
10907 Pattern Recognition Exercise 3 Fall 2019

10907 Pattern Recognition

Lecturers Assistants
Prof. Dr. Thomas Vetter 〈thomas.vetter@unibas.ch〉 Dennis Madsen 〈dennis.madsen@unibas.ch〉

Dana Rahbani 〈dana.rahbani@unibas.ch〉
Moira Zuber 〈moira.zuber@unibas.ch〉
Genia Böing 〈genia.boeing@unibas.ch〉

Exercise 3 — Logistic Regression and Näıve Bayes

Introduction 21.10
Deadline 28.10 Upload code to Courses.

28.10+29.10 Group presentations, U1.001, see schedule online

This exercise is divided into two independent parts:

1. Implement and test a logistic regression classifier with and without regularization. The
classifiers will first be applied to a toy problem and then to different image datasets.

2. Implement and test a Naive Bayes classifier. The classifier will be applied to an email
dataset for spam detection.

You can download the data needed for this exercise and a code skeleton from the following
repository: https://bitbucket.org/gravis-unibas/pattern-recognition-2019.
A number of helper functions are provided - your task is to implement the TODO parts in the
python (.py) files.

Remember to upload your code to courses in a ZIP file. Do NOT include
the data folder. Only the python files you edited should be included + a file
containing the group members names. Only 1 person from the team should upload!

Data:

Each mat-file contains the training and the test set for a problem, named NAME (train|test).
The sets are encoded as (d+ 1)×N -matrix, where N is the total number of data points and d
the dimension of the feature vector. The first column contains the label y ∈ {−1, 1}.

• toy (d = 2): A very small (x,y) toy data set that can be easily visualized. Use it for
development and for studying the behaviour of your classifiers.

• zip38 (d = 256): Handwritten digits automatically scanned by the U.S. Postal Service.
The set is reduced to the digits 3 and 8. The digits are normalised to a grey scale 16× 16
grid.

• zip13 (d = 16× 16 = 256): As above with digits 1 and 3.

• CIFAR (d = 32× 32× 3 = 3072)

Remarks:

• Do not use the test sets for training!

• Be aware of the computational demands. Some implementations may take a while to train
with lots of data. During development use only a few data points until your implementation
works, then train with more data.

1

https://bitbucket.org/gravis-unibas/pattern-recognition-2019

10907 Pattern Recognition Exercise 3 Fall 2019

1 Logistic Regression

1.1 Classification without regularization

Implement and test a Logistic Regression classifier without regularization. Start with the
provided script logreg for the LOGREG class. Use a regcoeff of 0 and set every
regularizationTerm to zero for now. Refer to the slides for all the needed equations. Pre-
pare your class by completing the functions listed here:

• Define the activation function activationFunction. Use the equation of the logistic func-
tion.

• Define the cost function costFunction. Remember, you are maximizing the loglikelihood
of the posterior for class 1. Pay attention to what you give as input to the logarithm
function! You will get a runtime error if the input value is 0.

• Calculate the gradient of the cost function calculateDerivative. You may directly use
the derived form of the derivative from the lecture slides.

• Calculate the Hessian matrix calculateHessian. Again, you can directly use the equations
derived in the lecture slides.

• Optimize using the Newton-Raphson algorithm optimizeNewtonRaphson. To implement
this, you should update the model parameters iteratively. Refer to the equation provided
in the lecture slides for iterative optimization. Include a threshold on the proposed update,
if the update is below self. threshold it is safe to assume convergence.

• Train using the train function.

• Implement the classify function which uses the self.theta model parameters to classify
data points.

• Implement the printClassification function to compute the classification error of the
classifier as well as the number of incorrectly classified items.

Once your logreg class is ready, you can start training and testing on the three provided datasets.
Make sure you train your classifier on the training set and predict on the test set!

• Start with the toy dataset and the script ex3-LOGREG 1 Toy.py. Train the logistic re-
gression classifier and calculate the accuracy of its predictions on the training set. Then
calculate the accuracy of its predictions on the testing set. Visualize the results in 2D and
3D using the provided plotting functions plot2D and plot3D. Make sure you understand
and can explain the resulting figures (legend, colors, marker shape, straight lines). Note
that the 3D figures can be rotated for better inspection.

• Now move on to the MNIST and the CIFAR datasets. Use the script
ex3-LOGREG 2 ImageClassification.py. Train and test a classifier. Calculate the ac-
curacy and show the number of misclassified input vectors.

1.2 Classification with regularization

Now you will add regularization to the logistic regression classifier class. Recall that the goal of
regularization is to penalize large parameter values. There are 2 new terms to define in this part:
regularizationTerm and the regularization coefficient r. The regularization coefficient r repre-
sents (1/2σ2) in the lecture slides. The regularizationTerm is what should be added to the cost
function to perform L2 regularization on the weight vector w. Start from your implementation
of part 1.1 and modify the costFunction, calculateDerivative and calculateHessian:

2

10907 Pattern Recognition Exercise 3 Fall 2019

• Implement the equation of the regularizationTerm in the cost function, its first derivative
in the calculateDerivative function, and its second derivative in the calculateHessian

function. Make sure you do not regularizing the bias term of the parameters (w0) in all
three functions! The equations of the term in the cost function and its first derivative
can be found in the lecture slides. As for the Hessian derivation, you must perform the
derivation yourself, then construct a regularization matrix to add to your previously defined
Hessian matrix. Tip: The regularization matrix is a diagonal matrix with the same shape
as the Hessian. The first entry of the matrix must be explicitly set to zero, as it represents
the w0 term which should not be regularized.

For each of the datasets, train your classifier on the training data and predict on the test set.
Use different values for the regularization coefficient: 0 (no regularization), 0.1 and 0.5. Note
down the accuracy and number of misclassifications of each. How does regularization affect the
accuracy on the test data and the training data?
Plot the results on the toy dataset in 2D and 3D using the provided plotting functions plot2D and
plot3D. Compare the figures of the three different regularization conditions. How does the value
of the regularization coefficient affect the resulting hyperplane? Compare the posterior value
prediction of the same datapoint from each of the three regularization conditions. What is the
relationship between regularization and the confidence of predictions, and between regularization
and the error rate on the test data? In which cases would you prefer to increase regularization?

3

10907 Pattern Recognition Exercise 3 Fall 2019

2 Naive Bayes

Data:

For the email classification, the test and training emails can be found under data/emails/train
and data/emails/test.

• emails - each training example can be found in separate .txt files. The filenames starting
with the letter ’s’ are spam emails.

2.1 Linear Classification

Show that the Näıve Bayes model’s classification using the spam score is linear if we use a fixed
vocabulary and word counts xi as our features. You have to show the correspondence of the
classification function with the standard linear classifier g(x) = w0 + 〈w,x〉.

2.2 Implementation

(a) Learning Learn the likelihood terms and prior probabilities for the Bayes model based on
the provided training data.

• What are the 10 most found words in spam and non-spam emails?

• What are the 10 most indicative words for spam / non-spam emails?

(b) Classification Accuracy

Implement the functions classify and classifyAllInFolder that classifies emails using
the model estimated above. Test your Näıve Bayes Classifier on the provided test dataset.

Plot the classification accuracy using the top X features (X = [1, 2, 5, 10, 20, 30, 40, 50]).

Hint: When using X number of features, use both the X most indicative spam words and
the X most indicative ham words. If you store all the words in a sorted list, then it will
just be taking the first X items from the last and the last X items.

2.3 Independence

The Näıve Bayes classifier assumes independence among the words for a given class. Find an
example where this is not a proper assumption. Look for a combination of two words in the
non-spam set whose frequencies do not satisfy the independence assumptions

P (x1|h)P (x2|h) = P (x1, x2|h).

Alternatively, you can also present a non-formal argument.

4

	Logistic Regression
	Classification without regularization
	Classification with regularization

	Naive Bayes
	Linear Classification
	Implementation
	Independence

