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Probabilistic Morphable Models
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Example based image modeling of faces

2D Image                            2D Face Examples2D Image                            3D Face Scans

= w1 *                      +  w2 *                        +  w3 *                   +  w4 *                     +. . .
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Morphable Models for Image Registration

Output

R = Rendering Function

ρ = Parameters for Pose, Illumination, ...

Optimization Problem: Find optimal α, β, ρ !
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Probabilistic Morphable Models

1. Model-based image registration using Gaussian Processes for 
shape deformations

2. “Probabilistic registration”: Find the distribution of possible 
transformations h(𝜃) that transforms 𝐼𝑅 to 𝐼𝑇 .

?

𝑃(𝜃|𝐼𝑇 , 𝐼𝑅)
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Gaussian Process Morphable Models:

A Gaussian process  ℎ ~ 𝐺𝑃 𝜇, 𝑘 on 𝑋 is completely defined by 
its mean function

𝜇 ∶ 𝑋 → ℝ3

and covariance function
𝑘 ∶ 𝑋 × 𝑋 → ℝ3×3

A low rank approximation can by computed using the Nyström
approximation.

ℎ 𝜃 ≈ 𝜇 + σ𝑖
𝑑 𝜃𝑖 𝜆𝑖Φ𝑖

with 𝜃 ~ 𝑁(0, 𝐼𝑑)
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Advantage of Gaussian Process Morphable Models

Probabilistic formalism !  

Extremely flexible concept. By varying the covariance function k  
a variety of ‘different’ algorithms of deformation modelling are 
included. 

 Thin Plate Splines

 Free Form deformations 

 …

 Standard PCA-Model  
“Scalismo” an open source library by Marcel Lüthi

see also our MOOC on FutureLearn “Statistical Shape Modlling”
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Surface Data Prediction 
as Gaussian Process Regression

3D Surface
Data Base

Analysis

3D Input
Statistical

PredictionOriginal
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Surface Data Prediction 
as Gaussian Process Regression
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Application
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Disclocation of the patella
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Femur

Patella

MRI-Slice

Example use-case: Trochlea dysplasia
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Trochlea-Dysplasia
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Surgical intervention: Increase goove
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Surgical intervention: Augment bony structure
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Posterior Shape Models  

T. Albrecht, M. Lüthi, T. Gerig, T. Vetter, 

Medical Image Analysis, 2013 

Automatic inference of pathology
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Probabilistic Inference for Image Registration

Generative image explanation: How to find 𝜃 explaining I ?

𝑝 𝜃 𝐼 =
ℓ(𝜃; 𝐼) 𝑝(𝜃)

𝑁(𝐼)
𝑁 𝐼 = නℓ(𝜃; 𝐼)𝑝(𝜃)d𝜃

-----> Normalization intractable in our setting

What can be done:
1. Accept MAP as the only option

2. Approximate posterior distribution (e.g. use sampling methods)
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The Metropolis-Hastings Algorithm

Need a distribution which can generate samples: 𝑄 𝜃′ 𝜃)

Algorithm transforms samples from 𝑄 into samples from 𝑃:

1. Draw a sample 𝜃′ from 𝑄 𝜃′ 𝜃)

2. Accept 𝜃′ as new state 𝜃 with probability   𝑝𝑎𝑐𝑐𝑒𝑝𝑡 = min
𝑃 𝜃′

𝑃 𝜃

𝑄 𝜃|𝜃′

𝑄 𝜃′|𝜃
, 1

3. State 𝜃 is current sample, repeat for next sample

--->  Generates unbiased but correlated samples from 𝑃

Markov Chain Monte Carlo Sampling: Result: 𝜃1, 𝜃2, 𝜃3, ……

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE  

MH Inference of the 3DMM

 Target distribution is our “posterior”:

 𝑃: ෨𝑃 𝜃 𝐼𝑇 = ℓ 𝜃|𝐼𝑇 , 𝐼𝑅 𝑝 𝜃

 Unnormalized

 Point-wise evaluation only

 Parameters

 Shape: 50 – 200, low-rank parameterized GP shape model

 Color: 50 – 200, low-rank parameterized GP color model

 Pose/Camera: 9 parameters, pin-hole camera model

 Illumination: 9*3 Spherical Harmonics for illumination/reflectance               

 ≈ 300 dimensions (!!)
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Metropolis Filtering

θ′

MH-Filter:

Q θ′|θ 𝑝𝑎𝑐𝑐𝑒𝑝𝑡

reject

θ𝑜𝑙𝑑 → θ′

θ′

θ′
update

θ′ → θ

Markov Chain Monte Carlo Sampling: Result: 𝜃1, 𝜃2, 𝜃3, ……

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE  

Results: 2D Landmarks

 Landmarks posterior:
Manual labelling: 𝜎LM = 4pix

Image: 512x512

Certainty of pose fit?
 Influence of ear points?

Frontal better than side-view?

Yaw, σ𝐋𝐌 = 4pix with ears w/o ears

Frontal 1.4∘ ± 𝟎.𝟗∘ −0.8∘ ± 𝟐.𝟕∘

Side view 24.8∘ ± 𝟐. 𝟓∘ 25.2∘ ± 𝟒. 𝟎∘
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Integration of Bottom-Up 
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Metropolis Filtering

θ′

MH-Filter: Prior

Q θ′|θ 𝑝𝑎𝑐𝑐𝑒𝑝𝑡

reject

θ𝑜𝑙𝑑 → θ′

update

θ′ → θ

MH-Filter: Face Box

𝑝𝑎𝑐𝑐𝑒𝑝𝑡

reject

θ𝑜𝑙𝑑 → θ′

MH-Filter: Image

𝑝𝑎𝑐𝑐𝑒𝑝𝑡

reject

θ𝑜𝑙𝑑 → θ′

θ′

𝑃0 𝜃
𝑙 𝜃,𝐹𝐵

𝑃 𝜃|𝐹𝐵
𝑙 𝜃,𝐼

𝑃 𝜃|𝐹𝐵, 𝐼
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35
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Face analysis

Roger F.

asian

caucasian

blue eyes

brown eyes

wide nose

male

mustache

gaze Hor

yaw

pitch

roll

0.34

0.52

0.19

0.69

0.70

0.52

0.13

20°

34°

-8°

4°



14

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE  

40

Occlusion-aware 3D Morphable Face Models
Bernhard Egger, Sandro Schönborn, Andreas Schneider, Adam 
Kortylewski, Andreas Morel-Forster, Clemens Blumer and Thomas Vetter
International Journal of Computer Vision, 2018 
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Face Image Analysis under Occlusion

41

Source: AFLW Database Source: AR Face Database
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ℓ 𝜃; 𝐼 = ෑ

𝑝𝑖𝑥𝑒𝑙

ℓ 𝜃; 𝐼 𝑥

There is nothing like: no background model

“Background Modeling for Generative Image Models”
Sandro Schönborn, Bernhard Egger, Andreas Forster, and Thomas Vetter
Computer Vision and Image Understanding, Vol 113, 2015. 

= ෑ

𝑥∈𝐹𝑔

ℓ 𝜃; 𝐼 𝑥 × ෑ

𝑥∈𝐵𝑔

ℓ 𝜃; 𝐼 𝑥ℓ 𝜃; 𝐼 = ෑ

𝑥 ∈ 𝐼

ℓ 𝜃; 𝐼 𝑥

Maximum Likelihood Formulation:  
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Occlusion-aware Model

𝑙 𝜃; ሚ𝐼, 𝑧 = ෑ

𝑖

𝑙𝑓𝑎𝑐𝑒 𝜃; ෩𝐼𝑖
𝑧
∙ 𝑙𝑛𝑜𝑛−𝑓𝑎𝑐𝑒 𝜃; ෩𝐼𝑖

1−𝑧
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Inference

46
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Initialisation: Robust Illumination Estimation

47

Init 𝜃𝑙𝑖𝑔ℎ𝑡

Init 𝑧

Init 𝜃𝑐𝑎𝑚𝑒𝑟𝑎



17

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE  

Results: Qualitative Source: AR Face Database
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Results: Qualitative

49

Source: AFLW Database
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Results: Applications

50

Source: LFW Database
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