inp(, |Ii,¢9)J

How to implement this efficiently ?

Let’s take an example with 3 nodes: /G’D\

OO

C™=min(=In p(1[l)=In p(1{I;)=In p(1fl.) =In p(t; 1)~ In p(i 1))

computing here the value of the dependence on the model
minimum, not the location of the parameters @ is omited
minimum, however computing

the location is identical, just

replace min by argmin

21



Alg. based on Cond. Indep.

C™=min(=In p(1]l;)=In p(t[l,)=In p(1I) =t p(l, 1) ~In p(i 1))

43

c'— mlin(—ln p(1 1)+ min (~In p(1[L,) ~In p(l L))+ min(~In p(1 ) ~In p(I3|I1)))

Alg. based on Cond. Indep.

44

C' = mlin(—ln p(l |I1)+m|in(—ln p(1]1,)—In p(IZ|I1))+m|in(—In p(1]l,)—In p(I3|I1)))

pest € = Infinity only 2 nested loops
for 1, =1 to h
best_C_12[1;] = Infinity

for 1, = 1 to h
best C 12[1,] = min( -log of image likelihood of part 2 in 1,
-log of probability of 1, given 1.,
best_C_12[1,] )

endfor

best C 13[17] = Infinity

for 1, =1 to h

best_C_13[1;] = min( -log of image likelihood of part 3 in 14

-log of probability of 15 given 1.,
best C AB[AL] )

endfor

best C = min( -log of image likelihood of part 1 in 1, + best C 12[1;] + best C 13

best_C )
endfor

22
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Alg. based on Cond. Indep.

Now, only 2h? evaluations are needed.
With conditional independence, we go from an exponential
time O(h") algorithm to a polynomial time O(nh?) algorithm.

Using some other tricks from Dynamic Programming and
Distance transforms, it can even be computed in linear
time O(nh).

see:

“Pictorial Structures for Object Recognition”
Felsenszwalb et al. in Intl. Journal of Computer Vision, Jan. 2005.
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Learning Model Parameters

@ are the model parameters. It regroups three kinds of
parameters:

e Appearance parameters, denoted by u,

e Graph structure (edges), denoted by E, and

Comment:

* shape parameters, denoted by C= {Cij |(Vi 'Vj) € E} For star models i = 1

We already saw how the appearance model is learnt.

Let's now see how the graph model is learnt.

Earlier, we saw that the shape parameters can be learnt
independently from the appearance parameters:

E",c" =arg n;axH p(L“|E,c)
kA

23
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Estimating the shape parameters

m
¢ = L“|E,c
E"c arnggcxlkl p(L“|E,c)
We have seen that using conditional independence assumptions:

p(LIE.C)oe [T bl |iEoc)

(v;,vj)eE

(I, |E ¢ ) p(l|c.) encodes absolute position
= ST A2 information, that we assume to
wupee P |Ci) be constant.

o p(;L[E.c )
)

(vi.vj)eE

E",c" =arg max IT TTpaf 0 |E,ci’j)

(vi.vj)eE k=1

48

Estimating the shape parameters

*ox = k ok
E’.c" =argmax IT ITp00 |E,ci’j)
" (vivy)eE k=1
For now, let's assume that we have a set of graph connections E,
hence the parameters for each connection can be estimated
separately:

ij

m
* k 1k
¢, =arg mcaxH p(If 1 |Ci,j)

Again, the PDF chosen to model this joint probability can be any
model we have learnt previously, however, using a Gaussian
model offers some advantage:

* . Hi % Zij
Ci,j) = N(:ui,jlzi,j) with Hij = Ei,j = s 5

p(If I
Y H; i~

24



Gaussian Conditional Probability

N i &, 2, Zij
pl 1 [cT ) =N .2 ;) with =) g %= 5, %,
However, later in the cost we need a function of the conditional
instead of the joint probability:

L*:argmin[—zn“ln p(I.0)- > In]

(vj vj)eE

Recall from the first exercise that for a Gaussian distribution,
conditioning on a set of variable preserves the Gaussian
property:

My 1) =g +2ji2;1(|i —14)

p(, [l €)= N(u,. ) with

-1
2, =3,-3,37%,

50

Learning the Graph Structure

The last thing to be learnt is the graph connections, E.
Recall that the ML estimate of the shape model parameters is:

E",c =arg max 1T 11 p(Iik,I}‘|E,ci‘j)

"(viv)eE k=1

m
¢, =arg mng (1 |Ci,j)
=1

S k=

Hence, the quality of a connection between two parts is given
by the probability of the examples under the ML estimate of
their joint distribution:

Q(Vivvj) :ﬁ p(|ik,|;<

ci;)

And the optimal graph is given by: E" =arg max IT aw.v)

(Vi vj)eE

25



Learning the Graph Structure

The optimal graph is given by: E =arg max IT aw.v))

(v;,vj)eE

E" =argmin > =Inq(v,v,)

(vi vj)eE

The Algorithm for finding this acyclic graph maximizing E*:
1. Compute cj; for all connections.
2. Compute q(v,v))=]] P(hkll,-kIC:j) for all connections.
k=1

3. Find the set of best edges using the Minimum Spanning
Tree algorithm.

51
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