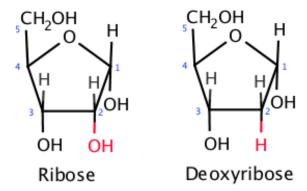
Course Overview

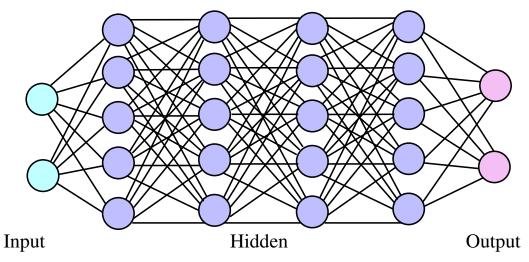

- 1. Biological Background
- 2. Pairwise sequence alignment algorithms
- 3. Probabilistic alignments: Hidden Markov models
- 4. Multiple sequence alignments
- 5. Phylogeny: Algorithms for reconstructing pedigrees
- 6. Neural nets & deep learning for sequence analysis
- 7. Recent advances & applications

Short historical Introduction

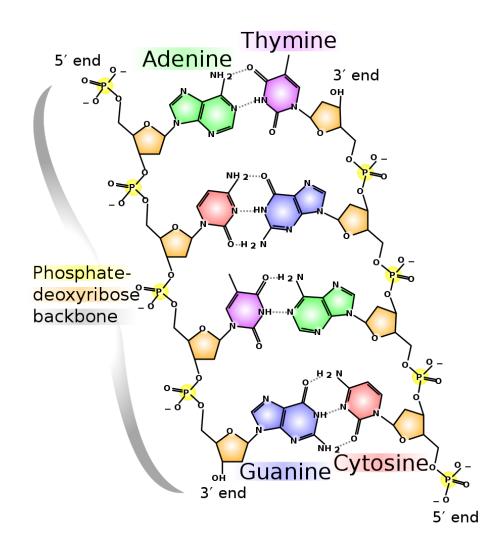
- Genetics as a natural science started in 1866: Gregor Mendel performed experiments that pointed to the existence of biological elements called genes.
- Deoxy-ribonucleic acid (DNA) isolated by Friedrich Miescher in 1869.
- 1944: Oswald Avery (and coworkers) identified DNA as the major carrier of genetic material, responsible for inheritance.

Ribose: (simple) sugar molecule, deoxy-ribose → loss of oxygen atom.

Nucleic acid: overall name for DNA and RNA (large biomolecules). Named for their initial discovery in nucleus of cells, and for presence of phosphate groups (related to phosphoric acid).

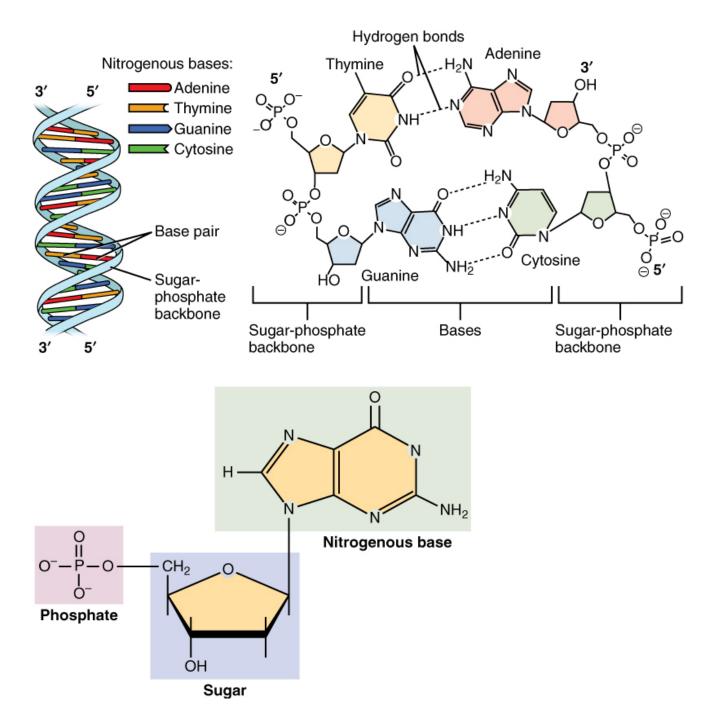


By Miranda19983 - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=84120486


Short historical Introduction

- 1953, Watson & Crick: **3-dimensional structure of DNA.** They inferred the method of **DNA replication.**
- 2001: first draft of the **human genome** published by the **Human Genome Project** and the company **Celera.**
- Many new developments, such as Next Generation Sequencing,
 Deep learning etc.

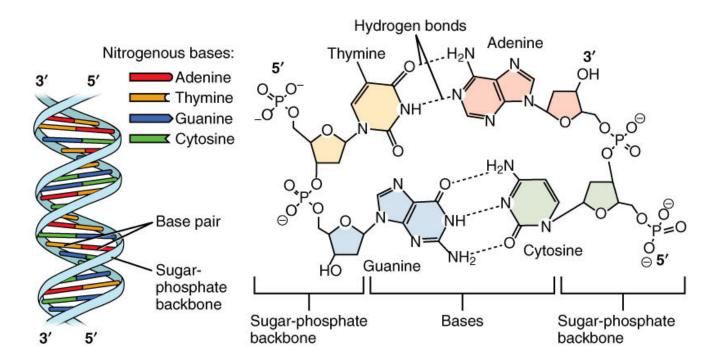
Base pairs and the DNA

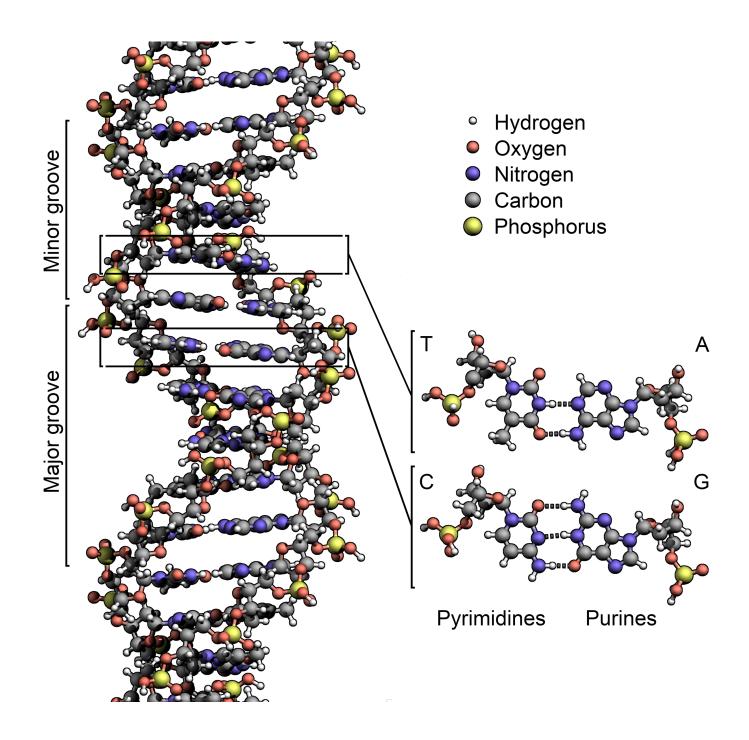


By Madprime (talk contribs) - Own work, CC BY-SA 3.0,

- DNA composed of 4 basic molecules

 ∼→ nucleotides.
- Nucleotides are identical up to different nitrogen base: organic molecule with a nitrogen atom that has the chemical properties of a base (due to free electron pair at nitrogen atom).
- Each nucleotide contains phosphate, sugar (of deoxy-ribose type), and one of the 4 bases: Adenine, Guanine, Cytosine, Thymine (A,G,C,T).
- **Hydrogen bonds** between base pairs $G \equiv C$, A = T.


https://commons.wikimedia.org/w/index.php?curid=1848174

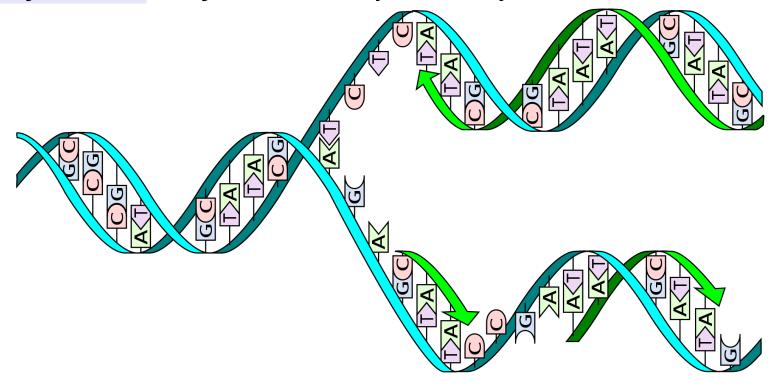

By OpenStax - https://cnx.org/contents/FPtK1zmh@8.25:fEl3C8Ot@10/Preface, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30131206

The structure of DNA

- DNA molecule is **directional** due to asymmetrical structure of the sugars which constitute the skeleton: Each sugar is connected to the strand **up-stream** in its 5th carbon and to the strand **downstream** in its 3rd carbon.
- DNA strand goes from 5' to 3'. The directions of the two complementary DNA strands are reversed to one another (\rightsquigarrow Reversed Complement).

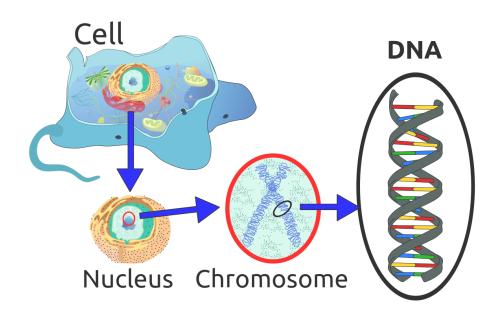
Adapted from https://commons.wikimedia.org/w/index.php?curid=30131206

Replication of DNA


Biological process of producing two replicas of DNA from one original DNA molecule. Cells have the distinctive property of division

→ DNA replication is most essential part for **biological inheritance**.

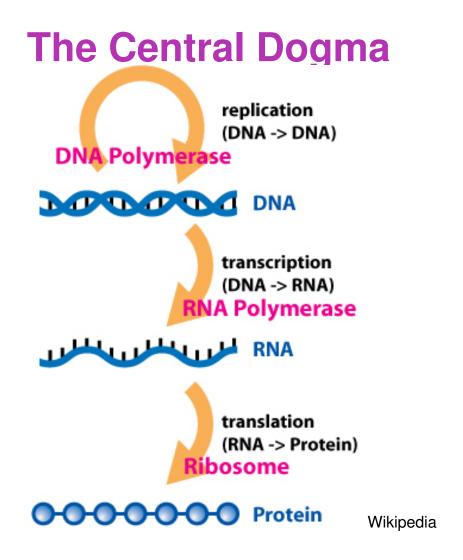
Unwinding → single bases exposed on each strand.


Pairing requirements are **strict** → single strands are templates for re-forming **identical** double helix (up to **mutations**).

DNA polymerase: enzyme that catalyzes the synthesis of new DNA.

Genes and Chromosomes

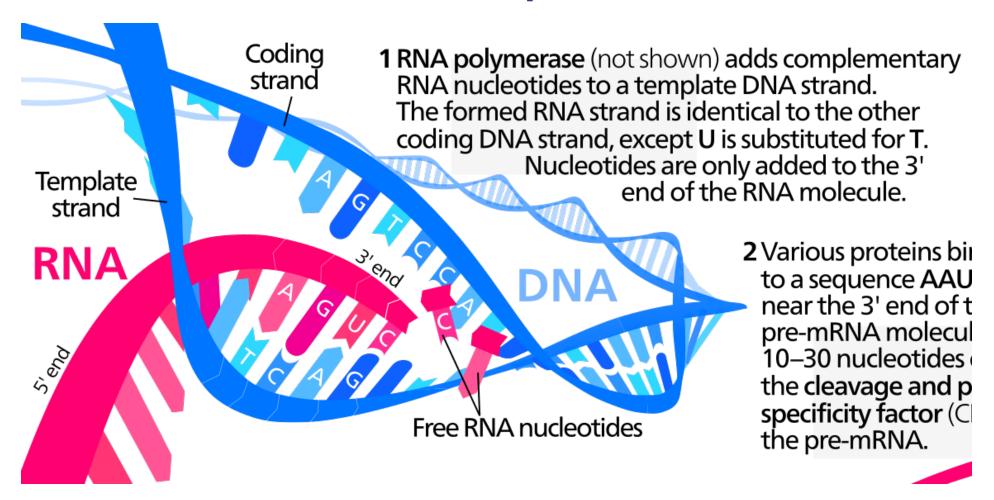
- In higher organisms, DNA molecules are packed in a chromosome.
- Genome: total genetic information stored in the chromosomes.
- Every cell contains a complete set of the genome, differences are due to variable expression of genes.
- A gene is a sequence of nucleotides that encodes the synthesis of a gene product.

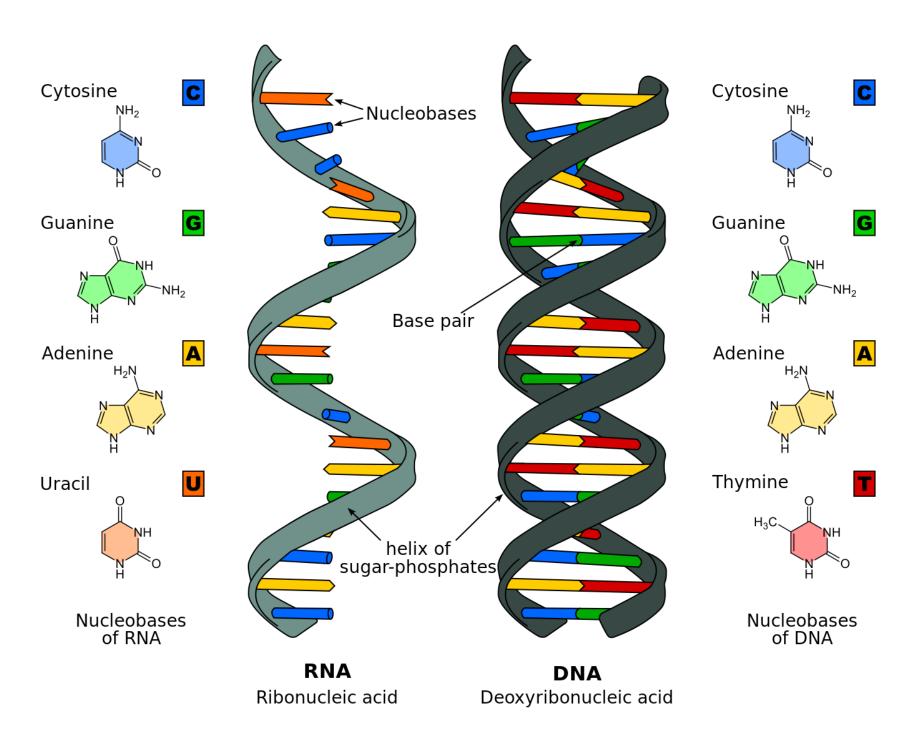


By Sponk, Tryphon, Magnus Manske,

https://commons.wikimedia.org/w/index.php?curid=20539140

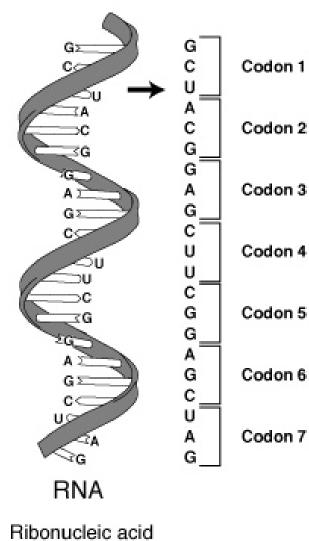
Gene expression: Process of synthesizing a gene product (often a protein)


 ~→ controls timing, location, and amount.


Transcription: making of an RNA molecule from DNA template. **Translation:** construction of amino acid sequence from RNA.

⇒ Almost no exceptions (→ retroviruses)

Transcription



By Kelvinsong - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.php?curid=23086203

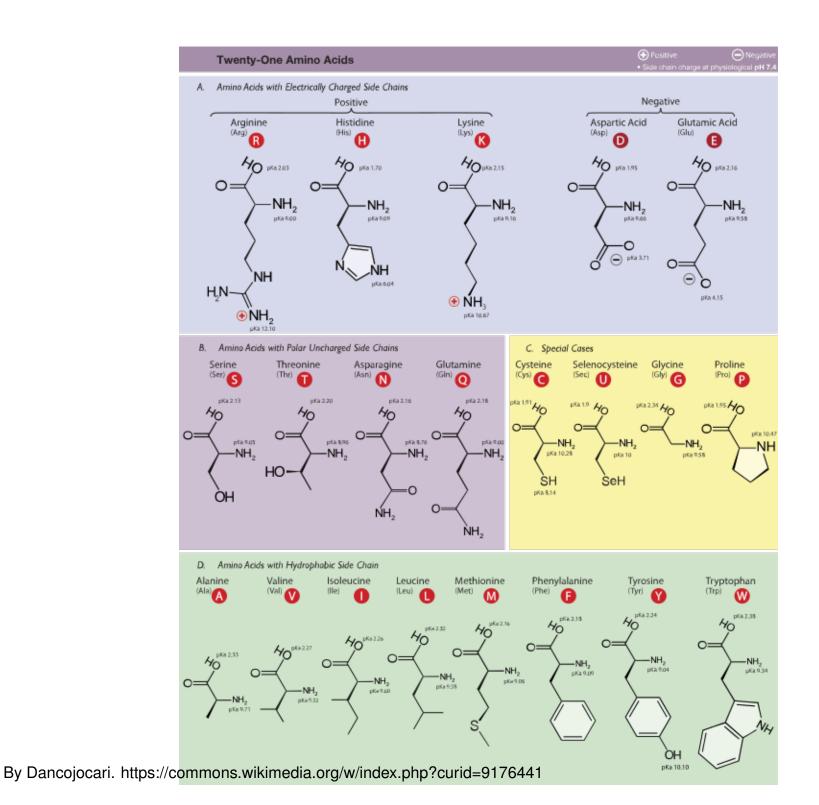


Translation

- mRNA molecules are translated by ribosomes: Enzyme that links together amino acids.
- Message is read three bases at a time.
- Initiated by the first AUG codon (codon = nucleotide triplet).
- Covalent bonds (=sharing of electron pairs) are made between adjacent amino acids ⇒ growing chain of amino acids ("polypeptide").
- When a "stop" codon (UAA, UGA, UAG) is encountered, translation stops.

Wikipedia

By Boumphreyfr - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7200200

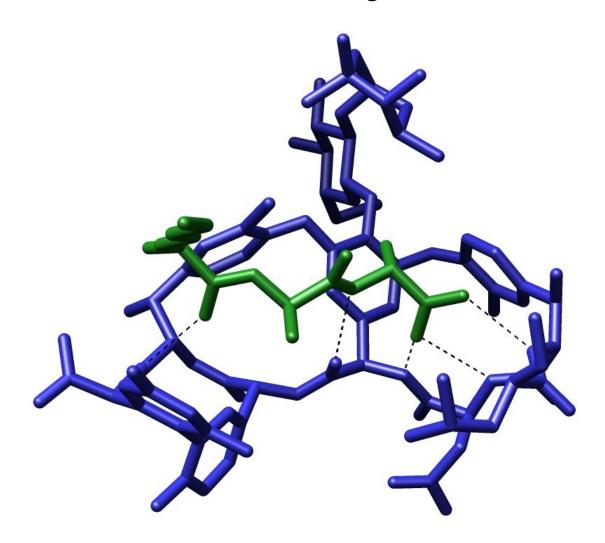

The genetic code

Standard genetic code

1st				2nd	base				3rd
base		U		С		A		base	
	UUU	(Phe/F) Phenylalanine	UCU		UAU	(Tyr/Y) Tyrosine	UGU	(Con/C) Contains	U
U	UUC	(Frierr) Frientylalanine	UCC	(Car(C) Corino	UAC	(Tyli/T) Tyrosine	UGC	(Cys/C) Cysteine	С
	UUA		UCA	(Ser/S) Serine	UAA ^[8]	Stop (Ochre)	UGA ^[B]	Stop (Opal)	Α
	UUG		UCG		UAG ^[B]	Stop (Amber)	UGG	(Trp/W) Tryptophan	G
	CUU	(Lough) Louisian	CCU		CAU	/LEGAD LEgaliding	CGU		U
С	CUC	(Leu/L) Leucine	CCC	(Pro/P) Proling	CAC	(His/H) Histidine	CGC	(Arm/D) Armining	С
C	CUA		CCA	(Pro/P) Proline	CAA	(Cin/O) Clutomino	CGA	(Arg/R) Arginine	Α
	CUG		CCG		CAG	(Gln/Q) Glutamine	CGG		G
	AUU		ACU		AAU	(Acn(b)) Acnormoine	AGU	(CarlC) Carina	U
А	AUC	(Ile/I) Isoleucine	ACC	(The C) Three size	AAC	(Asn/N) Asparagine	AGC	(Ser/S) Serine	С
-	AUA		ACA	(Thr/T) Threonine	AAA	(Lundo Lunina	AGA	(Ass/D) Assising	Α
	AUG ^[A]	(Met/M) Methionine	ACG		AAG	(Lys/K) Lysine	AGG	(Arg/R) Arginine	G
	GUU	Ofelon Mellen	GCU		GAU	(Asp/D) Aspartic acid	GGU		U
	GUC		GCC	(Ala/A) Alanina	GAC		GGC	(Chi(C) Chining	С
G	GUA	(Val/V) Valine	GCA	(Ala/A) Alanine	GAA	/Chr/E) Chrismin cold	GGA	(Gly/G) Glycine	Α
	GUG		GCG		GAG	(Glu/E) Glutamic acid	GGG		G

Wikipedia

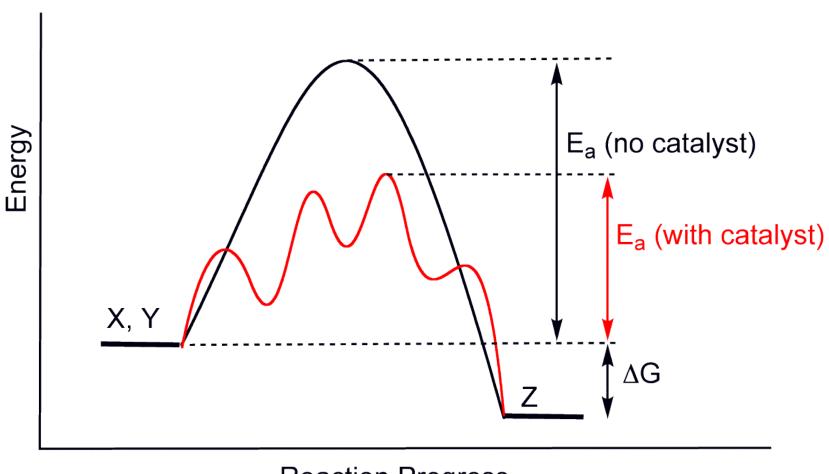
Highly redundant: only 20 (or 21) amino acids formed from $4^3 = 64$ possible combinations.



Proteins

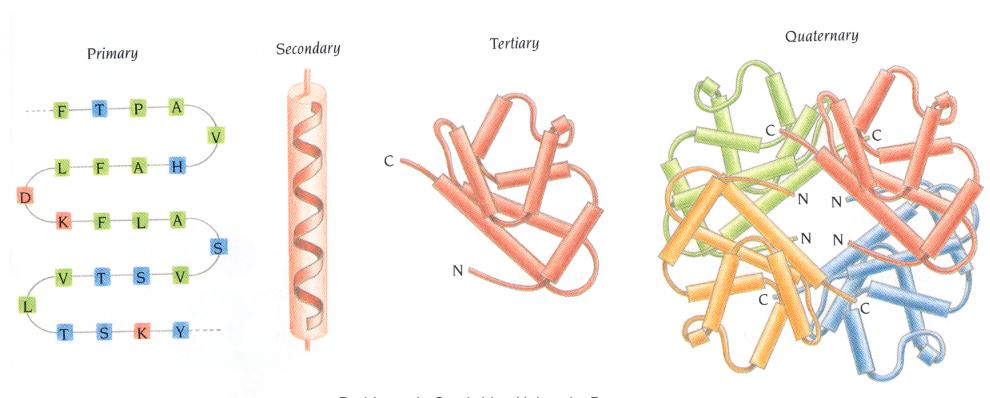
- Linear polymer of amino acids, linked together by peptide bonds. Average size ≈ 200 amino acids, can be over 1000.
- To a large extent, cells are made of proteins.
- Proteins determine shape and structure of a cell.
 Main instruments of molecular recognition and catalysis.
- Complex structure with four hierarchical levels.
 - 1. Primary structure: amino acid sequence.
 - 2. Different regions form locally regular **secondary structures** like α -helices and β -sheets.
 - 3. **Tertiary structure**: packing such structures into one or several 3D *domains*.
 - 4. Several domains arranged in a quaternary structure.

Molecular recognition


Interaction between molecules through noncovalent bonding

Crystal structure of a short peptide L-Lys-D-Ala-D-Ala (bacterial cell wall precursor) bound to the antibiotic vancomycin through hydrogen

Catalysis

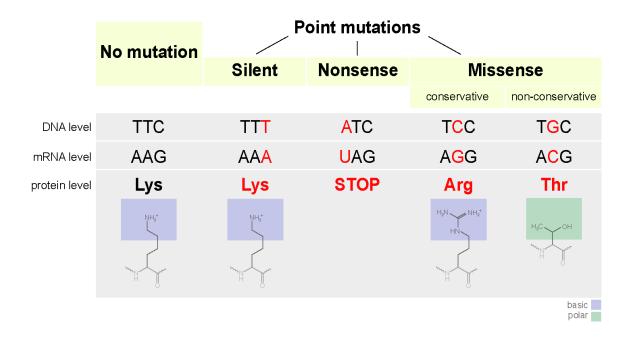

Increasing the rate of a chemical reaction by adding a substance \rightsquigarrow catalyst.

Reaction Progress

Wikipedia

Protein Structure: primary to quaternary

Durbin et al., Cambridge University Press


Structure is determined by the **primary sequence** and their **physico-chemical interactions** in the medium. **Structure determines functionality.**

Mutations

- Mutation: Heritable change in the DNA sequence. Occur due to exposure to ultra violet radiation or other environmental conditions.
- Two levels at which a mutation can take place:
 - Point mutation: within a single gene.
 - substitution (change of one nucleotide),
 - insertion (addition of nucleotides),
 - deletion.
 - Chromosomal mutation: whole segments interchange, either on the same chromosome, or on different ones.

Point Mutations

- May arise from spontaneous mutations during
 DNA replication.
- The rate of mutation increased by mutagens
 (physical or chemical agent that changes the genetic material).
- Mutagens: Physical (UV-, X-rays or heat), or chemical (molecules misplace base pairs / disrupt helical shape of DNA).

Importance of Mutations

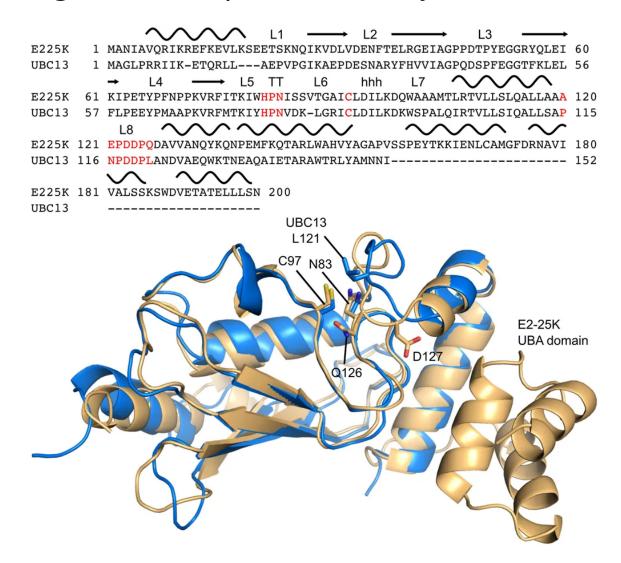
Mutations are responsible for inherited disorders & diseases.
 Sickle-cell anemia caused by missense point mutation in hemoglobin (in blood cells, responsible for oxygen transport.)
 Hydrophilic glutamic acid replaced with hydrophobic valine.

 ¬→ deformed red blood cells.

Sequence for Normal Hemoglobin: 6th codon: adenine (A)

AUG	GUG	CAC	CUG	ACU	CCU	GAG	GAG	AAG	UCU	GCC	GUU	ACU
START	Val	His	Leu	Thr	Pro	Glu	Glu	Lys	Ser	Ala	Val	Thr

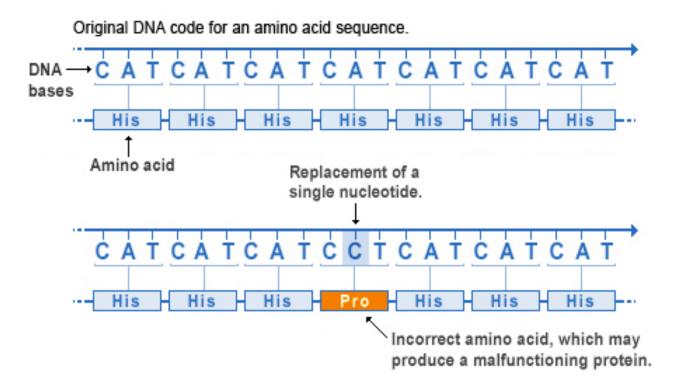
Sickle Cell Hemoglobin: \rightsquigarrow thymine (DNA), uracil (RNA)


AUG	GUG	CAC	CUG	ACU	CCU	GUG	GAG	AAG	UCU	GCC	GUU	ACU
START	Val	His	Leu	Thr	Pro	Val	Glu	Lys	Ser	Ala	Val	Thr

- Mutations are the source of phenotypic variation
 - \Rightarrow **new species** and **adaption** to environmental conditions.

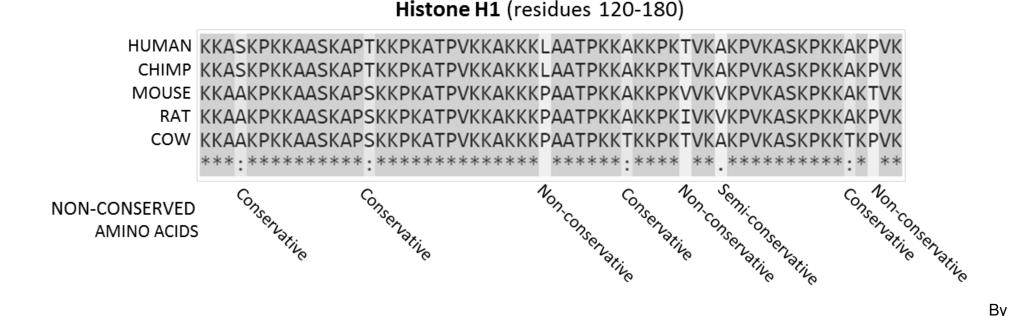
Sequence Comparison: Motivation

Basic idea: similar sequences \rightsquigarrow similar proteins.


Protein folding: 30 % sequence identity \Rightarrow structures similar.

Comparing sequences

Theory: during evolution **mutations** occurred, creating differences between families of contemporary species.


Missense mutation

U.S. National Library of Medicine

Comparing sequences

Comparing two sequences: looking for **evidence** that they have **diverged from a common ancestor** by a **mutation process**.

Thomas Shafee - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=37188728

Sequence Alignment

Informal definition:

Alignment of sequences $x = x_1 \dots x_n$ and $y = y_1 \dots y_m$:

- (i) insert spaces,
- (ii) place resulting sequences **one above the other** so that every character or space has a counterpart.

Example: ACBCDDDB and CADBDAD. Possible alignments:

Optimal Alignment

Given: two sequences x and y over alphabet A.

```
\mathcal{A} = \{A, G, C, T\} (DNA)

\mathcal{A} = \{A, R, N, D, C, Q, E, G, H, I, L, K, M, F, P, S, T, W, Y, V\} (proteins)
```

Formalizing optimality of an alignment: define

- the costs for substituting a letter by another letter
 substitution matrix;
- the costs for insertion ⇒ gap penalties.

The Scoring Model

- Idea: assign a score to each alignment, choose best one.
- Additive scoring scheme: Total score = sum of all scores for pairs of letters + costs for gaps.

Implicit assumption:

Mutations at different sites have occurred **independently**. (In most cases) reasonable for DNA and protein sequences.

- All common algorithms use additive scoring schemes.
- Modeling dependencies is possible, but at the price of significant computational complexities.

Substitution Matrices

- Expectation:
 - Identities in real alignments are more likely than by chance.
- Derive score for aligned pairs from a probabilistic model.
- Score: relative likelihood that two sequences are evolutionary related as opposed to being unrelated
 - → score = ratio of probabilities.
- First assumption: Ungapped alignment, n = m.
- R: Random model:
 - Letter a occurs **independently** with some frequency q_a
 - ⇒ Pr(two sequences) = product of probabilities for each letter:

$$P(x,y|R) = \prod_{i} q_{x_i} \prod_{i} q_{y_i}.$$

Substitution Matrices

• M (match): aligned pairs occur with joint probability

$$P(x,y|M) = \prod_{i} p_{x_i y_i}$$

• Ratio → "odds ratio":

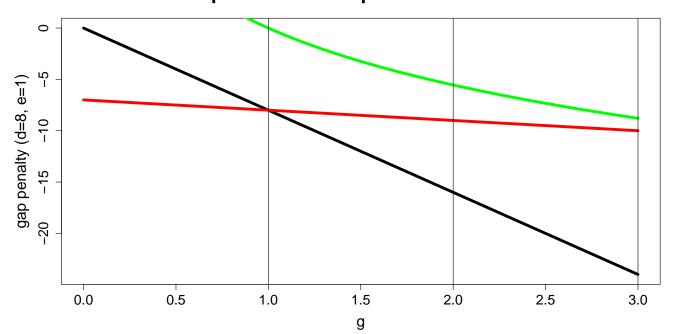
$$\frac{P(x,y|M)}{P(x,y|R)} = \prod_{i} \frac{p_{x_i y_i}}{q_{x_i} q_{y_i}}$$

To arrive at an additive scoring system → log-odds ratio:

$$S = \sum_{i} \log \left(\frac{p_{x_i y_i}}{q_{x_i} q_{y_i}} \right) = \sum_{i} s(x_i, y_i)$$

• s(a,b): log-likelihood ratio of pair (a,b) occurring as an aligned pair as opposed to an unaligned pair \leadsto substitution matrix.

BLOSUM62 substitution matrix


```
Ala
Arg
    -1
    -2
Asn
    -2 -2
Asp
            -3 -3
Cys
    0 -3
Gln
            0
                  0
                    -3
        1
Glu
    -1
         0
Gly
        -2
                -1
                     -3
    -2
                 -1
                     -3
                          0
His
                             0
                 -3
                     -1
                        -3
lle
Leu
        -2
                -4
                     -1
Lys
         2
                -1
                     -3
                          1
                 -3
                            -2
Met
        -1
                     -1
                          0
                -3
                     -2
                        -3
                            -3 -3
Phe
        -3
            -3
                                                         6
                            -1 -2 -2 -3
Pro
                 -1
                     -3
                         -1
                                           -3
                                               -1
Ser
        -1
             1
                0
                     -1
                          0
                             0
                                0 -1 -2
                                           -2
                                                0
Thr
                -1
        -1
                     -1
                            -1
                         -2
                                    -2 -3
                                                        1
Trp
                     -2
                             -3
                                           -2
Tyr
                -3
                     -2 -1
                            -2 -3
                                     2 - 1
                                           -1 -2
                                                   -1
                                                        3 - 3
       -3 -3 -3
                     -1 -2 -2 -3 -3 3
                                           1 -2
                                                    1
                                                       -1 -2 -2
Val
    Ala Arg Asn Asp Cys Gln Glu Gly His IIe Leu Lys Met Phe Pro Ser Thr Trp Tyr Val
```

Wikipedia

Gap penalties

Gap penalty types for a gap of length g:

- Linear: $\gamma(g) = -gd$, with d being the gap weight.
- Affine: $\gamma(g) = -d (g-1)e$, gap-open penalty d, gap-extension penalty e. Usually e < d.
- Convex: e.g. $\gamma(g) = -d \log(g)$. Each additional space contributes less than the previous space.

Global Alignment: Needleman-Wunsch algorithm

The Global Alignment problem:

INPUT: two sequences $x = x_1 \dots x_n$ and $y = y_1 \dots y_m$.

TASK: Find optimal alignment for linear gap penalties $\gamma(g) = -gd$.

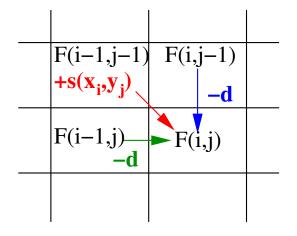
Let F(i,j) be the optimal alignment score of the **prefix sequences** $x_{1...i}$ and $y_{1...j}$. A zero index i=0 or j=0 refers to an **empty sequence.** F(i,j) has following properties:

Base conditions:
$$F(i,0)=\sum_{k=1}^i -d=-id$$

$$F(0,j)=\sum_{k=1}^j -d=-jd, \quad F(0,0)=0.$$

Recurrence relation: for $1 \le i \le n, \ 1 \le j \le m$:

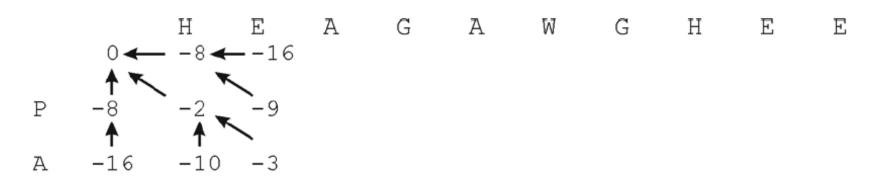
$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$


Tabular Computation of Optimal Alignment

Starting from F(0,0) = 0, fill the whole matrix $(F)_{ij}$:

for i=0 or j=0, calculate new value from left-hand (upper) value.

F(0,0)	F(1,0)	F(2,0)	
0	-d	→ –2d —	•
F(0,1)			
$-\mathbf{d} \rfloor$			
F(0.2)			
F(0,2) -2d			


for $i, j \ge 1$, calculate the bottom right-hand corner of each square of 4 cells from one of the 3 other cells:

keep a pointer in each cell back to the cell from which it was derived \Rightarrow traceback pointer.

Global Alignment: Example

x = HEAGAWGHEE, y = PAWHEAE. Linear gap costs d = 8. Scoring matrix: BLOSUM50

W

Η

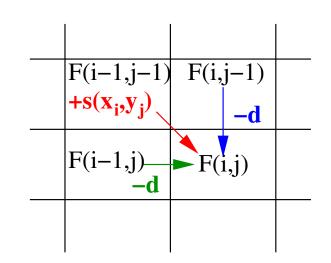
 \mathbf{E}

Α

Ε

Durbin et al., Cambridge University Press

Example: traceback procedure

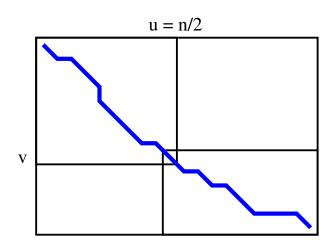

Add pair of symbols: \nwarrow : (x_i, y_j) , \uparrow : $(-, y_j)$, \leftarrow : $(x_i, -)$

Time and Space Complexity

Theorem 1. The time complexity of the Needleman-Wunsch algorithm is O(nm). Space complexity is O(m), if only F(x,y) is required, and O(nm) for the reconstruction of the alignment.

Proof:

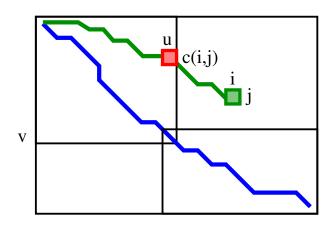
Time: when computing F(i,j), only cells $(i-1,j-1),\ (i,j-1),\ (i-1,j)$ are examined \leadsto constant time. There are (n+1)(m+1) cells $\leadsto O(nm)$ time complexity.

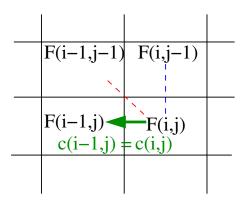


Space : row-wise computation of the matrix: for computing row k, only row k-1 must be stored $\leadsto O(m)$ space.

Reconstructing the alignment: all traceback pointers must be stored $\leadsto O(nm)$ space complexity.

Global Alignment in Linear Space


- Problem: genomic scale sequence analysis: comparing two large genomic sequences: $m, n \approx 10^6 \Rightarrow$ space complexity 10^{12} is clearly unacceptable!
- **Solution:** linear space algorithms with space complexity O(m+n).
- Basic idea: divide and conquer. Let $u = \lfloor \frac{n}{2} \rfloor$ be the integer part of $\frac{n}{2}$.
 - Let v be a row index such that the cell (u, v) is on the optimal alignment.
 - Split dynamic programming problem into two parts: $(0,0) \rightarrow (u,v)$ and $(u,v) \rightarrow (n,m)$.
 - Optimal alignment will be concatenation of individual sub-alignments.
 - Repeat splitting until until u=0: trivial


Question: how can we find v?

Global Alignment in Linear Space

• For $i \geq u$ define c(i,j) such that (u,c(i,j)) is on the optimal path from $(1,1) \rightarrow (i,j)$.

• Let (i', j') be the preceding cell to (i, j) from which F(i, j) is derived. Update c(i, j) as:

- ullet Local operation \leadsto need to store only the previous row of c().
- Finally, v = c(n, m).

Global Alignment in Linear Space: Example

Computing the c matrix for the first step (i = n = 6, j = m = 4, u = 3).

The c values are written as subscripts. BLOSUM62, linear gap costs d=8.

		0		1		2		3		4		5		6
		•		Н		Е		Α		G		Α		W
0	•	0	\leftarrow	-8	\leftarrow	-16	\leftarrow	-24_{0}	\leftarrow	-32_{0}	\leftarrow	-40_{0}	\leftarrow	-48_{0}
		↑	_		_		X				_			
1	Р	-8		-2		-9		-17_{1}	←	-25_{1}		-33_{0}	\leftarrow	-41_{0}
		↑	_	↑	_		X				Κ_			
2	Α	-16		-10		-3		-4_{2}	\leftarrow	-12_{2}		-20_{1}	\leftarrow	-28_{1}
		↑		\uparrow			X		K		_		K	
3	W	-24		-18		-11		-6_{3}		-7_{2}		-15_{2}		-5_{1}
		↑	_		_		K				_			↑
4	Н	-32		-14		-18		-13_{4}		-83		-9_{2}		-13 ₁

Every c(i,j) defines a row index v such that (u,c(i,j)) is on the optimal path from (1,1) to $(i,j) \rightsquigarrow v = c(6,4) = 1$, so (3,1) is our desired element on the optimal path form (1,1) to (6,4).

Local Alignments

The Local Alignment problem:

INPUT: two sequences $x = x_1, \ldots, x_n$ and $y = y_1, \ldots, y_m$.

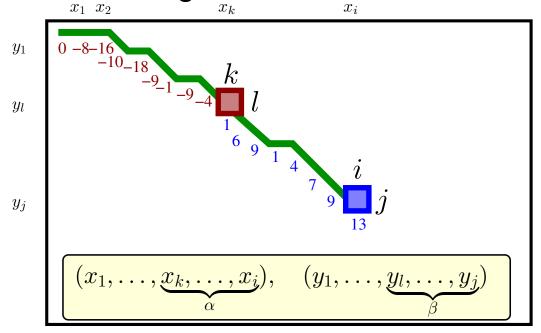
TASK: find subsequences a of x and b of y,

whose similarity (=optimal global alignment score) is maximal

(over all such pairs of subsequences).

Assume linear gap penalties $\gamma(g) = -gd$.

Subsequence = **contiguous** segment of a sequence.


Consider first a simpler problem by **fixing the endpoint** of the subsequences at index pair (i, j):

Local suffix alignment problem: given x, y, i, j, find suffixes α of $x_{1,...,i}$ and β of $y = y_{1,...,j}$ such that their global alignment score is maximal.

$$(x_1,\ldots,\underbrace{x_k,\ldots,x_i}_{\alpha}), \quad (y_1,\ldots,\underbrace{y_l,\ldots,y_j}_{\beta})$$

Local suffix alignments

Consider global alignment path to cell (i, j). Where to start? Intuition: Indices (k, l) found by following the path back to (0, 0), but stopping at the first negative value.

Remark: If we consider all solutions (i.e. for all (i, j) pairs), we look at all possible subsequences (no restrictions on α, β)

Maximal solution of local suffix alignment over all pairs (i, j)

= solution of local alignment problem.

Smith-Waterman Algorithm

F(i,j): optimal local suffix alignment for indices i,j.

Global alignment with one modification:

Prefixes whose scores are ≤ 0 are **discarded**

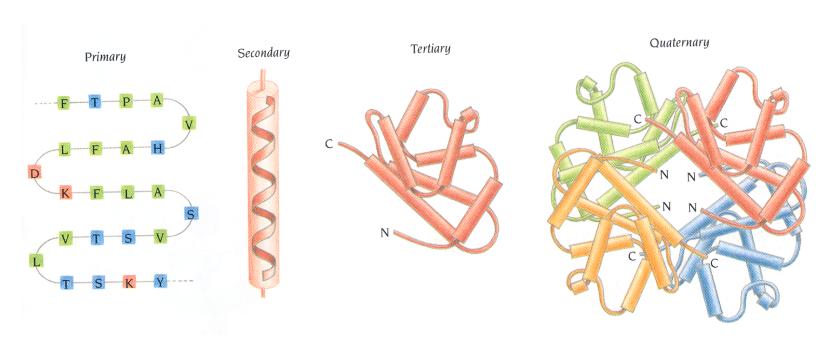
→ alignment can start anywhere.

Recurrence relation:
$$F(i,j) = \max \begin{cases} 0 \\ F(i-1,j-1) + s(x_i,y_j) \\ F(i-1,j) - d \\ F(i,j-1) - d \end{cases}$$

Finally, find indices i^* and j^* after which the similarity only decreases. Stop the alignment there.

$$F(i^*, j^*) = \max_{i,j} F(i, j)$$

Traceback...


...starts at highest value until a cell with 0 is reached.

		Н	Ε	А	G	А	W	G	Н	E	Ε
	0	0	0	0	0	0	0	0	0	0	0
P	0	0	0 _	0	0 _	0	0	0	0	0	0
Α	0	0	0	5	0	5	0	0	0	0	0
W	0	0	0	0	2	0	20 ←	12 ←	4	0	0
Η	0	10 ←	2	0	0	0	12	18	22 🛨	14 ←	6
Ε	0	2	16 ←	8	0	0	4	10	18	28	20
А	0	0	8	21 ←	13	5	0	4	10	20	27
E	0	0	6	13	18	12 ←	4	0	4	16	26

AWGHE AW-HE

Local vs. Global Alignment: Biological Considerations

- Many proteins have multiple domains, or modules.
- Some domains are present (with high similarity) in many other proteins
- **Local** alignment can detect similar regions in otherwise dissimilar proteins.

Other gap models

• **So far:** linear gap model. Not ideal for biological sequences, since it penalizes additional gap steps as much as the first. But in reality: When gaps do occur, they are often longer than one character.

Durbin et al., Cambridge University Press

• For a **general gap cost function** $\gamma(g)$, we can still use the standard dynamic programming recursion with slight modifications:

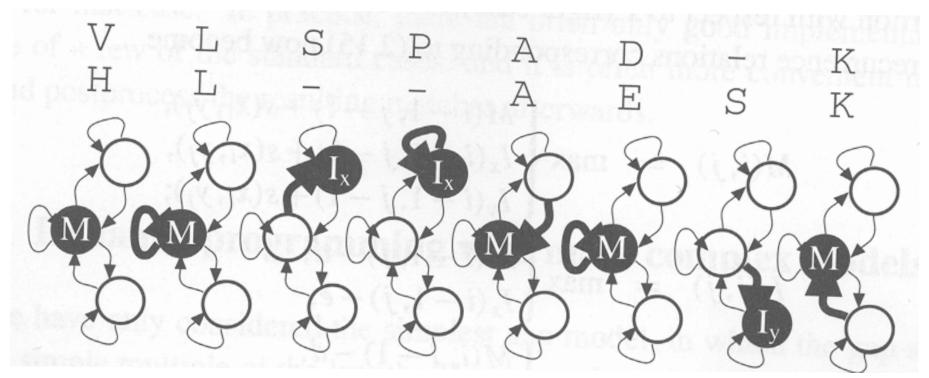
$$F(i,j) = \max \begin{cases} F(i-1,j-1) + s(x_i, y_j) \\ F(k,j) + \gamma(i-k), & k = 0, \dots, i-1, \\ F(i,k) + \gamma(j-k), & k = 0, \dots, j-1. \end{cases}$$

• **Problem:** requires $O(n^3)$ operations to align two sequences of length n, rather than $O(n^2)$. Why? \leadsto exercises...

Alignment with affine gap costs

For affine gap costs, $\gamma(g) = -d - (g-1)e$, there exists a **solution**: Modify recurrence by introducing another two "states". Denote by

- M(i,j) the best score given that x_i is aligned to y_j ,
- $I_x(i,j)$ the best score given that x_i is aligned to a gap,
- $I_y(i,j)$ the best score given that y_j is aligned to a gap.


$$M(i,j) = \max \begin{cases} M(i-1,j-1) + s(x_i, y_j) \\ I_x(i-1,j-1) + s(x_i, y_j) \\ I_y(i-1,j-1) + s(x_i, y_j) \end{cases}$$

$$s(x_i, y_j) = \max \begin{cases} M(i-1,j) - d \\ I_x(i-1,j) - e \end{cases}$$

$$I_x(i,j) = \max \begin{cases} M(i,j-1) - d \\ I_y(i,j-1) - e \end{cases}$$

$$s(x_i, y_j) = \max \begin{cases} M(i,j-1) - d \\ I_y(i,j-1) - e \end{cases}$$

Example FSA alignment

Durbin et al., Cambridge University Press

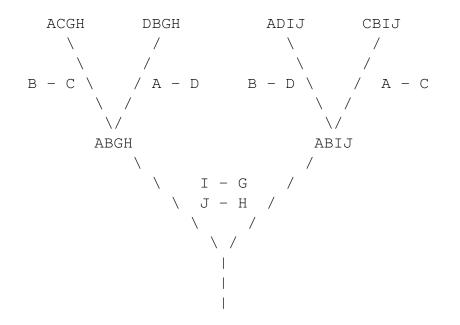
FSA alignment corresponds to path through states.

Probabilistic version → **Hidden Markov models** (next chapter)

Scoring Matrices Revisited: the PAM family

- PAM = Point Accepted Mutations.

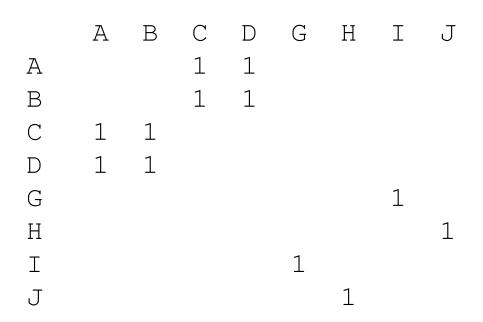
 (Dayhoff 1978, Atlas of Protein Sequence and Structure, Vol 5.)
- Accepted means that a mutation did not change the function of a protein, or the change was beneficial to the organism.
- PAM matrices are based on **global alignments of closely related proteins.**
- PAM-1 is the matrix calculated from comparisons of sequences (trusted data!) with no more than **1% divergence** (one mutation per 100 amino acids).
- Other PAM matrices are extrapolated from PAM-1.


Constructing PAM

Protein sequences in 71 families, at least 85% identical. Multiple alignment:

KAPPA											
1 HUMAN EU	/T - V A A	A P S	S V F	I F P	P S D	E Q -	L K S	- G T A S	V V C L	L N N F	Y P - R E - A
2 MOUSE MOPC 21	/A - D A A	A P 7	r v s	I F P	P S S	E Q -	L T S	- G G A S	V V C F	L N N F	Y P - K D - I
3 QAT S211	/A - N A A	AP.	r v s	I F P	P S T	Z Z -	L A T	- G G A S	V V C L	M N K.F	Y P - R.D - I
4 84 RA881T 4135	/D - P V A	AP.	ΓVL	I F P	P A A	D Q -	V A T	- G T V T	I V C V	A N K Y	F P D - V
5 B9 RA881T	/DPPIA	AP.	T V L	L F P	P S A	D Q -	L T T	- Z T V T	I V C V	A N K F	R P - D D - I
LAMBDA											
6 HUMAN SH	/Q P K A A	A P S	SVT	L F P	P S S	E E -	L Q A	- N K A T	L V C L	I S D F	Y P - G A - V
7 PIG	/Q P K A A	AP.	T V N	L F P	P S S	E E -	L G T	- N K A T	L V C L	I S D F	Y P - G A - V
8 I MOUSE MOPC 104E	/Q P K S S	S P S	S V T	L F P	P S S	E E -	L T E	- N K A T	L V C T	I T O F	Y P - G V - V
9 2 MOUSE MOPC 315	/Q P K S T	ГР:	r L T	V F P	P S S	E E -	L K E	- N K.A T	L V C.L	I S N F	S P - G S - (V
CONSERVE	D	Р	V		Р				L C L	V G F	P V

Constructing PAM


Build Phylogenetic Tree:

A conceptual **phylogenetic tree.** Leaves: Four observed proteins.

Inner nodes: Inferred ancestors.

Matrix of Replacements

Matrix of accepted point mutations derived from the tree.

Constructing PAM

Cumulative data from (Dayhoff, M.O., Schwartz, R. and Orcutt, B.C. (1978). *A model of Evolutionary Change in Proteins*. Atlas of protein sequence and structure (volume 5, supplement 3 ed.) pp. 345358)

	ala	arg	asn	asp	cys	gln	glu	gly	his	ile	leu	lys	met
А	ara	arg	4511	чор	Cyb	9111	9±4	9-1	1110	110	104	± y 5	1110
R	30												
N	109	17											
D	154	0	532										
С	33	10	0	0									
Q	93	120	50	76	0								
~ E	266	0	94	831	0	422							
G	579	10	156	162	10	30	112						
Н	21	103	226	43	10	243	23	10					
I	66	30	36	13	17	8	35	0	3				
L	95	17	37	0	0	75	15	17	40	253			
K	57	477	322	85	0	147	104	60	23	43	39		
M	29	17	0	0	0	20	7	7	0	57	207	90	
F	20	7	7	0	0	0	0	17	20	90	167	0	17
Р	345	67	27	10	10	93	40	49	50	7	43	43	4
S	772	137	432	98	117	47	86	450	26	20	32	168	20
Т	590	20	169	57	10	37	31	50	14	129	52	200	28
W	0	27	3	0	0	0	0	0	3	0	13	0	0
Y	20	3	36	0	30	0	10	0	40	13	23	10	0
V	365	20	13	17	33	27	37	97	30	661	303	17	77

Numbers of accepted point mutations (x10) accumulated from closely related sequences.

Constructing PAM: formal derivation

- f_{AB} : frequency of A (in ancestor) replaced by B (in descendant). **Assumption:** $f_{AB} = f_{BA}$
- $f_A = \sum_{B \neq A} f_{AB}$: number of observations that A is involved in.
- $f = \sum_A f_A$: total number of mutations observed.
- P(B|A,t): probability that A is substituted by B in time t. One time unit = one "generation" $\Rightarrow P(B|A,t=1) = f_{AB}/f_A$
- m_A : relative mutability of A = likelihood that A is involved in a mutation

$$= \frac{\#(\text{ mutations } A \text{ is involved in})}{\text{total number of mutations} \cdot \text{prob. that a given character is } A}$$

$$\Rightarrow m_A = \frac{f_A}{f \cdot P_A}.$$

Constructing PAM: formal derivation (cont'd)

• M_{AB} : probability that A mutates to B in t=1: P(B|A,t=1,match) Product of mutability of A and probability that given A has mutated, it has mutated to B in time t=1.

$$M_{AB} = P(B|A, t = 1) m_A = \frac{f_{AB}}{f_A} m_A = \frac{f_{AB}}{f \cdot P_A}.$$

Expected number of mutations in one time unit:

$$\sum_{A} P_{A} \sum_{B \neq A} M_{AB} = \sum_{A} P_{A} \sum_{B \neq A} \frac{f_{AB}}{f P_{A}} = \sum_{A} \frac{f_{A}}{f} = 1.$$

• We want to set t=1 when the **expected number of mutations is 1%:** \rightsquigarrow we rescale $M_{AB} \leftarrow 0.01 \cdot M_{AB}$.

Model assumption: constant evolutionary clock!

Constructing PAM: formal derivation (cont'd)

How to compute the diagonal elements?
 Probability that A does not mutate:

$$\sum_{B \neq A} M_{AB} + M_{AA} \stackrel{!}{=} 1$$

$$\Rightarrow M_{AA} = 1 - \sum_{B \neq A} M_{AB} = 1 - 0.01 \cdot \frac{f_A}{f_{P_A}} = 1 - 0.01 \cdot m_A.$$

- M is the PAM-1 matrix, i.e. the mutation probability matrix for t=1.
- The log-odd scores corresponding to PAM-1 are

$$s_{AB} = \log \frac{P_A \overbrace{M_{AB}}^{P(B|A,t=1,\text{match})}}{P_A P_B} = \log \frac{P(A,B|\text{match})}{P(A,B|\text{random})}.$$

Constructing PAM: formal derivation (cont'd)

• To obtain transition matrices for t = n, we multiply M(t = 1) by itself n times:

$$M(t=n) = M^n(t=1).$$

- $M(t=2)_{AB}$ is the probability that A is substituted by B through an **intermediate character** C.
- Values of t = 40, 120, 250 are commonly used.

The BLOSUM family

- BLOSUM matrices are based on local alignments from protein families in the BLOCKS database.
- Original paper: (Henikoff S & Henikoff JG, 1992; PNAS 89:10915-10919).
- BLOSUM 62 is a matrix calculated from comparisons of sequences with at least 62% similarity.
- All BLOSUM matrices are based on observed alignments.

 They are **not** extrapolated from comparisons of closely related proteins.

Relationship between BLOSUM and PAM:

BLOSUM 80	BLOSUM 62	BLOSUM 45
PAM 1	PAM 120	PAM 250
Less divergent	←	More divergent