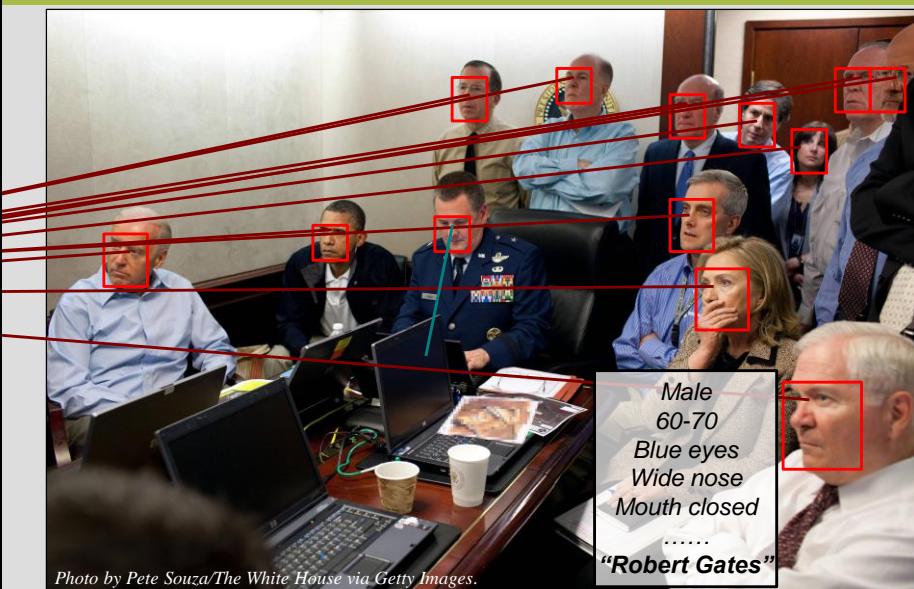
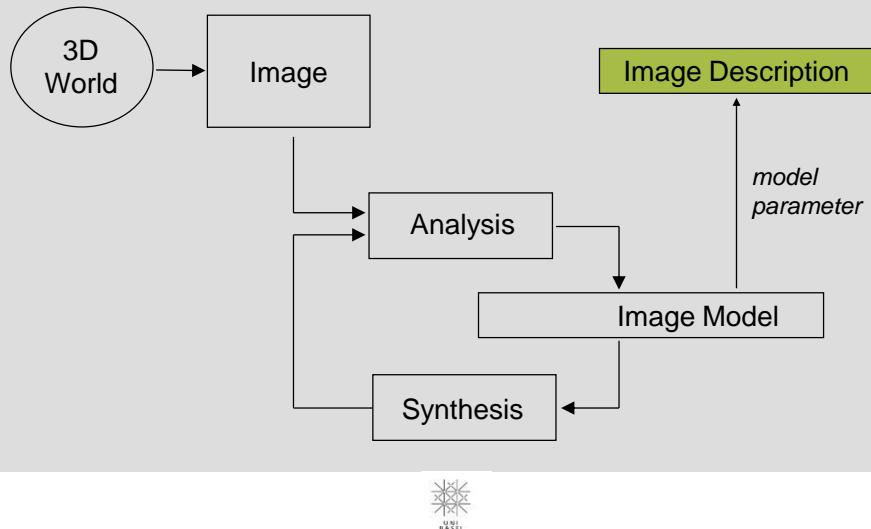


Probabilistic Morphable Models

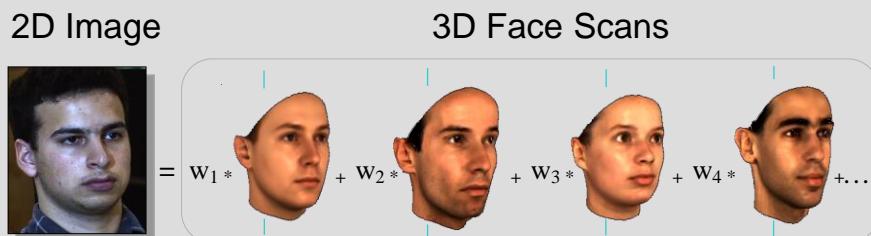
Thomas Vetter



Analysis by Synthesis



Example based image modeling of faces



Morphable Models for Image Registration

$$= R_{\rho} \left\{ \begin{array}{l} \alpha_1 \text{ (morphed face)} + \alpha_2 \text{ (morphed face)} + \alpha_3 \text{ (morphed face)} + \dots \\ \beta_1 \text{ (morphed face)} + \beta_2 \text{ (morphed face)} + \beta_3 \text{ (morphed face)} + \dots \end{array} \right\}$$

R = Rendering Function

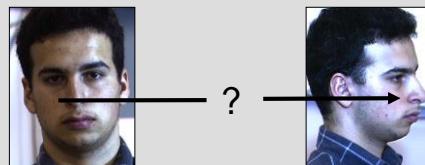
ρ = Parameters for Pose, Illumination, ...

Optimization Problem: Find optimal α, β, ρ !

Output

Probabilistic Morphable Models

1. Model-based image registration using Gaussian Processes for shape deformations



2. “*Probabilistic registration*”: Find the distribution of possible transformations $h(\theta)$ that transforms I_R to I_T .

$$P(\theta | I_T, I_R)$$

Gaussian Process Morphable Models:

- ▶ A Gaussian process $h \sim GP(\mu, k)$ on X is completely defined by its mean function

$$\mu : X \rightarrow \mathbb{R}^3$$

and covariance function

$$k : X \times X \rightarrow \mathbb{R}^{3 \times 3}$$

- ▶ A low rank approximation can be computed using the Nyström approximation.

$$h(\theta) \approx \mu + \sum_i^d \theta_i \sqrt{\lambda_i} \Phi_i$$

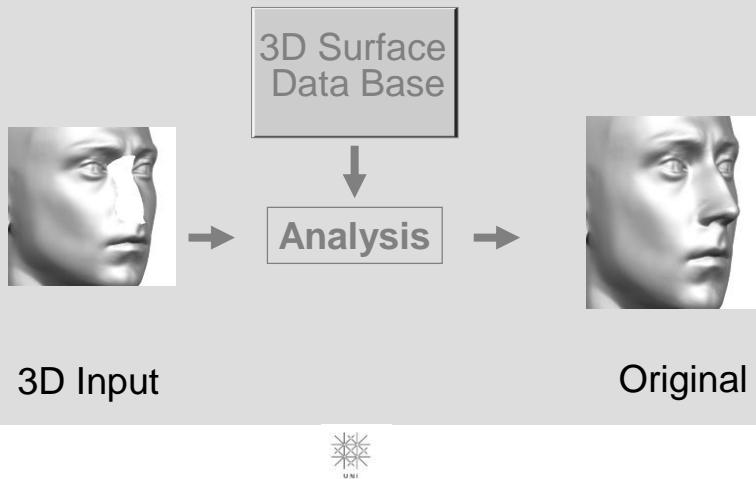
with $\theta \sim N(0, I_d)$

Advantage of Gaussian Process Morphable Models

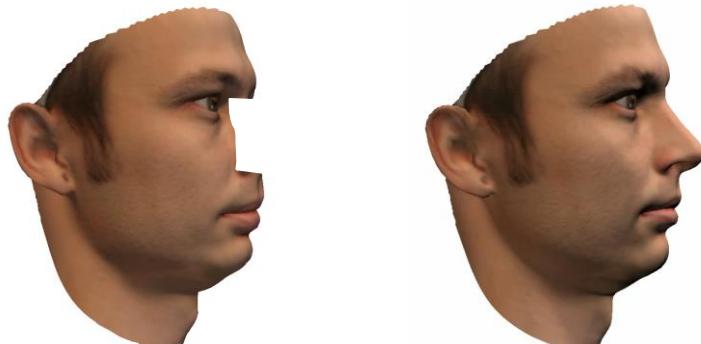
- ▶ Probabilistic formalism !
- ▶ Extremely flexible concept. By varying the covariance function k a variety of 'different' algorithms of deformation modelling are included.
 - Thin Plate Splines
 - Free Form deformations
 - ...
 - Standard PCA-Model

"Scalismo" an open source library by Marcel Lüthi
see also our MOOC on FutureLearn "Statistical Shape Modelling"

Surface Data Prediction as Gaussian Process Regression

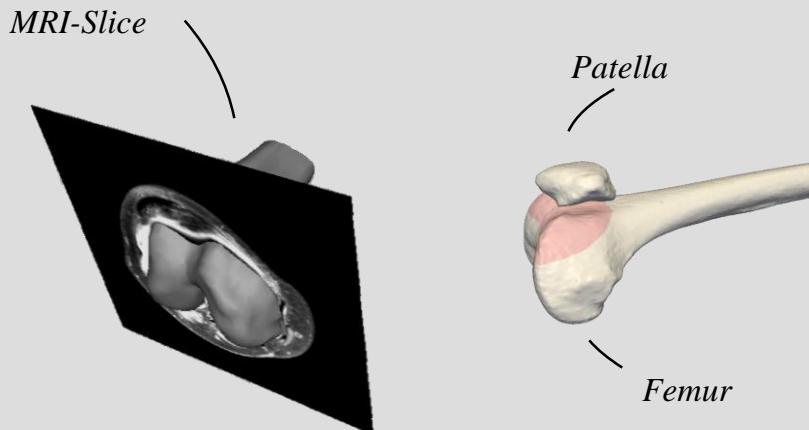


Surface Data Prediction as Gaussian Process Regression

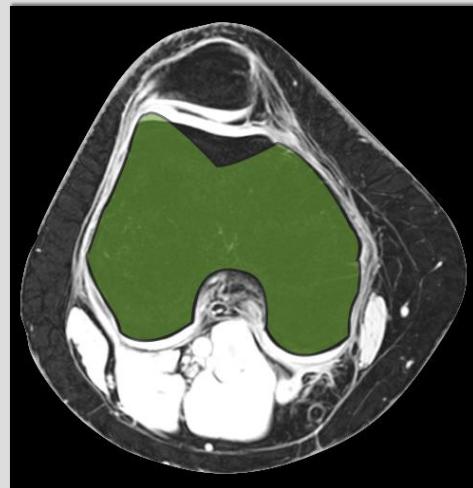


Application

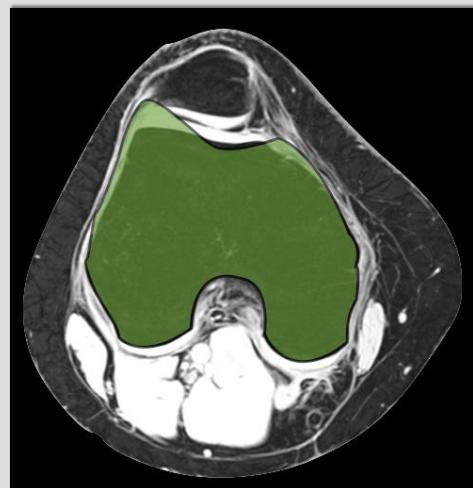
Example use-case: Trochlea dysplasia



Trochlea-Dysplasia



Surgical intervention: Increase groove

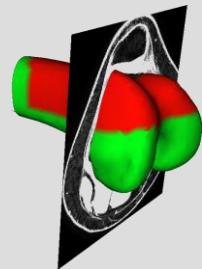
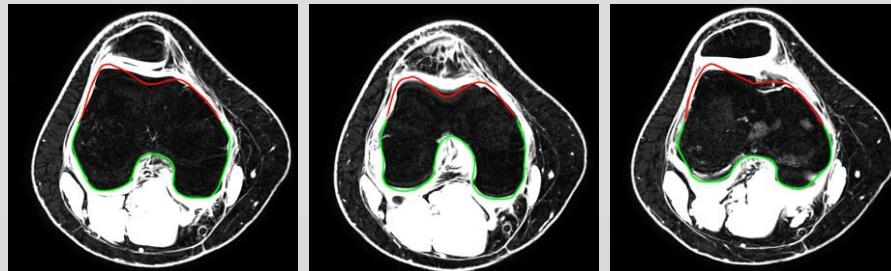


Surgical intervention: Augment bony structure

Automatic inference of pathology

Posterior Shape Models

T. Albrecht, M. Lüthi, T. Gerig, T. Vetter,
Medical Image Analysis, 2013



Probabilistic Inference for Image Registration

- ▶ Generative image explanation: How to find θ explaining I ?

$$p(\theta|I) = \frac{\ell(\theta; I) p(\theta)}{N(I)} \quad N(I) = \int \ell(\theta; I) p(\theta) d\theta$$

-----> Normalization intractable in our setting

- ▶ What can be done:
 1. Accept MAP as the only option
 2. Approximate posterior distribution (e.g. use sampling methods)

The Metropolis-Hastings Algorithm

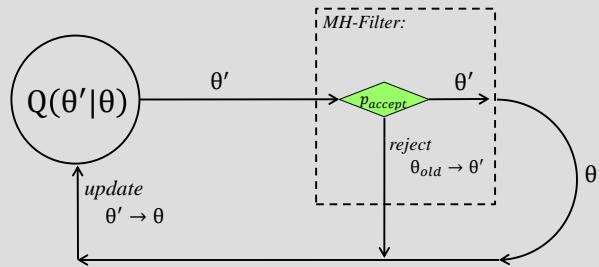
- ▶ Need a distribution which can generate samples: $Q(\theta'|\theta)$
- ▶ Algorithm transforms samples from Q into samples from P :
 1. Draw a sample θ' from $Q(\theta'|\theta)$
 2. Accept θ' as new state θ with probability $p_{accept} = \min\left\{\frac{P(\theta')}{P(\theta)} \frac{Q(\theta|\theta')}{Q(\theta'|\theta)}, 1\right\}$
 3. State θ is current sample, repeat for next sample

---> Generates unbiased but correlated samples from P
- ▶ Markov Chain Monte Carlo Sampling: Result: $\{\theta_1, \theta_2, \theta_3, \dots \dots \}$

MH Inference of the 3DMM

- ▶ Target distribution is our “posterior”:
- ▶ P : $\tilde{P}(\theta|I_T) = \ell(\theta|I_T, I_R)p(\theta)$
 - ▶ Unnormalized
 - ▶ Point-wise evaluation only
- ▶ Parameters
 - ▶ Shape: 50 – 200, low-rank parameterized GP shape model
 - ▶ Color: 50 – 200, low-rank parameterized GP color model
 - ▶ Pose/Camera: 9 parameters, pin-hole camera model
 - ▶ Illumination: 9*3 Spherical Harmonics for illumination/reflectance
- ▶ ≈ 300 dimensions (!!)

Metropolis Filtering



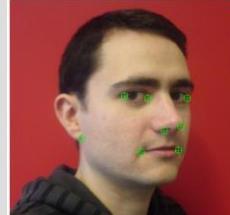
- ▶ Markov Chain Monte Carlo Sampling: Result: $\{\theta_1, \theta_2, \theta_3, \dots \dots \}$

Results: 2D Landmarks

- ▶ Landmarks posterior:
 Manual labelling: $\sigma_{LM} = 4\text{pix}$
 Image: 512x512

- ▶ Certainty of pose fit?
 - ▶ Influence of ear points?
 - ▶ Frontal better than side-view?

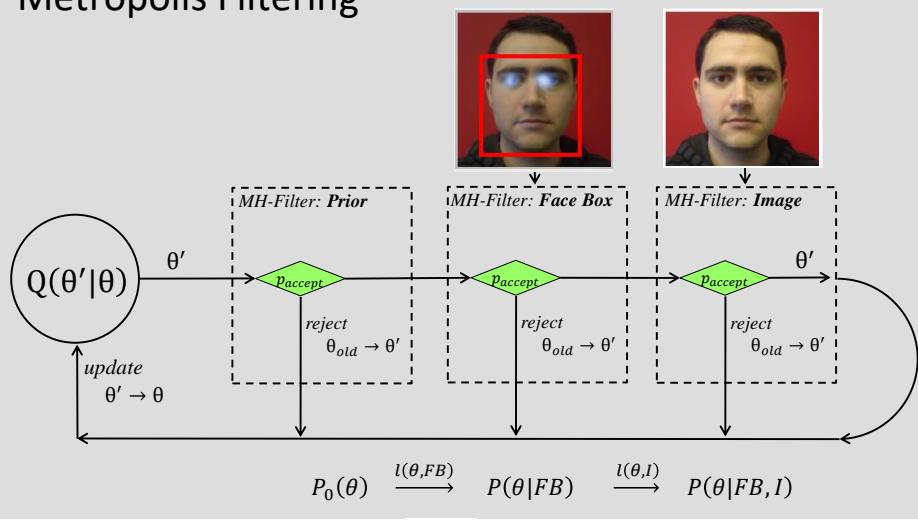
$\text{Yaw}, \sigma_{LM} = 4\text{pix}$	with ears	w/o ears
Frontal	$1.4^\circ \pm 0.9^\circ$	$-0.8^\circ \pm 2.7^\circ$
Side view	$24.8^\circ \pm 2.5^\circ$	$25.2^\circ \pm 4.0^\circ$



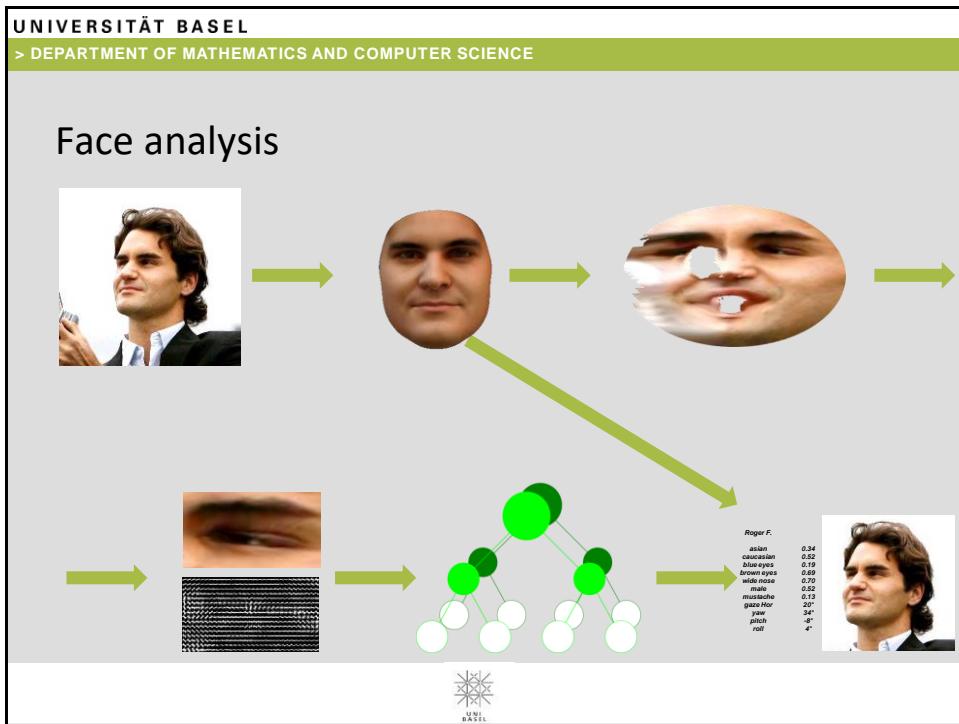
Integration of Bottom-Up



Metropolis Filtering



pose sampling from the detection posterior



Occlusion-aware 3D Morphable Face Models

Bernhard Egger, Sandro Schönborn, Andreas Schneider, Adam Kortylewski, Andreas Morel-Forster, Clemens Blumer and Thomas Vetter
International Journal of Computer Vision, 2018

Face Image Analysis under Occlusion

Source: AFLW Database

Source: AR Face Database

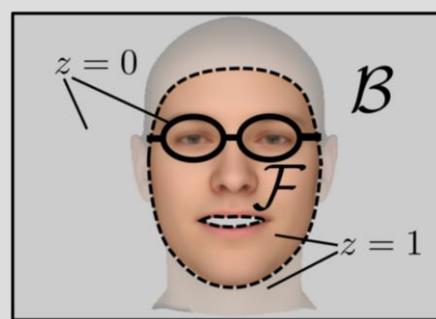
There is nothing like: no background model

Maximum Likelihood Formulation:

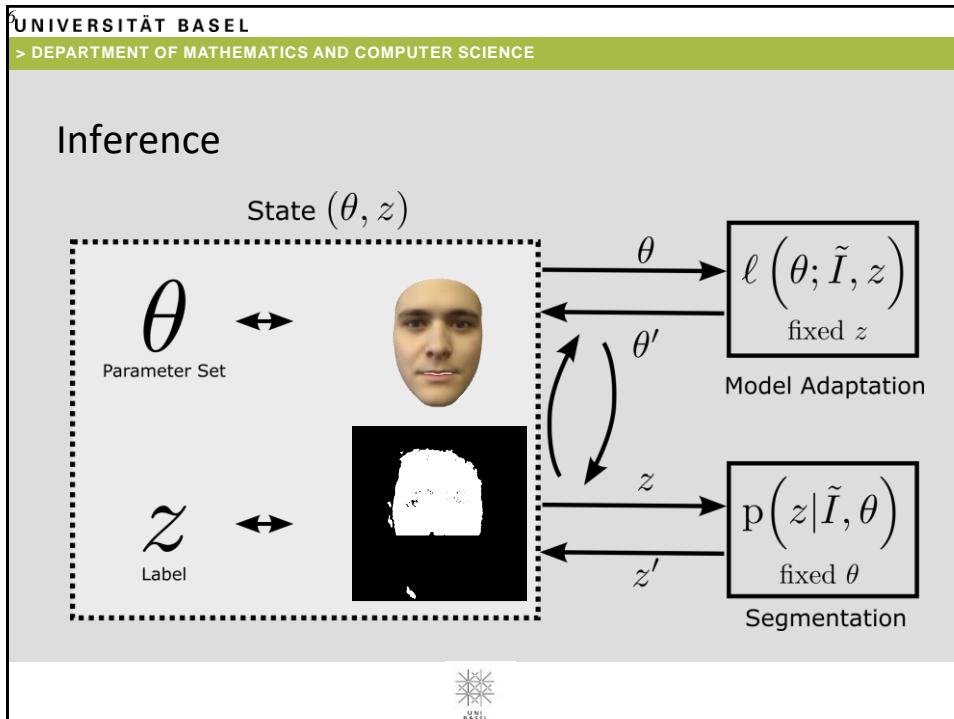
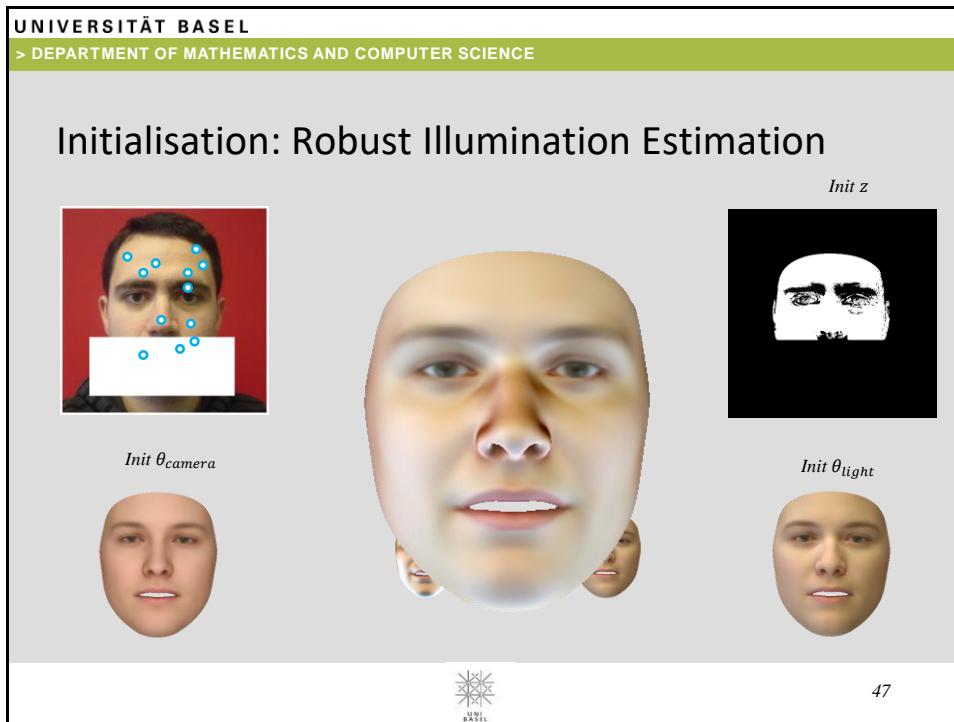
$$\ell(\theta; I) = \prod_{x \in I} \ell(\theta; I(x)) = \prod_{x \in Fg} \ell(\theta; I(x)) \times \prod_{x \in Bg} \ell(\theta; I(x))$$

"Background Modeling for Generative Image Models"
 Sandro Schönborn, Bernhard Egger, Andreas Forster, and Thomas Vetter
Computer Vision and Image Understanding, Vol 113, 2015.

Occlusion-aware Model

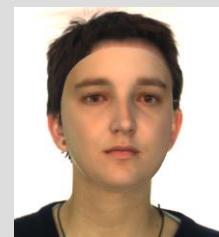


$$l(\theta; \tilde{I}, z) = \prod_i l_{face}(\theta; \tilde{I}_i)^z \cdot l_{non-face}(\theta; \tilde{I}_i)^{1-z}$$



Results: Qualitative

Source: AR Face Database



Results: Qualitative

Source: AFLW Database

Results: Applications

Source: LFW Database

Acknowledgement

Sandro Schönborn

Bernhard Egger

Andreas Schneider

Andreas Forster

Marcel Lüthi

Jean Pierrard

Mirella Walker

<https://gravis.unibas.ch>

