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In this exercise, you will compute one iteration of the gradient descent algorithm by hand. In
addition, you will implement the backpropagation and gradient descent methods in PyTorch.
Finally, you will build simple neural networks for 2D toy dataset and binary image classification
tasks.

You can download the data needed for this exercise and a code skeleton from the follow-
ing repository: https://bitbucket.org/gravis-unibas/pattern-recognition-2019.

A number of helper functions are provided - your task is to implement the TODO parts in the
python (.py) files.

Remember to upload your code to courses in a ZIP file. Do NOT include the data folder. Only
the python files you edited should be included + a file containing the group members names.
Only 1 person from the team should upload!

Beside code upload, remember to upload the classification report with performance
table, plots and network architecture drawings.

Data:

The provided skeleton code mostly loads the data for you and reshapes it into an appropriate
format. For the Binary Image classification task, the data loader also need to be specified.

e Parabola (d = 2): A very small 2D dataset. Each npy-file contains the training and testing
sets for a problem. Use it for developing the algorithms and studying the behaviour of your
neural networks. The files are named (train|test)_(inputs|targets).

e Flower (d = 2): All training and test data are found in the file flower.mat.

e horse not_horse (d =32 x 32 x 3 =3072): An extract from the popular CIFAR dataset.
The raw image files are provided in the subfolder img/horse_no_horse with subfolder for
training and validation. 5000 training images for each class is provided for training and
500 for validation.

Gradient Descent and Backpropagation (1 iteration - by hand)

Update the parameters of the neural network in Figure 1 with the gradient descent algorithm
based on one data point X = [1,1] with label y = 1. Consider the following network parameters
for your calculations:

e Weights: wi; = 0.5, ws = 0.3, ws = 0.3, wy = 0.1, w5 = 0.8, wg = 0.3, wy = 0.5, wg = 0.9,
W9 = 0.2.

e The hidden neurons use a sigmoid activation function:
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Figure 1: Fully connected Neural Network with three layers.
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e The output neuron is computed with a simple linear activation function.

(a) Forward Pass
Calculate the values of the hidden neurons hi, ho and the output neuron y and evaluate
the error £ of the prediction result. Use the mean squared error: £ = 3(§ — y)2.

(b) Backward Pass and Parameter Update
Calculate the partial derivative (with backpropagation) of the prediction error £ w.r.t. each
weight ;i and update the weights via: w] = w; — ngfi with n = 0.2. Use the chain rule
for obtaining the partial derivatives. Be aware that the derivative of the sigmoid function
is: a(t) = a(t) * (1 — a(t)).
Verify your result by testing if the prediction error decreased after the weight update.

1 Automatic Differentiation with PyTorch

In this exercise, you have to implement the neural network depicted in Figure 1 in PyTorch and
verify your backpropagation calculations from the previous section. The helper script for this
task is provided in ex5 NN_1_Toy.py. Implement the forward computation as scalar products
according to the Manual Linear Regression example presented in the lecture notebooks on
neural networks. Invoke the automatic differentiation by calling the ”.backward()”-function on
your error variable.

Verify that the computed gradients are the same as the ones you obtained in your backpropa-
gation implemention results.

Note: Do NOT use the PyTorch implemented optimization algorithms and loss
functions (torch.optim and torch.nn).

In the following exercises you can use the full functionality of PyTorch.

2 Classification with a Multi-Layer Perceptron

In this exercise, you have to design a Deep-Neural-Network for 2 simple 2D classification prob-
lems. The template code can be found in ex5_NN_2 Parabola.py and the network to be imple-
mented in mySimpleNN.py. Design a network which is expressive enough to be used on both the
Parabola data and the flower data. You can use the Trainer class in the file trainer.py which
already implements all functionalities needed to train and test a neural network as well as for
visualizing the decision function. Your tasks are as follows:
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e Define the neural network in the mySimpleNN class. It is up to you how complex the network
should be, as well as how many hyperparameters you are introducing (regularization such
as dropout, initialization, activation function, normalization, batch-normalization etc.).

e Draw your network as a computational graph.

e Train the network such that ‘good‘ decision boundaries are obtained for both the training
and testing datasets. The Training class will automatically output plots with the decision
boundaries under output/.

Note: CrossEntropyLoss in PyTorch is implemented for multiple class output
(1 output per class). BCELoss instead works with 1 output like logistic
regression, where the output is the probability of belonging to one of the
classes.

3 Binary Image Classification

In this exercise you have to implement 3 different neural networks to classify images of horses
or not-horses. The data is from the CIFAR-10 dataset which consist of 10 different classes of
images (airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck) of dimension 32x32x3.
You will be working on a subset of the dataset where we have the full horse dataset and the
not-horse is a mixture of the other 9 classes. The data loading and model training is to be
imlemented in the ex5_NN_3_Images.py file.

Design 3 neural networks in the myImageNN.py file:

e MyLogRegNN: Design a logistic regression classifier as a neural network. Hint: To avoid
converting your images into 1D vectors for the LogReg and DNN networks, instead use the
z.view(-1, dim) function in the forward pass.

e MyFullyConnectedNN: Similar to the mySimple NN task above - design a fully connected
neural network.

e MyCNN: Design a neural network with convolutional layers.
Note: Fven though the image has 3 dimension, a Conv2d module is the function to use on
images, where we specify the in_channels=3.

Also here you are allowed to use all kind of hyperparameters to improve your performance. As
it would be infeasible to train the networks during the quizzes, you will instead have to hand-in
a small performance overview together with your code.

The report needs to contain:

e Overview table of final error and accuracy for all 3 classifiers:

Training Error | Validation Error | Training Acc. | Validation Acc. | #Epochs

LogReg
DNN
CNN

e Accuracy and error plots for all 3 networks (epochs on the x-axis). The plotting function-
ality and figure saving can be found in the writeHistoryPlots function.

e Neural network architecture drawings for each of the models. Each layer in the drawing
should contain details such as kernel-size, stride, padding, number of neurons, activation
function.

e Count of the total number of trainable parameters in each of your networks.
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e Regularization section describing the regularization techniques you have made use of, e.g.
dropout, augmentation, batch-normalization.

e Learning algorithm and hyper-parameter values (e.g. learning-rate).

Hint: Make use of the model training code from the Transfer-learning notebook
and the introduction notebook about custom nn modules. Also note the summary
function from torchsummary which can be used to check the size of your trained
networks.
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