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Template Matching

• So far, the classifiers were based on a large set of
example patterns.

• All the variability of the patterns were learned from
a training set using statistical methods.

• Sometimes, the designer of the classifier knows the
variations that the patterns might undergo.

• Then, it is more efficient and more accurate to 
design a classifier using this knowledge.

2

Template Matching in Images

• Where are the resistors?

• How many are they?

• Are they correctly positioned?








defects 
detection in 

assembly line



2

3

Template Matching in Images

Problem specificities:

• Rigid object  ->  One example is enough.

• The circuit board is always photographed 

- from the same viewpoint     -> No perspective

- with the same illumination   -> No lighting variation.

Hence, we may use a simple technique called 
Template Matching.

4

Template Matching in Images

Reference pattern   : r(i,j)   i=0,...,M-1  j=0,...,N-1

Test image:             t(i,j)   i=0,...,I-1  j=0,...,J-1

Goal: detect the MxN

sub-images within t(i,j)

that match r(i,j).

Strategy: superimpose r on the test image and 

translate it at all possible location (x,y) and compute 

the mismatch:
11

2
( , ) ( , ) ( , )

y Nx M

i x j y

D x y t i j r i x j y
  

 

     x=0,...,I-1  y=0,...,J-1
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Example

t is the threshold function:
1 if 

( , )
0 if 

x
x

x
t







 



( max( ) ( , ), )D D x yt  

6

Cross Correlation

11
2

( , ) ( , ) ( , )
y Nx M

i x j y

D x y t i j r i x j y
  

 

    

Problem: computing D(x,y) is slow.

does not depend 

on (x,y)

If does not vary much on the image

then minimizing D(x,y) is the same 

as maximizing c(x,y):

11
2

( , )
y Nx M

i x j y

t i j
  

 

 

11

( , ) ( , ) ( , )
y Nx M

i x j y

c x y t i j r i x j y
  

 

   

1 11 1 1 1
2 2

0 0

( , ) ( , ) 2 ( , ) ( , )
y N y Nx M M N x M

i x j y i j i x j y

t i j r i j t i j r i x j y
        

     

        
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Fast Cross Correlation

11

( , ) ( , ) ( , )
y Nx M

i x j y

c x y t i j r i x j y
  

 

    is the cross-correlation

between t(i,j) and r(i,j).

Do you recognize this formula?

An efficient way to compute a convolution is via the 
Convolution Theorem:

   ( , ) IDFT DFT ( , ) DFT ( , )c x y t x y r x y   

( , ) ( , ) ( , )c x y t x y r x y This is actually the formula of a convolution:

the 2 sums are gone.

normal product

8

Normalized Cross Correlation

Now what if t(i,j) cannot be assumed to be constant 

over the image?

Then we cannot neglect the term
11

2
( , )

y Nx M

i x j y

t i j
  

 

 

In this case, instead of using the cross-correlation, 
the normalized cross-correlation is used:

11

11 1 1
2 2

0 0

( , ) ( , )

( , )

( , ) ( , )

y Nx M

i x j y

N
y Nx M M N

i x j y i j

t i j r i x j y

c x y

t i j r i j

  

 

    

   

 



 

  
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Normalized Cross Correlation

11

11 1 1
2 2

0 0

( , ) ( , )

( , )

( , ) ( , )

y Nx M

i x j y

N
y Nx M M N

i x j y i j

t i j r i x j y

c x y

t i j r i j

  

 

    

   

 



 

  

This formula may be cumbersome, to simplify it, the 
normalized cross correlation of vectors a and b is:

T

N

a b
c

a b


Cauchy-Schwarz inequality: Ta b a b

Hence: 1 1Nc   and cN=1 only if a=αb with α positive scalar.

10

Normalized Cross Correlation Result
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Blurring the Reference Pattern

To allow for small displacements (rotation or 
perspective variation) of the object in the input 
image, it helps to blur the reference pattern.

12

Deformable Templates

Template Matching was 
concerned with:

Deformable Template is a 
method that allow the object 
to deform:

• flexible objects,

• some viewpoint variations
are allowed,

• some occlusion is allowed

• same illumination

• rigid objects,

• viewed from the same angle,

• cannot handle occlusion

• with the same illumination
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Examples of Objects that can Deform

The relative location of eyes, 
nose and mouth depends on 
the person and on the 
viewpoint.

The relative location of the 
limbs depends on the 
gesture of the person.

14

Parts based Object Representation

Template Matching with a single template would not work on 
these examples.

These examples are characterized by:

• The object is constituted by different parts.

• The appearance of each part is somewhat constant.

• The relative position of each part varies.

We want to localize the object by localizing each of its parts.
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Part based Object Representation

A face object is represented by the appearance of 
the eyes, nose and mouth, and a shape model 
that code how these parts can deform.

A body object is represented by the appearance of 
the head, the torso and each limbs, and a shape 
model that code how these parts can deform.

16

The Problem as Flexible Model

Here, the shape of an object is represented by 
”springs” connecting certain pair of parts.

springs

springs

This can be modeled as a Probabilistic Graphical Model
where a part is a node and a spring is an edge:

Graph: 

G=(V,E)

V = {v1,...,vn} are the parts

(vi, vj)  E are the edges connecting the parts.
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Part based Cost Function

We want to localize an object by finding the parts that 
simultaneously:

• minimize the appearance mismatch of each part, 

and

• minimize the deformation of the spring model.

*

1 ( , )

arg min ( ) ( , )
i j

n

i i ij i j
L i v v E

L m l d l l
 

 
  

 
 
 

appearance
cost

deformation
cost

mi(li) : cost of placing part i at location

dij(li,lj) : deformation cost.

Optimal location for the object is                     where  * * *

1 , , nL l l

( , )T

i i il x y

18

Part based Cost Function

It would not be optimal to first detect each part then 
to combine them. Why?

Because detecting a single part separately, is a more
difficult problem, as it involves less information.

This is why the cost function is minimized over all 
possible locations for all parts taking into account 
both appearance and deformation.

*

1 ( , )

arg min ( ) ( , )
i j

n

i i ij i j
L i v v E

L m l d l l
 

 
  

 
 
 
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Part based Cost Function

*

1 ( , )

arg min ( ) ( , )
i j

n

i i ij i j
L i v v E

L m l d l l
 

 
  

 
 
 

mi( li ) : cost of placing part i at location li.

This can be done by template matching for example.

Template Matching is not the best choice as it is 
computationally expensive.

20

Template Matching for each Part
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Deformation Cost

Now, the question is: how to combine these appearance 
results, using the shape information, in order to find the 
global minimum of the cost function?

( , )

( , ) ?
i j

ij i j

v v E

d l l




1

2 3

4

12 1 2 13 1 3 14 1 4

( , )

( , ) ( , ) ( , ) ( , )
i j

ij i j

v v E

d l l d l l d l l d l l


  

e.g. using the Mahalanobis Distance

1

12 1 2 2 2 1 12 2 2 1( , ) ( ) ( )Td l l l l l l l l      says where part 2 is likely to be 
located given the location of part 1.

covariance matrix computed 
on a training set.

mean displacement of part 2 from 
part 1

22

Deformation Cost Computation

1

12 1 2 2 2 1 12 2 2 1( , ) ( ) ( )Td l l l l l l l l     

Example of computation of the deformation:

Given what is the cost of having 2

8

7
l

 
  
 

1

9

8
l

 
  
 

2l 2

2

1
l

 
  

 

with the mean and 
the covariance fixed:

1l

9

8

2 2 1

1

1
l l l

 
    

 

8

6
2l

1.5

12

2 0

0 1

 
   

 
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Efficient Implementation

*

1 ( , )

arg min ( ) ( , )
i j

n

i i ij i j
L i v v E

L m l d l l
 

 
  

 
 
 

Finding the global minimum of this cost function 

requires computing it for all possible positions of li

and lj. If h is the number of pixel, this algorithm 

needs O(h2) evaluations. This is far too inefficient. 

“Pictorial Structures for Object Recognition” 
Felsenszwalb et al. in Intl. Journal of Computer Vision, Jan. 
2005.

It is shown that it can be computed in O(nh) which is 

much much better.

24

A Bayes Framework for

Deformable Templates matching.

“Pictorial Structures for Object Recognition” 
Felsenszwalb et al. in Intl. Journal of Computer Vision, Jan. 
2005.
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Statistical Framework

We want to maximize the posterior: ( , )p L I 

1 1( , , , )T

nL l l l : 2D position of n parts in the image.

I      : input image             

: model parameters 
(modeling appearance and shape)



Bayes Theorem: ( , ) ( , ) ( )p L I p I L p L  

: prior probability that an object is at a particular
position. 
This is the shape model.

( )p L 

( , )p I L  : likelihood of seeing a particular image given that 
an object is at some position.
This is the appearance model.

26

Image Likelihood

( , ) ( , ) ( )p L I p I L p L  

If the n parts are image patches that do not overlap, then we 

may assume that they are statically independent:

( , ) ( , ) ( )
N

i

i

p L I p I l p L  
 

  
 


Hence, the full posterior is:

probability that part i is at 

location li, depends on the 

image and on each part  
individually (independent).

probability of a shape 
configuration.

( , )T

i i il x y( , ) ( , )
n

i

i

p I L p I l  where  1, , nL l land
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Maximizing the posterior            is equivalent to minimizing its 
negative logarithm:

Cost Function

( , )p L I 

*

1arg max ( , ) ( , , )
N

i n
L

i

L p I l p l l 
 

  
 


*

1

1

arg min ln ( , ) ln ( , , )
n

i n
L

i

L p I l p l l 


  
    

  


28

are the model parameters. It regroups two kinds of parameters:

• Appearance parameters, denoted by u,

• shape parameters, denoted by c



Learning Model Parameters

1, , mI I
1, , mL Land

We need to learn them from a training set of m labeled 

examples:

 ,u c 
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Learning Model Parameters

We want to find the Maximum Likelihood estimate of   , i.e. 
the value    that maximizes:


*

1 1( , , , , , )m mp I I L L 

Recall that                                         hence:( , ) ( , ) ( )p I L p I L p L  

*

1 1

arg max ( , ) ( )
m m

k k k

k k

p I L p L


  
 

  

*

1

arg max ( , )
m

k k

u
k

u p I L u


 Hence,

*

1

arg max ( )
m

k

c
k

c p L c


 

assuming .... ?
1

( , )
m

k k

k

p I L 




*

,
1 1

arg max ( , ) ( )
m m

k k k

u c
k k

p I L u p L c
 

  

 ,u c 

30

Estimating Appearance Parameters

*

1

arg max ( , )
m

k k

u
k

u p I L u


 

( , ) ( , )
n

i

i

p I L p I l 
Recall that we assumed the image 

likelihood of the n parts to be independent:

*

1 1

arg max ( , )
m n

k k

i i
u

k i

u p I l u
 

 

1 1

arg max ( , )
n m

k k

i i
u

i k

p I l u
 

 

Hence, we can independently solve for each part:

*

1

arg max ( , )
i

m
k k

i i i
u

k

u p I l u


 
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Estimating Appearance Parameters

Now, we need to choose a model for ( , )i ip I l u

Any model learnt on the lecture about Density Estimation can 
be used: Gaussian, Mixture of Gaussians, non-parametric 
model, etc.

Here, for simplicity we model a patch of the image centered at 

the position li with a Gaussian model with a unit covariance 

matrix:

( , ) ( , )i i ip I l u N Id

We have learnt that the ML estimate is:
1

1
i

m

i l

k

I
m




 

where    is the patch of the image I centered at
il

I il

32

Gaussian Appearance Model

( , ) ( , )i i ip I l u N Id

Recall that
*

1

1

arg min ln ( , ) ln ( , , )
n

i n
L

i

L p I l p l l 


  
    

  


21
ln ( , ) ln 2

2 2i

i
i i l i

d
p I l u I     

Hence, using a Gaussian appearance model with an identity 
covariance matrix is the same as doing template matching on 
each part separately.

number of pixel in patch i.
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Shape Model

Likewise we need to choose a model for the shape configuration 
prior ( )p L c

Again, any model learnt on the lecture about Density 
Estimation can be used: Gaussian, Mixture of Gaussians, 
non-parametric model, etc.

*

1

arg max ( )
m

k

c
k

c p L c


 

We have seen that the shape model can be learnt 
independently from the appearance model:

34

Gaussian Shape Model

For instance, we can choose a Gaussian model, for which 

( ) ( , )L Lp L c N   

( , )L Lc  

We have learnt that the ML estimate are:

1

1 m
k

L

k

L
m




 
1

1
( )( )

m
k k T

L L L

k

L L
m

 


   and

11 1
ln ( , ) ( ) ( ) ln 2 ln

2 2

T

L L L L L Lp L L L n           

and its negative logarithm is:
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Algorithm for 3 parts and h pixels

*

1

1

arg min ln ( , ) ln ( , , )
n

i n
L

i

L p I l p l l 


  
    

  


for l1 = 1 to h

for l2 = 1 to h

for l3 = 1 to h

pL = log of probability of configuration (l1, l2, l3)

cost = -pI_l1[l1] – pI_l2[l2] – pI_l3[l3] - pL

best_cost = min(cost, best_cost)

endfor

endfor

endfor

n nested loops !!!

best_cost = Infinity;

for l1 = 1 to h, pI_l1[l1] = log of image likelihood of part 1 in l1 ; endfor

for l2 = 1 to h, pI_l2[l2] = log of image likelihood of part 2 in l2 ; endfor

for l3 = 1 to h, pI_l3[l3] = log of image likelihood of part 3 in l3 ; endfor

Very slow !

36

Prior Shape Model

1 2 3( ) ( , , )p L p l l l 

3 2 1 2 1( , , ) ( , )p l l l p l l 

3 2 1 2 1 1( , , ) ( , ) ( )p l l l p l l p l  

( )p L Problem: It is very time consuming to evaluate

This is due to                  .           Why?3 2 1( , , )p l l l 

Let’s assume that there are h pixel positions in the input 

image. To maximize           over the whole image we must 
evaluate                for all combinations of the 3 parts.

( )p L 

3 2 1( , , )p l l l 

For 3 parts: h3 evaluations.

For n parts: hn evaluations.





exponential time algorithm
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Conditional Independence

How can we speed that up?

Answer: assume conditional independence between parts.

3 2 1 2 1 1( ) ( , , ) ( , ) ( )p L p l l l p l l p l   

Now, let’s assume that l3 and l2 are conditionally independent

given l1. This means that if l1 is known, then knowing l2 gives 

us no additional information to estimate l3. Hence:

3 2 1 3 1( , , ) ( , )p l l l p l l 

3 2 1 2 1 1          ( ) ( , , ) ( , ) ( )p L p l l l p l l p l    

3 1 2 1 1( , ) ( , ) ( )p l l p l l p l  

38

Graphical Model

The conditional independence relations can be nicely 
represented by a Graphical Model where a part is a node and 
an edge connects two dependent parts:

v2 v3

v1

v4

e13
e12

e14



2 1 3 1 4 1 1( ) ( , ) ( , ) ( , ) ( )p L p l l p l l p l l p l    

Undirected Graph: G=( V, E )

V = {v1,...,vn} are the parts

eij ∈ E are the edges connecting the parts (vi, vj) .
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Graphical Model

The condition to have a polynomial time detection algorithm is 
that the graph is acyclic.

This means that there can be no cycles in the graph, 
i.e. no loops, 
i.e. there can be no path starting and ending on one node.

v2 v3

v1

v4

e13
e12

e14

e23

Not OK

v2 v3

v1

v4

e13
e12

e14

OK

Example:

40

Graphical Model

2 1 3 1 4 1 1( ) ( , ) ( , ) ( , ) ( )p L p l l p l l p l l p l    

This encodes relative
information:
With this, if I tell you where is 
the nose, you can tell me 
roughly where should be the 
eyes (without looking at the 
image).

This encodes absolute
information. This tells you 
where is the tip of the nose 
on any image.

However, we assume the 
nose could be anywhere. 
Hence, we must model this 
as a uniform PDF.

2 1 3 1 4 1 1( ) ( , ) ( , ) ( , ) ( )p L p l l p l l p l l p l    

( , )

( ) ( , )
i j

j i

v v E

p L p l l 


  constant
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Part based Cost Function

*

( , )

arg max ( , ) ( , )
i j

n

i j i
L

i v v E

L p I l p l l 


  

We want to find the object configuration L* that maximizes the 

posterior:

This is the same as minimizing its negative logarithm:

*

1 ( , )

arg min ln ( , ) ln ( , )
i j

n

i j i
L i v v E

L p I l p l l 
 

 
   

 
 
 

probability that part i is at 

location li, depends on the 

image and on each part 
independently.

probability of a relative 
position between two 
parts.

42

Algorithm based on Cond. Indep.

*

1 ( , )

arg min ln ( , ) ln ( , )
i j

n

i j i
L i v v E

L p I l p l l 
 

 
   

 
 
 

How to implement this efficiently ?

v2 v3

v1Let’s take an example with 3 nodes:

 
1 2 3

*

1 2 3 2 1 3 1
, ,

min ln ( ) ln ( ) ln ( ) ln ( ) ln ( )
l l l

C p I l p I l p I l p l l p l l     

computing here the value of the 
minimum, not the location of the 
minimum, however computing 
the location is identical, just 
replace min by argmin

dependence on the model 
parameters     is omited
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Alg. based on Cond. Indep.

 
1 2 3

*

1 2 3 2 1 3 1
, ,

min ln ( ) ln ( ) ln ( ) ln ( ) ln ( )
l l l

C p I l p I l p I l p l l p l l     

    
1 2 3

*

1 2 2 1 3 3 1min ln ( ) min ln ( ) ln ( ) min ln ( ) ln ( )
l l l

C p I l p I l p l l p I l p l l       
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best_C = Infinity

for l1 = 1 to h

endfor

Alg. based on Cond. Indep.

only 2 nested loops

    
1 2 3

*

1 2 2 1 3 3 1min ln ( ) min ln ( ) ln ( ) min ln ( ) ln ( )
l l l

C p I l p I l p l l p I l p l l       

best_C_l2[l1] = Infinity

for l2 = 1 to h

best_C_l2[l1] = min( -log of image likelihood of part 2 in l2

-log of probability of l2 given l1,

best_C_l2[l1] )

endfor

best_C_l3[l1] = Infinity

for l3 = 1 to h

best_C_l3[l1] = min( -log of image likelihood of part 3 in l3

-log of probability of l3 given l1,

best_C_l3[l1] )

endfor

best_C = min( -log of image likelihood of part 1 in l1 + best_C_l2[l1] + best_C_l3[l1],

best_C )
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Alg. based on Cond. Indep.

Now, only 2h2 evaluations are needed.

With conditional independence, we go from an exponential
time O(hn) algorithm to a polynomial time O(nh2) algorithm.

Using some other tricks from Dynamic Programming and  
Distance transforms, it can even be computed in linear 
time O(nh).

see: 
“Pictorial Structures for Object Recognition” 
Felsenszwalb et al. in Intl. Journal of Computer Vision, Jan. 2005.
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Θ are the model parameters. It regroups three kinds of 

parameters:

• Appearance parameters, denoted by u,

• Graph structure (edges), denoted by E, and

• shape parameters, denoted by 

Learning Model Parameters

 ( , )ij i jc c v v E 

We already saw how the appearance model is learnt.

Let’s now see how the graph model is learnt.

* *

,
1

, arg max ( , )
m

k

E c
k

E c p L E c


 

Earlier, we saw that the shape parameters can be learnt 
independently from the appearance parameters:

Comment: 

For star models i = 1
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Estimating the shape parameters

( , )

( , ) ( , , )
i j

j i i j
v v E

p L E c p l l E c


 

* *

,
1

, arg max ( , )
m

k

E c
k

E c p L E c


 

We have seen that using conditional independence assumptions:

,

( , )

( , , )

( )
i j

j i i j

v v E i i

p l l E c

p l c

 
( )i i

p l c encodes absolute position 
information, that we assume to 
be constant.

,

( , )

( , , )
i j

j i i j

v v E

p l l E c


 

* *

,,
( , ) 1

, arg max ( , , )
i j

m
k k

i j i jE c
v v E k

E c p l l E c
 

  
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Estimating the shape parameters

For now, let’s assume that we have a set of graph connections E, 

hence the parameters for each connection can be estimated 
separately:

*

, ,
1

arg max ( , )
ij

m
k k

i j i j i jc
k

c p l l c


 

* *

,,
( , ) 1

, arg max ( , , )
i j

m
k k

i j i jE c
v v E k

E c p l l E c
 

  

Again, the PDF chosen to model this joint probability can be any 
model we have learnt previously, however, using a Gaussian 
model offers some advantage:

*

, , ,( , ) ( , )k k

i j i j i j i jp l l c N   ,

i

i j

j






 
  
 

,

i ij

i j

ji j

  
   

  
with
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Gaussian Conditional Probability

*

, , ,( , ) ( , )i j i j i j i jp l l c N   ,

i

i j

j






 
  
 

,

i ij

i j

ji j

  
   

  
with

However, later in the cost we need a function of the conditional 
instead of the joint probability:

*

1 ( , )

arg min ln ( , ) ln ( , )
i j

n

i j i
L i v v E

L p I l p l l 
 

 
   

 
 
 

Recall from the first exercise that for a Gaussian distribution, 
conditioning on a set of variable preserves the Gaussian 
property:

*( , ) ( , )j i j i j i j i
p l l c N  

1( ) ( )i j ji i i ij i
l l     

with
1

j ji i ijj i

     
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Learning the Graph Structure

The last thing to be learnt is the graph connections, E.

Recall that the ML estimate of the shape model parameters is:

* *

,,
( , ) 1

, arg max ( , , )
i j

m
k k

i j i jE c
v v E k

E c p l l E c
 

  

*

, ,
1

arg max ( , )
ij

m
k k

i j i j i jc
k

c p l l c


 

Hence, the quality of a connection between two parts is given 
by the probability of the examples under the ML estimate of 
their joint distribution:

*

,

1

( , ) ( , )
m

k k

i j i j i j

k

q v v p l l c




*

( , )

arg max ( , )
i j

i j
E

v v E

E q v v


 And the optimal graph is given by:
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Learning the Graph Structure

*

( , )

arg max ( , )
i j

i j
E

v v E

E q v v


 The optimal graph is given by:

*

( , )

arg min ln ( , )
i j

i j
E

v v E

E q v v


 

The Algorithm for finding this acyclic graph maximizing E*:

1. Compute      for all connections.

2. Compute                                 for all connections.

3. Find the set of best edges using the Minimum Spanning 
Tree algorithm.

*

j i
c

*

,
1

( , ) ( , )
m

k k

i j i j i j
k

q v v p l l c





