
Computer Science / 15731-01 / 2020

Multimedia Retrieval

Chapter 3: Advanced Text Retrieval

Dr. Roger Weber, roger.weber@ubs.com

3.1 Introduction

3.2 Natural Language Processing

3.3 Web Retrieval

3.4 Latent Semantic Analysis

3.5 Naive Bayes

3.6 Literature and Links

Page 3-2Multimedia Retrieval – 2020

3.1 Introduction

• In the previous chapter, we considered the classical retrieval models. These models have been

greatly improved over the past 20 years with the advent of web search, natural language

processing, machine learning, and deep learning.

• In this chapter, we focus on the following aspects

– Natural Language Processing (with NLTK, see below)

– Web Retrieval with focus on link information (example Google)

– Latent Semantic Indexing (dimensionality reduction of vocabulary)

– Naïve Bayes approaches to classify text (language detection, sentiment analysis)

• We are also looking into the python package NLTK which is a good starting point for advanced text

processing. To get ready, ensure (as required for your Python environment):

sudo pip install -U nltk # or pip3

sudo pip install -U numpy # or pip3

python # or python3

import nltk

nltk.download() # select: popular or all-nltk

• Apache OpenNLP is a good package for the Java world (also available through Lucene)

3.1 Introduction

Page 3-3Multimedia Retrieval – 2020

• We focus in this chapter mostly on extraction of higher-level features. First in the classical sense by

extending the pipeline from the last chapter

• In addition, we apply algorithms / machine learning to infer meta information from the text

• Extraction of terms beyond simple

sequence of characters

• Linguistic transformations

(stemming, synonyms, homonyms)

• Structure analysis of sentence

(basic part of speech)

• Link analysis to understand importance

and relationships of page

• Automated extraction of topics through

vocabulary analysis

• Extraction of concept / classifications

based on machine learning approaches

3.1 Introduction

Page 3-4Multimedia Retrieval – 2020

3.2 Natural Language Processing

• We extend the feature extraction pipeline from the previous chapter. Step 1 & 5 remain the same,

but we extend step 2, 3 and 4 and look into some examples

3.2 Natural Language Processing

1. Cleanse document and reduce to sequence of characters

2. Create tokens from sequence

3. Tag token stream with additional information

4. Lemmatization, spell checking, and linguistic transformation

5. Summarize to feature vector (given a vocabulary)

Page 3-5Multimedia Retrieval – 2020

3.2.1 Step 2: Create Tokens

• Segmentation: consider a book with several chapters, sections, paragraphs, and sentences. The

goal of segmentation is to extract this meta structure from the text (often with the information

provided by the previous step). While the broader segmentations (e.g., chapters) require control

information from the document, sentence segmentation is possible on the text stream alone:

– If we observe a ? or a !, a sentence ends (quite unambiguous, but this line is an exception)

– The observation of a . (period) is rather ambiguous: it is not only used for sentence boundaries,

but also in abbreviations, numbers, and ellipses that do not terminate a sentence

– Some language specifics like ¿ in Spanish

– Sentence-final particles that do not carry content information but add an effect to the sentence

• Japanese: か ka: question. It turns a declarative sentence into a question.

っけ kke: doubt. Used when one is unsure of something.

な na: emotion. Used when one wants to express a personal feeling.

• English: Don't do it, man. The blue one, right? The plate isn't broken, is it?

• Spanish: Te gustan los libros, ¿verdad? Le toca pasar la aspiradora, ¿no?

– A good heuristic works as follows (95% accuracy with English):

– The approach in NLTK uses a trained method (Punkt) to determine sentence boundary.

3.2.1 Step 2: Create Tokens

1. If it is a ‘?’ or ‘!’, the sentence terminates

2. If it is a ‘.’, then

a. if the word before is a known abbreviation, then the sentence continues

b. if the word afterwards starts with capital letter, then the sentence terminates

Page 3-6Multimedia Retrieval – 2020

• Token Generation: There are different ways to create tokens: a) Fragments of words, b) Words,

and c) Phrases (also known a n-grams).

– Fragments of words: an interesting approach in fuzzy retrieval is to split words into sequences

of characters (so-called k-grams). For example:

street → str, tre, ree, eet

streets → str, tre, ree, eet, ets

strets → str, tre, ret, ets

An obvious advantage is that different inflections still appear similar at the fragment level. It also

compensates for simple misspellings or bad recognition (OCR, speech analysis). Further, no

language specific lemmatization is required afterwards. An early example was EuroSpider a

search engine that used 3-grams to index OCR texts. However, while the technology was

compelling, it has become superficial with the increased recognition and correction capabilities. In

other retrieval scenarios, the method is still of interest. Music retrieval, DNA retrieval, and Protein

Sequencing use fragments to model characteristic features. In linguistic analysis, n-grams of

words also play an important role for colocation analysis.

– Words: using words as terms is the usual approach. But there are some subtle issues to deal

with. For instance, how do you tokenize the following sequences?

Finland’s capital → Finland, Finlands, or Finland’s?

what’re, I’m, isn’t → What are, I am, is not?

l’ensemble → le ensemble?

San Francisco → one token or two?

m.p.h., PhD. → ??

$380.2, 20% → ??

Leuchtrakete → one word or composite word?

3.2.1 Step 2: Create Tokens

Page 3-7Multimedia Retrieval – 2020

– Words (contd): In most languages, tokenization can use (space) separators between words. In

Japanese and Chinese, words are not separated by spaces. For example:

莎拉波娃现在居住在美国东南部的佛罗里达。

莎拉波娃 现在 居住 在 美国 东南部 的 佛罗里达

Sharapova now lives in US southeastern Florida

In Japanese, texts can use different formats and alphabets mixed together.

• The conventional approach for tokenization is based on a regular expression to split words.

One way to do so is as follows:

• In addition, we want to consider special expressions/controls in the environment like hashtags

(#blowsyourmind), user references (@thebigone), emoticons (☺), or control sequences in the

format (e.g., wiki).

• NLTK uses the Treebank tokenizer and the Punkt tokenizer depending on the language. There

are a few simpler methods that split sequences on whitespaces or regular expression.

• For Japanese and Chinese, we can identify token boundaries with longest matches in the

sequences that form a known word from the dictionary. This approach does not work in other

languages.

3.2.1 Step 2: Create Tokens

1. Match abbreviations with all upper case characters (e.g., U.S.A.)

2. Match sequences of word characters including hyphens (-) and apostrophes (‘)

3. Match numbers, currencies, percentage, and similar ($2.3, 20%, 0.345)

4. Match special characters and sequences (e.g., … ; “” ’’ () [])

Page 3-8Multimedia Retrieval – 2020

• Phrases: we have seen some examples, where it seems more appropriate to consider subsequent

words as a singular term (e.g., New York, San Francisco, Sherlock Holmes). In other examples, the

combinations of two or more words can change or add to the meaning beyond the words. Examples

include express lane, crystal clear, middle management, thai food, Prime Minister, and other

compounds. To capture them, we can extract so-called n-grams from the text stream:

However, this leads to many meaningless compounds such as “the house”, “I am”, “we are”, or “it is”

which are clearly not interesting to us. More over, we generate thousands of new term groups that

are just accidentally together (like “meaningless compounds” or “better control” in this paragraph).

To better control the selection of n-grams, various methods have been proposed. We consider here

only two simple and intuitive measures:

– A first approach is to reject n-grams that contain at least one so-called stop word. A stop word is

a linguistic element that bears little information in itself. Examples include: a, the, I, me, your, by,

at, for, not, … Although very simple, this already eliminates vast amounts of useless n-grams.

– Pointwise Mutual Information (PMI). For simplicity, we consider only the case of 2-grams but

generalization to n-grams is straightforward. The general idea is that the 2-gram is interesting

only if it occurs more frequently than the individual distributions of the two terms would suggest

(and assuming they are independent). To this end, we can compute the Pointwise Mutual

Information 𝑝𝑚𝑖 for two terms 𝑡1 and t2 as follows; p(t) is that probability that term t occurs:

3.2.1 Step 2: Create Tokens

1. Extract the base terms (as discussed before)

2. Iterate through the term sequence

• Add 2-grams, 3-grams, …, n-grams over subsequent terms at a given position

𝑝𝑚𝑖 𝑡1, 𝑡2 = log
𝑝 𝑡1, 𝑡2

𝑝 𝑡1 ∙ 𝑝 𝑡2
= log

𝑝 𝑡1 𝑡2
𝑝 𝑡1

= log
𝑝 𝑡2 𝑡1
𝑝 𝑡2

= log𝑝 𝑡1, 𝑡2 − log𝑝 𝑡1 − log𝑝 𝑡2

Page 3-9Multimedia Retrieval – 2020

– Pointwise Mutual Information (contd): Let 𝑝 𝑡𝑗 be the probability that we observe the term 𝑡𝑗 in

the text. We compute this probability with a maximum likelihood approach. Let 𝑀 be the number

of different terms in the collection, 𝑡𝑓 𝑡𝑗 be the so-called term frequency of term 𝑡𝑗 (number of

its occurrences), and 𝑁 be the total occurrences of all terms in the text. We then obtain 𝑝 𝑡𝑗 as:

Now, assume we have two terms 𝑡1 and 𝑡2. If they are independent from each other, then the

probability 𝑝 𝑡1, 𝑡2 of their co-occurrence is the product of their individual probabilities 𝑝 𝑡𝑗 and

the 𝑝𝑚𝑖 becomes 0. If 𝑡2 always follows 𝑡1, then 𝑝 𝑡2 𝑡1 = 1 and the 𝑝𝑚𝑖 is positive and large. If

𝑡2 never follows 𝑡1, then 𝑝 𝑡2 𝑡1 = 0 and 𝑝𝑚𝑖 = −∞. So, we keep 2-grams if their 𝑝𝑚𝑖 is positive

and large, and dismiss them otherwise. In addition, we dismiss infrequent 2-grams with

𝑡𝑓 𝑡1, 𝑡2 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 to avoid accidental co-occurrences with high 𝑝𝑚𝑖 (seldom words):

3.2.1 Step 2: Create Tokens

𝑝 𝑡𝑗 =
𝑡𝑓 𝑡𝑗
𝑁

∀𝑗: 1 ≤ 𝑗 ≤ 𝑀

Bigram 𝑡𝑓(𝑡1) 𝑡𝑓(𝑡𝟐) 𝑡𝑓(𝑡𝟏, 𝒕𝟐) 𝑝𝑚𝑖(𝒕𝟏, 𝒕𝟐)

salt lake 11 10 10 11.94

halliday private 5 12 5 11.81

scotland yard 8 9 6 11.81

lake city 10 23 9 10.72

private hotel 12 14 6 10.59

baker street 6 29 6 10.54

brixton road 15 28 13 10.38

jefferson hope 37 56 34 9.47

joseph stangerson 13 47 10 9.46

enoch drebber 8 62 8 9.44

old farmer 39 9 5 9.26

john rance 39 10 5 9.11

john ferrier 39 62 29 9.01

sherlock holmes 52 98 52 8.78

similarly: 𝑝 𝑡1, 𝑡2 =
𝑡𝑓 𝑡1, 𝑡2

𝑁

Page 3-10Multimedia Retrieval – 2020

3.2.2 Step 3: Tagging of Tokens

• A simple form of tagging is to add position information to the tokens. Usually, this is already done at

token generation time (term position in stream).

• For natural language processing, tagging associates a linguistic or lexical category to the term. With

Part of Speech (POS), we label terms as nouns, verbs, adjectives, and so on. Based on this

information, we can construct tree banks to define the syntactic and semantic structure of a

sentence. Tree banks have revolutionized computational linguistic in the 1990s with “The Penn

Treebank” as first large-scale empirical data set. It defines the following tags:

3.2.2 Step 3: Tagging of Tokens

Tag Description

CC Coordinating conjunction

CD Cardinal number

DT Determiner

EX Existential there

FW Foreign word

IN Preposition or subordinating conjunction

JJ Adjective

JJR Adjective, comparative

JJS Adjective, superlative

LS List item marker

MD Modal

NN Noun, singular or mass

NNS Noun, plural

NNP Proper noun, singular

NNPS Proper noun, plural

PDT Predeterminer

POS Possessive ending

PRP Personal pronoun

Tag Description

PRP$ Possessive pronoun

RB Adverb

RBR Adverb, comparative

RBS Adverb, superlative

RP Particle

SYM Symbol

TO to

UH Interjection

VB Verb, base form

VBD Verb, past tense

VBG Verb, gerund or present participle

VBN Verb, past participle

VBP Verb, non-3rd person singular present

VBZ Verb, 3rd person singular present

WDT Wh-determiner

WP Wh-pronoun

WP$ Possessive wh-pronoun

WRB Wh-adverb

WH-words are: where,

what, which, when, …

with NLTK, use
nltk.help.upenn_tagset()

Proper nouns are specific

people, places, things.

Page 3-11Multimedia Retrieval – 2020

• NLTK also provides a simpler variant with the universal POS tagset. It is based on the same

(machine learning) approach as the Penn Treebank but maps tags to a smaller/simpler set. Here is

an example together with the number of occurrences in the book “A Study in Scarlet”:

POS tags are the basis for natural language processing (NLP). They are used to define a parse tree

which allows the extraction of context and the transformation of sentences. Named entities is one

such transformation. Based on the initial POS tagging and with the help of a entity database,

individual tokens or groups of tokens are collapsed to a single named entity.

Chunking is the more generic technique. We can define a simple grammar which is used to
construct non-overlapping phrases. For example, the grammar “NP: {<DT>?<JJ>*<NN>}“

collapses a sequence of article, adjectives, and noun into a new group.

3.2.2 Step 3: Tagging of Tokens

Tag Description Freq Examples

ADJ adjective 2812 new, good, high, special, big, local

ADP adposition 5572 on, of, at, with, by, into, under

ADV adverb 2607 really, already, still, early, now

CONJ conjunction 1711 and, or, but, if, while, although

DET determiner, article 5307 the, a, some, most, every, no, which

NOUN noun 9358 year, home, costs, time, Africa

NUM numeral 354 twenty-four, fourth, 1991, 14:24

PRT particle 1535 at, on, out, over per, that, up, with

PRON pronoun 5705 he, their, her, its, my, I, us

VERB verb 8930 is, say, told, given, playing, would

. punctuation marks 7713 . , ; !

X other 36 ersatz, esprit, dunno, gr8, univeristy

Page 3-12Multimedia Retrieval – 2020

• To analyze the structure of sentences, we need a grammar much like for a programming language.

Unlike programming languages, natural language grammar is not perfect and contains lots of

ambiguities that make it hard (even for humans) to understand the context:

– The phrase “in my pajamas” is ambiguous and could relate to the subject “I” who is in pajamas or

the object “elephant” being in the pajamas of the subject. Grammar alone cannot resolve

ambiguities but the context can help to resolve them (see next sentence above)

• A simple way to analyze sentences is through substitutions of complex phrases into smaller ones.

Similar to a grammar of a programming language, we obtain simple productions that allow to parse

the sentence through shift-reduce parsers. The labels NP, VP, and PP stand for noun phrase, verb

phrase and prepositional phrase respectively

• Demo: https://corenlp.run

While hunting in Africa, I shot an elephant in my pajamas. How he got into my pajamas, I don't know.

Interpretation 1 Interpretation 2

3.2.2 Step 3: Tagging of Tokens

https://corenlp.run/

Page 3-13Multimedia Retrieval – 2020

3.2.3 Step 4: Lemmatization and Linguistic Transformation

• Lemmatization and linguistic transformation are necessary to match query terms with document

terms even if they use different inflections or spellings (colour vs. color). Depending on the scenario,

one or several of the following methods can be applied.

• A very common step is stemming. In most languages, words appear in many different inflected

forms depending on time, case, or gender. Examples:

– English: go, goes, went, going, house, houses, master, master’s

– German: gehen, gehst, ging, gegangen, Haus, Häuser, Meister, Meisters

As we see from the examples, the inflected forms vary greatly but essentially do mean the same.

The idea of stemming is to reduce the term to a common stem and use this stem to describe the

context. In many languages, like German, stemming is challenging due to its many irregular forms

and the use of strong inflection (gehen → ging). In addition, some languages allow the construction

of “new terms” through compound techniques which may lead to arbitrarily long words:

– German (law in Mecklenburg-Vorpommern, 1999-2013): Rinderkennzeichnungs- und

Rindfleischetikettierungsüberwachungsaufgabenübertragungsgesetz. Literally ‘cattle marking and

beef labeling supervision duties delegation law’

– Finnish: atomiydinenergiareaktorigeneraattorilauhduttajaturbiiniratasvaihde. Literally 'atomic

nuclear energy reactor generator condenser turbine cogwheel stage’

In many cases, we want to decompose the compounds to increase chances to match against query

terms. Otherwise, we may never find that German cattle law with a query like “Rind

Kennzeichnung”. On the other side, breaking a compound may falsify the true meaning

– German: Gartenhaus → Garten, Haus (ok, not too far away from the true meaning)

– German: Wolkenkratzer → Wolke, Kratzer (no, this is completely wrong)

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Page 3-14Multimedia Retrieval – 2020

• For English, the Porter Algorithm determines a near-stem of words that is not linguistic correct but

in most cases, words with the same linguistic stem are reduced to the same near-stem. The

algorithm is very efficient and several extensions have been proposed in the past. We consider here

the original version of Martin Porter from 1980:

– Porter defines v as a „vocal“ if

• it is an A, E, I, O, U

• it is a Y and the preceding character is not a „vocal“ (e.g. RY, BY)

– All other characters are consonants (c)

– Let C be a sequence of consonants, and let V be a sequence of vocals

– Each word follows the following pattern:

• [C](VC)m[V]

• m is the measure of the word

– further:

• *o: stem ends with cvc; second consonant must not be W, X or Y (-WIL, -HOP)

• *d: stem with double consonant (-TT, -SS)

• *v*: stem contains a vocal

– The following rules define mappings for words with the help of the forms introduced above. m is

used to avoid overstemming of short words.

Source: Porter, M.F.: An Algorithm for Suffix Stripping. Program, Vol. 14, No. 3, 1980

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Page 3-15Multimedia Retrieval – 2020

– Porter algorithm - extracts (1)

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Step 1

SSES -> SS caresses -> caress

IES -> I ponies -> poni

SS -> SS caress -> caress

S -> cats -> cat

(m>0) EED ->EE feed -> feed

(*v*) ED -> plastered -> plaster

(*v*) ING -> motoring -> motor

... (further rules)

Step 2

(m>0) ATIONAL -> ATE relational -> relate

(m>0) TIONAL -> TION conditional -> condition

(m>0) ENCI -> ENCE valenci -> valence

(m>0) IZER -> IZE digitizer -> digitize

... (further rules)

Rule Examples

a)

b)

Page 3-16Multimedia Retrieval – 2020

Step 3

(m>0) ICATE -> IC triplicate -> triplic

(m>0) ATIVE -> formative -> form

(m>0) ALIZE -> AL formalize -> formal

... (further rules)

Step 4

(m>1) and (*S or *T)ION -> adoption -> adopt

(m>1) OU -> homologou -> homolog

(m>1) ISM -> platonism -> platon

... (further rules)

Step 5

(m>1) E -> rate -> rate

(m=1) and (not *o)E -> cease -> ceas

(m>1 and *d and *L) -> single letter controll -> control

Rule Examples

a)

b)

– Porter algorithm - extracts (2)

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Page 3-17Multimedia Retrieval – 2020

• There are several variants and extensions of the Porter Algorithm. Lancaster uses a more

aggressive stemming algorithm that can result in almost obfuscated stems but at increased

performance. Snowball is a set of rule based stemmers for many languages. An interesting aspect

is the domain specific language to define stemmers, and compilers to generate code in many

computer languages.

• In contrast to the rule based stemmers, a dictionary based stemmer reduces terms to a linguistic

correct stem. This comes at additional stemming costs and the need to maintain a dictionary. The

EuroWordNet initiative develops a semantic dictionary for many of the European languages. Next to

words, the dictionary also contain all inflected forms, a simplified rule-based stemmer for regular

inflections, and semantic relations between words (so-called ontologies).

– Examples of such dictionaries / ontologies:

• EuroWordNet: http://www.illc.uva.nl/EuroWordNet/

• GermaNet: http://www.sfs.uni-tuebingen.de/lsd/

• WordNet: http://wordnet.princeton.edu/

– We consider in the following the English version of WordNet with its stemmer Morphy. It consists

of three parts

• a simple rule-based stemmer for regular inflections (-ing, -ed, …)

• an exception list for irregular inflections

• a dictionary of all possible stems of the language

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Page 3-18Multimedia Retrieval – 2020

– The rule-based approach is quite similar to the Porter rules but they

only apply to certain word types (noun, verb, adjective).

– The stemming works as follows:

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Type Suffix Ending

NOUN s

NOUN ses s

NOUN xes x

NOUN zes z

NOUN ches ch

NOUN shes sh

NOUN men man

NOUN ies y

VERB s

VERB ies y

VERB es e

VERB es

VERB ed e

VERB ed

VERB ing e

VERB ing

ADJ er

ADJ est

ADJ er e

ADJ est e

1. Search the current term in the dictionary. If found, return the term as its

own stem (no stemming required)

2. Search the current term in the exception lists. If found, return the

associated linguistic stem (see table below)

3. Try all rules as per the table on the right. Replace the suffix with the

ending (we may not know the word type, so we try all of them)

a. If a rule matches, search in the indicated dictionary for the reduced

stem. If found, return it as the stem

b. If several rules succeed, choose the more likely stem

Example: axes → axis, axe

4. If no stem is found, return the term as its own stem

adj.exc (1500):

...

stagiest stagy

stalkier stalky

stalkiest stalky

stapler stapler

starchier starchy

starchiest starchy

starer starer

starest starest

starrier starry

starriest starry

statelier stately

stateliest stately

...

noun.exc (2000):

...

neuromata neuroma

neuroptera neuropteron

neuroses neurosis

nevi nevus

nibelungen nibelung

nidi nidus

nielli niello

nilgai nilgai

nimbi nimbus

nimbostrati nimbostratus

noctilucae noctiluca

...

verb.exc (2400):

...

ate eat

atrophied atrophy

averred aver

averring aver

awoke awake

awoken awake

babied baby

baby-sat baby-sit

baby-sitting baby-sit

back-pedalled back-pedal

back-pedalling back-pedal

backbit backbite

...

Page 3-19Multimedia Retrieval – 2020

• NLTK supports Porter, Lancaster, Snowball and WordNet stemmers. The table below shows

examples for all stemmers. Note that the Morphy implementation in NLTK requires a hint for the

word type, otherwise it considers the term as a noun.

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Term Porter Stem Lancaster Stem Snowball Stem WordNet Stem

took took took took take

degree degre degr degre degree

doctor doctor doct doctor doctor

medicine medicin medicin medicin medicine

university univers univers univers university

proceeded proceed process proceed proceed

course cours cours cours course

surgeons surgeon surgeon surgeon surgeon

army armi army armi army

completed complet complet complet complete

studies studi study studi study

there there ther there there

was wa was was be

duly duli duly duli duly

fifth fifth fif fifth fifth

fusiliers fusili fusy fusili fusiliers

assistant assist assist assist assistant

regiment regiment regy regiment regiment

stationed station stat station station

time time tim time time

afghan afghan afgh afghan afghan

had had had had have

broken broken brok broken break

Page 3-20Multimedia Retrieval – 2020

• When analyzing text or parsing a user query, we will come across homonyms (equal terms but

different semantics) and synonyms (different terms but equal semantics). Homonyms may require

additional annotations from the context to extract the proper meaning. Synonyms are useful to

expand a user query if the original search is not (that) successful. Examples:

– Homonyms (equal terms but different semantics):

• bank (shore vs. financial institute)

– Synonyms (different terms but equal semantics):

• walk, go, pace, run, sprint

WordNet groups English words into so-called synsets or synonym sets and provides short

definitions for their usage. It also contains further relations among synsets:

– Hypernyms (umbrella term) / Hyponym (species)

• Animal  dog, cat, bird, ...

– Holonyms (is part of) / Meronyms (has parts)

• door  lock

These relationships define a knowledge structure. The hypernym/hyponym relationship defines a

hierarchy with synsets at each level and the unique top synset “entity”. We can use this structure to

derive further information or context data for our annotations. For instance, if we find the term horse,

we can try to derive whether the text is about an animal or about a chess figure.

– NLTK provides the corpus nltk.corpus.wordnet which provides access to the WordNet knowledge

base. You can also browse through the structure online.

• Spell checking: for user queries, we often use spell checkers to fix simple misspellings or to

suggest corrected versions of the terms. Most systems provide a fuzzy search which automatically

looks for similar terms and adds them to the query if necessary (see Lucene later on)

3.2.3 Step 4: Lemmatization and Linguistic Transformation

Page 3-21Multimedia Retrieval – 2020

3.3 Web Retrieval

• Web Retrieval was first performed like ordinary text retrieval. But soon it was clear that web retrieval

is entirely different. At the time Goolge started, the earlier search engines all used vector space

retrieval or some form of probabilistic retrieval. Google was the first engine to use ordinary Boolean

retrieval but enhanced with a clever ranking system that we will consider in the following. Although

the mechanics of the Google search are well kept secrets, we know from the early prototypes of Brin

and Page at the Stanford University how the search engine works.

• We first consider the differences between classical and web retrieval. Not only the size varies, but

also the quality and how people are searching for information:

3.3 Web Retrieval

Classical Retrieval Web Retrieval

Collection controlled set uncontrolled, incomplete

Size small to large (20 GB) extremely large (>10PB)

Documents homogenous heterogeneous (HTML, PDF, ASCII)

Structure homogenous heterogeneous

Links seldom (citations of other documents) lots of links among documents

Quality good to excellent broad range of quality: poor

grammar, wrong contents, incorrect,

spamming, misspellings, click baits

Queries precise and structures short and imprecise, names!

Results small number of hits (<100) large numbers of hits (>1,000,000)

Page 3-22Multimedia Retrieval – 2020

• These days, a web search engine has to deal with 40+ billion pages, 60+ trillion unique URIs,

and an index size of 100+PB. A typical query returns several millions of hits but users expect the

top page (or the first link) to be the most relevant for them. But how can we find the most relevant

documents for queries with one or two terms given that millions of pages contain them?

– Example query=“ford”: what do you expect at the top of the list? The car manufacturer, the

president, or a ford to cross a river?

– Example query =“uni basel”: what should be at the top? this course? the main page of the

university?

– Example query=“it”: is the movie the best answer? the book by Stephen King? an IT company?

the definition of “it” as a pronoun?

• With all the examples above, it is clear that the short queries are not sufficient to define what is

relevant. So Brin and Page considered what users actually want to see and designed their search

algorithms to optimize towards this most common information need. With all the queries above, the

average user is expecting the page he/she most likely wants to visit. Hence, if more people are

interested in ford as the car manufacturer, than that page should be at top. The answers may

change over time! As we see with “it”, a recently released movie, the results can depend very much

on current events and rankings can drastically change over time.

• In summary: when the context is not clear, and when the query is ambiguous, a web search should

return the page at the top that most people consider relevant.

– This may not be your interpretation of “what is best”. But it is the average interpretation of all

internet users.

– This concept is not entirely new: broadcast stations have always played those songs that most

people (in the area) like best. The term “pop song” indicates an entire music industry that is

chasing the mainstream listeners.

3.3 Web Retrieval

Page 3-23Multimedia Retrieval – 2020

3.3.1 Proximity of Terms

• Assume we are search with “White House” and we have the following documents:

“The white car stands in front of the house“

“The president entered the White House“

Which one would you expect to match the query better?

• Brin and Page, with the example of Bill Clinton, realized that most people implicitly assume proximity

between query terms in the documents. Especially, with the most popular search type (celebrities,

brands, names), the implicit proximity assumption is key. If you are looking for “Bill Clinton”, you do

not want to find:

“….Bill Rosweld was winning….and John Clinton raised his hand…”

“…the dollar bill was on the floor … Mrs. Clinton went home…”

– The average user is expecting that the query terms are next to each other (or at least very close)

and that the order is as given in the query. Try it yourself:

• “White House” → returns the official homepage for the White House

• “House White” → returns another page at the top with the name “House White”

• To enable a similarity value based on proximity, Google uses two options:

– n-grams: add “white house” as a new n-gram term and use it for searches. This ensures that hits

have both words in proximity

– extract position information from the document, calculate proximity for terms in the document,

and push similarity values if proximities are high

3.3.1 Proximity of Terms

Page 3-24Multimedia Retrieval – 2020

• With the position information, we can evaluate a simple metric for proximity. The following is a rough

sketch of what Google’s early search engines did, but still applies in one or the other way in today’s

version. The basic idea is to store not only term frequencies in the inverted lists but the positions of

occurrences in the documents (so-called hit-lists). For example: consider the query “White House”.

– We read the hit lists for each of the terms and a given document from the inverted file:

The hit lists are then combined pairwise to obtain all interesting combinations. This leads to the

following pairs that bear some proximity information between “white” and “house”

– Proximity is expressed as the distance between the elements of pairs and is quantized to a small

set proximity values (in this example we use values between 1 and 10):

In this simplified approach, ‘1’ denotes adjacent terms, ‘3’ close-by, and ‘7’ distant. Any

quantization is thinkable at this point as long as it matches user expectations. Based on these

proximity values, a histogram is built, i.e., counting how often a proximity values occurs.

– Finally, the bins are weighted and summed up to a proximity score:

3.3.1 Proximity of Terms

hitlist[‘white’] = [1, 13, 81, 109, 156, 195]

hitlist[‘house’] = [2, 82, 112, 157, 189, 226]

pairs = [(1,2), (81,82), (109, 112), (156, 157), (189,195)]

proximity = [1,1,3,1,6]

pbins = [3,0,1,0,0,1,0,0,0,0]

weights = [89,55,34,21,13,8,5,3,2,1]

score_proximity = σ𝑖 pbins[i] * weights[i]

Page 3-25Multimedia Retrieval – 2020

3.3.2 Term Frequencies and HTML Attributes

• Classical retrieval was simply counting term frequencies regardless of where they occur in the text.

For HTML documents, we may want to take the surrounding tags into account and add more weight
to occurrences if the term is part of <title>, <h1>, or <i>.

• Brin and Page went a step further: they realized in their research that hyperlinks not only describe

the document containing the anchor text but also provide additional keywords for the referenced

web pages. Even more, anchor texts tend to be short and concise and so we obtain very relevant

keywords that describe the referenced document most accurately. Nobody is writing a hyperlink with

a lengthy anchor text about what is expected at the referenced location. On the other side, we

frequently encounter anchor texts with low relevance like “click here”, “back to start” or “follow me”.

• The very first search engines were plagued by spammers: the authors wrote documents containing

numerous key words, sometimes repeated 1’000 times, to push their web pages to the top of the

search results. Google stopped these spamming approaches by firstly weighting terms in (external)

anchor texts much more (what others say about you), and secondly ceiling the number of

occurrences at a low number. In contrast to the classical vector space retrieval, Google was not

ranking based on term frequencies and idf-weights but used a more elaborated scheme to assess

the significance of a term to describe the content.

• Again, we only know what Brin and Page did as part of their research. Meanwhile, Google has

extended its scheme to describe documents better and to prevent spammers, click baits, and other

dubious pages to appear at the top of searches. Their original approach had 3 steps:

– Describe the document with the key words and their tags

– Add keywords of anchor texts to the referenced document

– When creating the index, sum up the weighted occurrences to a single term score

3.3.2 Term Frequencies and HTML Attributes

Page 3-26Multimedia Retrieval – 2020

• Consider a web page and a term “university”. We extract all the term occurrences and their

surrounding tags, and associate a term occurrences whenever an anchor text contains “university”

and points to the page:

– Terms are extracted as usual but we keep <tag>-information and count how often a term-tag pair

occurs (if multiple tags are active, for each tag a separate pair is added). Whenever we

encounter a hyper link to our web page, we add the terms of the anchor text:

– Upon creating the index, a final score for a term is computed using an upper limit (e.g. 100) for

the occurrences and weights depending on the tag:

– Interestingly, we can now search for documents we have never seen (but only heard about). The

scores of the query terms are added up for the ranking (together with all other scores).

3.3.2 Term Frequencies and HTML Attributes

…<title> … university …</title>

…<h1> … university …</h1>

… … university …

…<p> … university …</p>

…<td> … university …</td>

…<i> … university …</i>

…<h1> … university …</h1>

… … university …

…<h1> … university …</h1>

terms = […(university, <title>,1),…(university, <h1>,2),…(university, ,10),

…(university, <p>,55),…(university, <td>, 2),…(university, link, 23)]

weights[tag → weight] = [<title> → 13, <h1> → 5, <p> → 1, link → 55]

score[university] = σterms i,1 =university min(100,terms[i,3]) * weights[terms[i,2]]

Page 3-27Multimedia Retrieval – 2020

3.3.3 PageRank

• Assume we search with the key words “uni basel”. What would you expect to be at the top of the

ranking? The two pages below both qualify as they have the keywords in prominent places.

– As a student of this course, you are obviously visiting the course page more often and hence it is

more important than the home page of uni basel.

– However, the average student (or the average web surfer) is more interested in the home page

than in a single course.

– Looking only at key words is not sufficient. Yes, we can take hyperlinks into account and consider

the page with most matching keywords in hyperlinks as being more relevant. But that would not

help with very popular brands like Apple and Google and with 1000s of websites discussing

various aspects of the brands (and hence competing for the top spots in searches).

3.3.3 PageRank

Page 3-28Multimedia Retrieval – 2020

• PageRank was invented by Larry Page (one of the Goolge founders) during his research time at

Stanford. His preliminary idea was to consider a page more relevant (for the average user) if it has

many incoming links. Consider the following example:

– PageRank assigns an absolute ranking to all pages in a graph like the one above. A naïve

approach considers only the incoming links. In the running example, E would be top ranked as it

has the largest number (6) of incoming links. B and G follow with 4 links, then C with 2 links, D

with 1 link, and finally F with no incoming links. This also would reflect our intuitive understanding

of importance as E appears to be indeed the center of the graph.

– Consider B and G: both have 4 incoming links and hence tie on 2nd place. If we look closer, we

see that G is referenced by E while B is referenced by less important pages. In other words,

simply considering incoming links is not enough, we want to also weight the link based on the

quality of the source.

– Note that incoming links as a ranking measure is not very robust. A web page author can easily

create thousands of incoming links and thus optimize the ranking of the page (link farms).

3.3.3 PageRank

A
(1)

E
(6)

D
(1)

G
(4)

B
(4)

C
(2)

F
(0)

Number of incoming links

Page 3-29Multimedia Retrieval – 2020

• PageRank is based on a random surfer model: a user navigates through the web by clicking on

links. At some point, the user switches randomly to another page (e.g., picked from the bookmarks).

We make the following assumptions for the random surfer model:

– When on a page, the user can perform two actions: 1) with a probability α he follows a link, and

2) with a probability 1 − 𝛼 he enters a random URL (from his or her bookmarks, or by search)

– For 1) user navigates by picking a random link (all links are equally probable)

– For 2) if a page has no outbound links (sink), the user picks a random URL

• We can interpret PageRank as a Markov chain in which the states are pages and the transitions are

the links between pages. The PageRank of a page is then the probability that a random surfer is

visiting that page. The higher the value, the more popular the page and we expect it to be more

often at the top of the search results.

– To compute the probability equations, we consider two aspects: 1) all incoming links, and 2) a

random switch to the page. Let 𝑞 → 𝑝 denote that 𝑞 contains a link to 𝑝, and let 𝐿(𝑞) be the

number of outgoing links from 𝑞. The set of all pages ℙ contains 𝑁 = ℙ elements. We can then

express the PageRank with the given probability 𝛼 that the user follows a link as:

– Interpretation: to obtain a high PageRank, the number of incoming links is still important but each

incoming link is weighted by the PageRank (aka importance) of the source page. If a page has

several outgoing links, its PageRank is evenly distributed to all referenced pages. The method is

more robust and adding artificial links does not help to push the PageRank. On the other hand, it

favors older pages that are well connected while new pages, even very good ones, lack the

number of links necessary to obtain high ranks.

3.3.3 PageRank

𝑃𝑅 𝑝 =
1 − 𝛼

𝑁
+ 𝛼 ∙ ෍

𝑞→𝑝

𝑃𝑅 𝑞

𝐿 𝑞
∀𝑝 ∈ ℙ

Page 3-30Multimedia Retrieval – 2020

• Evaluation: the PageRank equation defines an implicit equation system that can be solved

iteratively. Let 𝒓 ∈ ℝ𝑁 be the vector holding all PageRanks of documents in ℙ. We represent the

links between pages with a matrix 𝐌 ∈ ℝ𝑁×𝑁:

With this, we can rewrite the PageRank equation as follows:

We now can describe the iterative process to solve the above equation system. Let 𝒓(𝑡) denote the

PageRank values of pages after the 𝑡-th iteration:

Because of the sparse link matrix, the iteration converges rather quickly and it can easily scale to

larger document sets. In their original study, Brin and Page reported 52 iterations of a network with

322 millions of links, and 45 iterations for 161 millions of links. They concluded that the number of

iterations is linear to log 𝑛 with 𝑛 being the number of edges. Due to the sparse matrix,

compressed representations are used to minimize memory consumption.

3.3.3 PageRank

𝑀𝑖,𝑗 =

1

𝐿 𝑝𝑗
if 𝑝𝑗 → 𝑝𝑖

1

𝑁
if 𝑝𝑗 has no outgoing links

0 otherwise

𝒓 =
1 − 𝛼

𝑁
∙ 𝟏 + 𝛼 ∙ 𝐌𝒓 with 𝟏 being a column vector of length 𝑁 with only ones

1. Initialization: 𝒓(0) =
1

𝑁
, 𝛼 = 0.85

2. Iteration:

• 𝒓(𝑡+1) =
1−𝛼

𝑁
∙ 𝟏 + 𝛼 ∙ 𝐌𝒓(𝑡)

• stop if 𝑟 𝑡+1 − 𝑟 𝑡 < 𝜖

Page 3-31Multimedia Retrieval – 2020

• Example from before: let us apply the PageRank formula to the graph below. The size of the nodes

represent now the PageRank and the values the probabilities that a random surfer visits the page:

– Discussion: E is still the center of the network but G and C are now more important than B. Even

though B has 4 incoming links, two of them come from the least important pages D and F. On the

other side, E has only two outgoing links and hence both C and G receive about 43% (with 𝑑 =
0.85) of the PageRank of E.

• Usage for ranking: the PageRank is an absolute measure for the importance of a page regardless of

the query. It is computed once after a complete crawl and used for all queries. Even though

PageRank is an important measure, it is only one of many criteria. If we would emphasize too much

on PageRank, we would only see the same sites in our search results. Terms and proximity are

equally important but PageRank helps to favor pages that are more likely visited by users (and

hence requested in the search results to be at the top). However, negative publicity pushes pages to

the top as well.

3.3.3 PageRank

A
(7%)

E
(37%)

D
(3%)

G
(21%)

B
(11%)

C
(19%)

F (2%)

PageRank

Page 3-32Multimedia Retrieval – 2020

3.3.4 Hyperlink-Induced Topic Search (HITS)

• There are many ways to interpret linkinformation during feature extraction. A common observation is

that there are two prototypes of web pages

– Authorities are web pages that discuss a topic and are recognized by the community as the

authoritative source for information. A good example is Wikipedia, IMBD, MusicBrainz, etc.

– Hubs are web pages that group authorities in a directory like style without actually discussing the

topics. Your bookmarks are your personal hub, but also web sites like Yahoo, Yellow Pages, etc.

Note that PageRank was only considering how likely a user would visit the page but not whether it

contains any authoritative content. PageRank is also a random walk across the entire web. The

methods we consider in this section only look at the current topic of the query, hence the terms

Topic Search is often used with these methods.

• How can we recognize a good hub and a good authority?

– A hub is a web page with many links to authorities. We observe the

typical hub structure depicted on the right side

– An authority is web page with many incoming links from hubs. We

observe a typical (sink) structure as depicted on the right side

– To be a good hub, it must link to good authorities on the topic. To be

a good authority, it must be linked by many good hubs on the topic.

– Note: “on the topic” means that we are not just interested in the

number of incoming / outgoing links, but they have to be related

with the current topic. This is the biggest difference to PageRank

where all links regardless of any topic are considered.

3.3.4 Hyperlink-Induced Topic Search (HITS)

H
u
b

A
u

th
o

ri
ty

Page 3-33Multimedia Retrieval – 2020

• Jon Kleinberg developed the HITS algorithm in 1997. He observed the concepts of hubs and

authorities in the emerging web where directories were the pre-dominant way to find information on

the Internet (search engines existed but lacked the sufficient quality). To better guide searches, he

introduced to metrics for a web page 𝑝:

– ℎ(𝑝) denotes the hub value of the page 𝑝, i.e., its ability to serve as a hub for the user

– 𝑎(𝑝) denotes the authority value of page 𝑝, i.e., its ability to provide content to the user

• As we are only interested in a single topic, not the entire web structure

is used. Instead, we create a base set with the following two steps:

1. For a query / topic 𝑄 determine the top results with the help of a

search engine. This set is called the root set. It already contains

a fair number of hubs and authorities, but not yet all relevant ones

2. Extend the root set with a) web pages that link to a page in the root

set, and b) pages that are referenced by a page in the root set. We

can remove links within the same domain (navigation links) and can

limit the number of incoming / outgoing links to keep the graph small.

This set is called the base set

• In practice, we need to execute several searches and downloads to

compute the base set. 2b) requires downloading the pages of the root

set, extracting link information, and adding the referenced pages. Step
2a) requires a search with a link:-clause to obtain pages that link to

a member of the root set. A previous crawl of the web to obtain the

link structure greatly reduces the costs for constructing the base set.

3.3.4 Hyperlink-Induced Topic Search (HITS)

root

base

Page 3-34Multimedia Retrieval – 2020

• We use the notation 𝑝 → 𝑞 to denote that 𝑝 contains a link to 𝑞. We now can formulate the HITS

algorithm as an iterative process. Assume that the base set ℙ contains 𝑁 pages:

• Once computed, we can return the top hubs (highest ℎ(𝑝) values) and the top authorities (highest

𝑎(𝑝) values) to the searcher.

• We can rewrite the equations in matrix notation. Let 𝒉 be the vector of hub values for all pages, and

let 𝒂 be the vector of authority values. We can construct the adjacency matrix 𝐀 from the graph:

The rows of 𝐀 contain all outgoing links while the columns contain all incoming links. With this the

computational scheme for the iteration becomes

3.3.4 Hyperlink-Induced Topic Search (HITS)

𝐴𝑖,𝑗 = ቊ
1 if 𝑝𝑖 → 𝑝𝑗
0 otherwise

𝒉(𝑡+1) = 𝐀𝒂 𝑡

𝒂 𝑡+1 = 𝐀⊤𝒉(𝑡)

1. Initialization: ℎ(0) 𝑝 = a(0)(p) = 1/𝑁 ∀𝑝 ∈ ℙ

2. Iteration:

• Update:

• Normalize 𝑎 𝑝 and ℎ(𝑝) such that:

• Stop if σ𝑝 𝑎
𝑡+1 (𝑝) − 𝑎 𝑡 (𝑝) + σ𝑝 ℎ

𝑡+1 (𝑝) − ℎ 𝑡 (𝑝) < 𝜖

𝑎 𝑡+1 𝑝 = ෍

𝑞→𝑝

ℎ(𝑡) 𝑞 ℎ 𝑡+1 𝑝 = ෍

𝑝→𝑞

𝑎(𝑡) 𝑞

෍

𝑝

𝑎 𝑡+1 𝑝 2 =෍

𝑝

ℎ 𝑡+1 𝑝 2 = 1

Page 3-35Multimedia Retrieval – 2020

• Example: consider the following graph

• We observe that A is the best hub. It links to the best authorities D, G, and E. E is a slightly better

authority than C despite having only 2 (compared to 3) incoming links. But it is referenced by the

good hubs A and F, while C is referenced by the good hub A, the average hub G and the bad hub D.

• Note that its not always clear whether a page is a hub or an authority. B for instance is a bad

authority and an average hub. C is not in the top authorities and a bad hub. E is a top authority but

also has some hub value.

• Finally, remember that we are only looking at the base set of nodes, that is, only at pages that are

somewhat related to the topic. Hence, in contrast to PageRank, the hub and authority values of

pages change with different queries / topics.

3.3.4 Hyperlink-Induced Topic Search (HITS)

A

F

H
D

B G

E

C

A B C D E F G H 𝒉 𝒂

A 1 1 1 1 1 60% 0%

B 1 1 36% 18%

C 0% 29%

D 1 9% 69%

E 1 20% 31%

F 1 1 1 46% 12%

G 1 1 29% 54%

H 1 1 1 40% 0%

Adjacency Matrix

Page 3-36Multimedia Retrieval – 2020

3.3.5 Extensions of HITS (Henzinger, 1998)

• The HITS algorithm suffers from three fundamental problems:

1. If all pages in a domain reference the same external page, that page becomes too strong an

authority. Similarly, if a page links to many different pages in the same domain, that page

becomes too strong a hub.

2. Automatically established links, e.g., advertisements or links to the provider/host/designer of a

web site, provide the linked sites a too high authority value (even though they are off topic)

3. Queries such a "jaguar car" tend favor the more frequent term (here “car”) over the less

frequent term. The idea of the query, however, was to distinguish from the animal.

• The first improvement addresses domains. Instead of every page having a single vote on the

authority (hub) of an external page, the entire domain gets a single vote.

– Assume that 𝑘 pages 𝑞𝑖 in a domain link a page 𝑝, then we weigh the hub values in the authority

formula for page 𝑝 with 𝑎𝑤 𝑞𝑖 , 𝑝 =
1

𝑘
.

– Similarly, assume that a page 𝑝 links to 𝑙 pages 𝑞𝑖 in the

same domain, then we weigh the authority values in the

hub formula for page 𝑝 with ℎ𝑤 𝑝, 𝑞𝑖 =
1

𝑙
.

– With these weights, we adjust the iteration of HITS as follows:

3.3.5 Extensions of HITS (Henzinger, 1998)

a.com

1/3

1/3

1/3

b.com

1/4

1/4

1/4

1/4

𝑎 𝑡+1 𝑝 = ෍

𝑞→𝑝

𝑎𝑤 𝑞, 𝑝 ∙ ℎ(𝑡) 𝑞 ℎ 𝑡+1 𝑝 = ෍

𝑝→𝑞

ℎ𝑤 𝑝, 𝑞 ∙ 𝑎(𝑡) 𝑞

Page 3-37Multimedia Retrieval – 2020

• The second improvement focuses on the topic and applies penalties for pages that are not following

the topic. This helps to sort out advertisements. To push less frequent terms, and 𝑡𝑓 ∗ 𝑖𝑑𝑓 scheme is

chosen similar to the methods in vector space retrieval.

– We construct a reference document 𝐶 from all documents in the root set (e.g., taking from each

document the terms with highest 𝑡𝑓 ∗ 𝑖𝑑𝑓 values)

– Compute a similarity value 𝑠(𝑝) for page 𝑝 using the 𝑡𝑓 ∗ 𝑖𝑑𝑓 vectors of 𝑝 and the reference

document 𝐶, i.e., 𝑠 𝑝 =
𝒄⊤𝒑

𝒄 ∙ 𝒑

– For a given threshold 𝑡, eliminate all pages 𝑝 with 𝑠 𝑝 < 𝑡 from the base set. To get a good

threshold, we can use the median of all 𝑠(𝑝) values, i.e., eliminate 50% from the base set.

– Use the similarity values 𝑠(𝑝) to adjust how much authority and hub value is passed to a page.

We adjust the iteration of the HITS algorithm as follows:

• This extension has resulted in a 45% improvement over the original HITS algorithm.

3.3.5 Extensions of HITS (Henzinger, 1998)

𝑎 𝑡+1 𝑝 = ෍

𝑞→𝑝

𝑎𝑤 𝑞, 𝑝 ∙ 𝑠 𝑞 ∙ ℎ(𝑡) 𝑞 ℎ 𝑡+1 𝑝 = ෍

𝑝→𝑞

ℎ𝑤 𝑝, 𝑞 ∙ 𝑠(𝑞) ∙ 𝑎(𝑡) 𝑞

Page 3-38Multimedia Retrieval – 2020

3.3.6 SALSA Algorithm

• The Stochastic Approach for Link Structure Analysis – SALSA is a further extension of the HITS

algorithm. Similar to PageRank, it considers the transitions from one page to the other and models it

with a Markov chain. However, it only considers two steps in the network, and not an infinite walk

across the entire web. Similar to HITS, it only considers a base set of pages obtained with the same

approach as with HITS and given a query / topic.

• SALSA considers the graph of the base set as a bipartite graph with pages having a double identity,

once as a hub identity and once as a authority identity.

– To compute authority values, the algorithm is performing a random walk with two steps. Starting

from a page 𝑝, it goes backward to all hubs that link to 𝑝 and then walks forward to all pages

reachable from these hubs. To determine how much authority value is passed from page 𝑝 to a

such reachable page 𝑞, we consider a random walk with two steps starting at 𝑝 and use the

probability of arriving at 𝑞 as the fraction of authority passed from 𝑝 to 𝑞.

– In contrast to HITS, authority values only depend on the authority value of other reachable

authorities but not on the hub values.

3.3.6 SALSA Algorithm

A C

D
B

A

B

C

D

A

B

C

D

hubs authorities

Page 3-39Multimedia Retrieval – 2020

• Example: consider the example before. We want to compute how much of the authority value of A is

passed to C. We now consider the steps of the random walk starting at A:

– We first walk backwards to all hubs that link to A: there are two hubs B and D each with a 50%

chance for the random walk to select.

– Walking forward: 1) From B, there are two links to A and C, again each path with a 50% chance

to be taken. We note a first path from A to C with a 25% chance to be taken. 2) From D, there

are three links to A, B and C, each path with a 33.3% chance to be taken. We note a second path

from A to C with a 16.7% chance to be taken

– Summing up, the two paths yield a 41.7% chance to get from A to C. This is the portion of the

authority value of A passed to the authority value of C.

3.3.6 SALSA Algorithm

A

B

C

D

A

B

C

D

hubs authorities

A

B

C

D

A

B

C

D

hubs authorities

We start at authority A We move back to hubs of A
We move forward to

reachable authorities

A

B

C

D

A

B

C

D

hubs authorities

41.7%

41.7%

16.6%

Portion of the

authority

value passed

from A

Page 3-40Multimedia Retrieval – 2020

• Similarly, we can compute hub values. But this time, the random walk is first forward to all

authorities linked by the starting hub, and then backwards to all hubs linking these authorities. The

probability of reaching hub 𝑞 from a hub 𝑝 determines how much hub value is passed from 𝑝 to 𝑞.

• Example: consider the same example as before. We want to compute how much of the hub value of

D is passed to B. We now consider the steps of the random walk starting at D:

– We first walk forwards to all authorities linked by D: there are three authorities A, B and C each

with a 33% chance for the random walk to select.

– Walking backwards: 1) The two hubs B and D link to A, each hub selected with 50% probability.

We note a first path from D to B with a 16.7% chance to be taken. 2) The three hubs A, C and D

link to B, each hub selected with 33% probability. There is no path to B. 3) The three hubs A, B

and D link to C, each hub selected with 33% probability. We note a second path from D to B with

a 11.1% chance to be taken.

– Summing up, the two paths yield a 27.8% chance to get from D to B. This is the portion of the

hub value of D passed to the hub value of B.

3.3.6 SALSA Algorithm

A

B

C

D

A

B

C

D

hubs authorities

We start at hub D

A

B

C

D

A

B

C

D

hubs authorities

We move forward to all

authorities linked by D

A

B

C

D

A

B

C

D

hubs authorities

We move backward to all

reachable hubs

11.1%

22.2%

27.8%

Portion of the

hub value

passed from D

38.9%

Page 3-41Multimedia Retrieval – 2020

• More formally, we can compute hub and authority values as follows. Let 𝐀 be the authority-matrix

and 𝐇 be the hub-matrix. Further, let 𝐿𝑖𝑛(𝑝) denote the number of incoming links to page 𝑝, and

𝐿𝑜𝑢𝑡 𝑝 denote the number of outgoing links of page 𝑝. We can determine the matrix elements with

the two steps as described before as follows:

• We now can compute the hub and authority value using an iterative approach. Again, ℙ denotes the

set of all pages in the base set with 𝑁 = ℙ being the number of pages.

• A variant of the SALSA algorithm is used at Twitter to recommend “whom to follow”. The twitter

example is a very good fit as the graph is usually uni-directional (you follow someone but that

person is not necessarily following you).

3.3.6 SALSA Algorithm

𝐴𝑗,𝑖 = ෍

𝑞:𝑞→𝑝𝑖 ∧ 𝑞→𝑝𝑗

1

𝐿𝑖𝑛 𝑝𝑖
∙

1

𝐿𝑜𝑢𝑡 𝑞
𝐻𝑗,𝑖 = ෍

𝑞:𝑝𝑖→𝑞 ∧ 𝑝𝑗→𝑞

1

𝐿𝑜𝑢𝑡 𝑝𝑖
∙

1

𝐿𝑖𝑛 𝑞

1. Initialization: ℎ𝑖
(0)

= a𝑖
0
= 1/𝑁 ∀𝑖: 1 ≤ 𝑖 ≤ 𝑁

2. Iteration:

• 𝒂 𝑡+1 = 𝐀𝒂(𝑡)

• 𝒉 𝑡+1 = 𝐇𝒉(𝑡)

• stop if 𝒂 𝑡+1 − 𝒂 𝑡 + 𝒉 𝑡+1 − 𝒉 𝑡 < 𝜖

Page 3-42Multimedia Retrieval – 2020

3.3.7 Co-citations and Similar Pages

• The basic idea of Alexas „What‘s Related“ was to identify similar or related documents for a given

document. As an example, if you are on the homepage of a car manufacturer (e.g., Ford Motor), a

related page would be the one of another car manufacturer (e.g., Honda, GM, VW, Nissan). How

can we compute such related pages from the web graph?

– Surf History/Bookmarks Analysis: users often browse and keep pages on similar topics together.

If you want to buy a car, you check several similar pages in succession

– Co-citations: if two pages are often linked together by pages, we can assume some relationship

– Deduce relationships from link structure and an implicit similarity score definition (similar pages

are linked by similar pages)

• Alexa Toolbars observe surfers, record the history, and performs a static analysis on the surf

behavior of users to compute various things such as the Alexa Ranking and suggestions for similar

sites. The analysis follows typical data mining approaches for affinity analysis. It is not taking the link

structure of the web into account.

• In the following, we look at the other two methods in more details:

3.3.7 Co-citations and Similar Pages

Page 3-43Multimedia Retrieval – 2020

• Co-Citations consider only the web graph and count how often two pages are linked together. The

first publication by Dean and Henzinger in 1999 suggested the following simple algorithm. We start

with a page 𝑝 and are looking for related pages 𝑞𝑖:

– Note that not all links are extracted from

parent pages 𝑎𝑖 but only the ones that

appear close to the starting page 𝑝. “Close”

means the 𝑙 links which are nearest to the

link to 𝑝 in the HTML file.

– The figure on the right hand shows a

simple example with a starting page 𝑝,

its parent pages 𝑎1, … , 𝑎5 and their linked

pages 𝑞1, … , 𝑞6. In this example, we

find 𝑞5 as the most co-cited page to 𝑝.

3.3.7 Co-citations and Similar Pages

1. Determine at most 𝑘 parent pages 𝑎𝑗 of starting page 𝑝

2. Extract for each parent page 𝑎𝑗 at most 𝑙 links to pages 𝑞𝑖 that are in the proximity of the link to 𝑝

3. Count how often a page 𝑞𝑖 is obtained by step 2

4. If we found less than 15 pages 𝑞𝑖 with at least 2 co-citations with 𝑝 then reduce URL of 𝑝 and start again.

5. Related pages 𝑞𝑖 to 𝑝 are the ones with most co-citations

𝑝

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑞2

𝑞3

𝑞1

𝑞6

𝑞4

𝑞5

2 co-citations

2 co-citations

1 co-citation

3 co-citations

1 co-citations

1 co-citation

Page 3-44Multimedia Retrieval – 2020

• Another co-citation method by Dean and Henzinger was published in 1999: the companion

algorithm. It is a more complex variant of co-citation using similar techniques as with HITS. We

start again with a page 𝑝 and look for related pages 𝑞𝑖:

3.3.7 Co-citations and Similar Pages

1. Build a neighborhood graph around page 𝑝 as follows:

• add starting page 𝑝 to graph

• add at most 𝑘 parent pages 𝑎𝑖 that link to 𝑝, and for each page 𝑎𝑖, add at most 𝑙 links to child

pages (around the link to 𝑝)

• add at most 𝑚 child pages 𝑐𝑗 linked by 𝑝, and for each page 𝑐𝑗, add at most 𝑛 parent pages that

have a link to 𝑐𝑗
• add edges between nodes based on the links in the web

2. Merge duplicates and near-duplicates

• Two documents are near-duplicates if they contain more than 10 links and 95% of their links are

the same (occur in both documents)

3. Assign weights to edges in graph based on domain linked

• Assume that 𝑘 pages 𝑞𝑖 in a domain link a page 𝑝, then we weight the edges with 𝑎𝑤 𝑞𝑖 , 𝑝 =
1

𝑘

• Assume that a page 𝑝 links to 𝑘 pages 𝑞𝑖 in a domain, then we weight edges with ℎ𝑤 𝑝, 𝑞𝑖 =
1

𝑙

4. Compute hub and authority values for all nodes in the graph with the following iteration

5. The pages 𝑞𝑖 with the highest authority values are the related pages to 𝑝.

𝑎 𝑡+1 𝑝 = ෍

𝑞→𝑝

𝑎𝑤 𝑞, 𝑝 ∙ ℎ(𝑡) 𝑞 ℎ 𝑡+1 𝑝 = ෍

𝑝→𝑞

ℎ𝑤 𝑝, 𝑞 ∙ 𝑎(𝑡) 𝑞

Page 3-45Multimedia Retrieval – 2020

• SimRank is a method that defines a similarity score 𝜎(𝑝, 𝑞) between two pages 𝑝 and 𝑞 in an

implicit way: 𝑝 and 𝑞 are similar if they are linked by similar pages. Also, a page 𝑝 is maximal similar

with itself, i.e., 𝜎 𝑝, 𝑝 = 1. Given a “neighborhood” graph around 𝑝 (use any method to construct

such a neighborhood), we select those pages 𝑞𝑖 with highest scores 𝜎(𝑝, 𝑞𝑖).

– Let 𝐿𝑖𝑛(𝑝) denote the number of incoming links to page 𝑝. Similarity is defined as follows:

with 𝐶 a decay factor, for instance 𝐶 = 0.8.

– We can compute the similarity values with a simple iterative approach for all pages 𝑝 ∈ ℙ:

3.3.7 Co-citations and Similar Pages

𝜎 𝑝, 𝑞 =

1 if 𝑝 = 𝑞
𝐶

𝐿𝑖𝑛 𝑝 ∙ 𝐿𝑖𝑛(𝑞)
∙ ෍

𝑎→𝑝

෍

𝑏→𝑞

𝜎(𝑎, 𝑏) otherwise

1. Initialization: 𝜎(0) 𝑝, 𝑞 = ቊ
1 if 𝑝 = 𝑞
0 if 𝑝 ≠ 𝑞

∀𝑝, 𝑞 ∈ ℙ

2. Iteration:

• Update:

• Stop if σ𝑝,𝑞 𝜎
𝑡+1 (𝑝, 𝑞) − 𝜎 𝑡 (𝑝, 𝑞) < 𝜖

3. Return pages 𝑞𝑖 with highest similarity 𝜎(𝑝, 𝑞𝑖)

𝜎(𝑡+1) 𝑝, 𝑞 =

1 if 𝑝 = 𝑞
𝐶

𝐿𝑖𝑛 𝑝 ∙ 𝐿𝑖𝑛(𝑞)
∙ ෍

𝑎→𝑝

෍

𝑏→𝑞

𝜎(𝑡)(𝑎, 𝑏) otherwise

Page 3-46Multimedia Retrieval – 2020

3.3.8 Further Improvements (Example Google)

• Google is using more than 200 criteria to compute the top results. We consider here a few of the

published criteria but much is hidden within the Google algorithms as a trade secret. Other search

engines link Bing use similar approaches, but Google is the best documented search engine.

• Hummingbird (2013): a series of changes themed on conversational queries and synonyms

– First major update since 2001 focusing on data retrieval, artificial intelligence, and how data is

accessed and presented to users. Especially, the integration into an immersive mobile

experience was key concept. Users would no longer provide keywords but ask entire questions.

Rather then searching for keywords, Hummingbird takes the context of the sentence into

account. It uses synonyms to find more relevant keywords.

– Rewards content pages over click baits, link farms, and pages with lots of advertisements. The

reward helps to find relevant content related to the user’s intent.

– Considers co-citations of web pages to boost popular pages in niche topics (where PageRank is

limited). Also consider keywords around anchor text to describe the referenced page.

– Keeps users longer on Google pages by presenting integrated result tables.

3.3.8 Further Improvements (Example Google)

Page 3-47Multimedia Retrieval – 2020

– Pigeon (2014): prefers local (to the user) search results taking location and distance to business

into account. Not available everywhere but continuous roll-out to more countries.

– Penguin (2012): series of updates that penalize sites for not following rules (so-called black-hat

search engine optimizations) using manipulative techniques to achieve high rankings.

• Keyword spams, i.e., excessive use of some key words

• Sites using link farms or other techniques to push PageRank

• Doorway pages: built to attract search engine traffic but do not provide any content

• Page Layout Algorithm: targets web sites with too many ads or too little content in the upper

part of the page (above the fold)

• Since 2012, 7 updates of Penguin were released. Affected a small percentage (<3%) of

queries. Only recently added to the core search engine

– Panda (2011): updates to lower the rank of low-quality or thin sites, especially content farms.

High quality pages should return higher in the rankings.

• Thin content: web pages with very little relevant or substantial text

• Duplicate content: content copied from other places. Initial versions had issues to correctly

distinguish sources and scrapers replicating content only.

• Lack of trustworthiness: sources that are not definitive or verified. To avoid impact, web sites

should work to become an authority on the topic. Pages full of spelling and grammatical errors.

• High ad to content ratio: pages with mostly ad and affiliate programs as content

• Websites blocked by users

• Panda affects the ranking of an entire site / section rather than an individual page. A penalty

remains until the next update of Panda (not part of the core search). If a site has removed the

dubious parts, the penalty is removed. Affected almost 12% of queries.

3.3.8 Further Improvements (Example Google)

Page 3-48Multimedia Retrieval – 2020

– Caffeine (2010): improved the entire index engine and turned the batch process into a more

continuous update process providing up to 50 percent fresher content

• Historically, Google crawled the web during 30 days, created the index, and then used this

index for another 30 days. Soon, the engine was extended by the freshbot which captured

news content and of important pages more frequently providing fresh index data to searches.

• With Caffeine, the entire engine was overhauled. Instead of using several layers with web sites

updated at different frequencies, the Caffeine update brought a continuous update process with

it. The pages are not more frequently crawled than before, but the updates would become

visible more quickly.

• Internally, the engine was switched from the MapReduce algorithm to BigTable, Google’s

distributed scale-out database. Caffeine operates on a 100 PB database (!) and adds new

information at a rate of a petabyte per day.

– Knowledge Graph (2012): a knowledgebase used to enhance semantic

search results. Information is gathered from a wide range of sources

• Collected from sources like the CIA World Factbook, Wikipedia, and

similar sites.

• Freebase (community managed content) was handed over into

Wikidata

• The newer Knowledge Vault uses artificial intelligence to derive

data automatically from web content

• As of 2016, the knowledge graphs holds 70 billion facts. There is an

open Google API to programmatically access the database

3.3.8 Further Improvements (Example Google)

Page 3-49Multimedia Retrieval – 2020

3.4 Latent Semantic Analysis

• So far, we used manual methods to correlate terms with each other, e.g. with stemming or

synonyms. In the following, we look at an automate way to extract clusters in the vocabulary, so-

called topics. Topics help us to search with more flexibility (and fuzziness) without the need to think

about alternative ways to ask the question. In addition, the method generate specific topics that are

most relevant for the collection at hand. On the other side, we can not use the same topics in

different collection; even more, we don’t even know what the topics are (but we can guess them)!

• Topic modelling is not the same as text classification (see next section). The difference is that

classification uses supervised learning: we have a set classifiers and learn how the features best

match to the classifier. Topic modelling is unsupervised and tries to identify clusters/co-occurrences

of terms in text documents:

3.4 Latent Semantic Analysis

Terms

Classification

Topic

Modelling

supervised

unsupervised

Page 3-50Multimedia Retrieval – 2020

• We will use clustering methods later in image retrieval. But with text retrieval, we face a number of

challenges like high dimensionality (vocabulary size), spareness of the term-document-matrix

(almost everything is 0), and strong correlation between terms (run, runs, ran, walks, goes, went,

…). So the usual clustering approaches will not work out of the box.

• The idea of Latent Semantic Analysis (also called Latent Semantic Indexing) is to reduce the

dimensionality of term vectors without altering the relations between documents and terms. Given a

number of topics, it decomposes the term-document matrix with a singular value decomposition.

This defines a mapping from the high-dimensional feature space defined by the vocabulary to a

much lower dimensional feature space defined by topics. We use the same transformation for query

vectors and compare them with the mapped document vectors similar to vector space retrieval.

3.4 Latent Semantic Analysis

Page 3-51Multimedia Retrieval – 2020

3.4.1 Preliminary mathematical background

• For each eigenvalue 𝜆 and eigenvector 𝒙 of a quadratic (𝑛, 𝑛)-matrix 𝐀, it holds:

• Eigenvalues are determined by solving the equation det 𝚨 − 𝜆𝐈 = 0. This is equivalent to finding

the zeroes of a polynomial function of degree n. Note that the zeroes can be real, complex, and

may occur several times. The corresponding eigenvectors are orthogonal to each other.

• A symmetric matrix 𝐀 has real eigenvalues (no complex ones). Let r be the rank of 𝐀. We can

write matrix 𝐀 as the following product:

• 𝚲 denotes an (𝑟, 𝑟)-diagonal matrix with the eigenvalues on the diagonal; 𝐔 is an (𝑟, 𝑟)-matrix with

columns that are orthonormal, i.e. 𝐔⊤𝐔=I.

3.4.1 Preliminary mathematical background

𝐀𝒙 = 𝜆𝒙

𝐀 = 𝐔𝚲𝐔⊤

Page 3-52Multimedia Retrieval – 2020

• The singular value decomposition generalizes the eigenvalue decomposition for non-quadratic

matrices. Let 𝐀 be an (𝑚, 𝑛)-matrix of rank r. There exists an (𝑟, 𝑟)-diagonal matrix 𝐒 and an (𝑚, 𝑟)-
matrix 𝐔 and an (𝑛, 𝑟)-matrix 𝐕 both with columns that are orthonormal. It holds:

• It follows:

and

That is: 𝐔 holds the eigenvectors of AA⊤ in its columns and V holds the eigenvectors of A⊤A in its

columns.

• We can re-write 𝐀 = 𝐔𝐒𝐕⊤ as a sum of vector products (so called dyadic vector products):

and obtain an approximation 𝐀 for 𝐀 if one or several of the summands are omitted in the above

formula. We get the best approximation of rank 𝑘 < 𝑟 with the sum over the k largest singular

values 𝑠𝑖

3.4.1 Preliminary mathematical background

𝐀 = 𝐔𝐒𝐕⊤

𝐀⊤𝐀 = USV⊤ ⊤ 𝐔𝐒𝐕⊤ = VSU⊤US𝐕⊤ = VS2V⊤

𝐀𝐀⊤ = USV⊤ 𝐔𝐒𝐕⊤ ⊤ = USV⊤VS𝐔⊤ = US2U⊤

𝐀 = 𝑠1 𝒖𝟏𝒗𝟏
⊤ + 𝑠2 𝒖𝟐𝒗𝟐

⊤ +⋯+ 𝑠𝑟 𝒖𝒓𝒗𝒓
⊤

Page 3-53Multimedia Retrieval – 2020

3.4.2 Singular value decomposition of the term-document-matrix

documents

te
rm

s =

(𝑀, 𝑟)

columns of 𝐔
are orthonormal

𝐀 𝐔

(𝑀,𝑁) (𝑟, 𝑟)

𝐒 diagonal,

𝑟 ≤ min 𝑀,𝑁

(𝑟, 𝑁)

rows of 𝐕T

are orthonormal

𝐕T

x

x

x

x

x
𝐒

𝐀 = 𝐔𝐒𝐕⊤

3.4.2 Singular value decomposition of the term-document-matrix

Page 3-54Multimedia Retrieval – 2020

x

x

x

documents

te
rm

s =

(𝑀, 𝑘)
columns are

orthonormal

U

(𝑀,𝑁) 𝑘 < 𝑟
𝑘, 𝑘

diagonal

(𝑘, 𝑁)
rows are

orthonormal

𝐕𝑘
T

𝐒𝑘

• Reduction of dimensions: Sorting elements by decreasing singular values and elimination of the k

smallest singular values leads to a new representation with a smaller 𝑘, 𝑘 -diagonal matrix 𝐒𝑘

3.4.2 Singular value decomposition of the term-document-matrix

𝐀𝑘 𝐔𝑘

approximated representation

of document 𝐷𝑖
in the original term space

new representation

of document 𝐷𝑖
in the reduced (concept) space

Page 3-55Multimedia Retrieval – 2020

• Inserting new documents (approximation): A new document 𝐷 is added without recalculation of

the SVD (approximation for efficiency). We add document vector 𝒅 as a new column to 𝐀𝑘. The

reduced form 𝒅 is determined as follows:

3.4.2 Singular value decomposition of the term-document-matrix

documents

te
rm

s = U

x

x

x

𝐕𝑘
T

𝐒𝑘𝐀𝑘 𝐔𝑘

add 𝒅 as

new column

add reduced form

𝒅 as new column 𝐕𝑘
1

2

𝒅⊤ = 𝒅⊤𝐔𝑘𝐒𝑘
−1

Page 3-56Multimedia Retrieval – 2020

• Inserting new terms: We can approximately add a new term 𝑇 without recomputing the SVD. We

add term vector 𝒕 as a new row to 𝐀𝑘. The reduced form t is obtained as follows:

3.4.2 Singular value decomposition of the term-document-matrix

documents

te
rm

s = U

x

x

x

𝐕𝑘
T

𝐀𝑘 𝐔𝑘

add 𝒕⊤as new row

add reduced form

𝒕⊤ as new row to 𝐔𝑘

1
2

𝐒𝑘

𝒕⊤ = 𝒕⊤𝐕𝑘𝐒𝑘
−1

Page 3-57Multimedia Retrieval – 2020

3.4.3 Query evaluation with LSI

• To answer query, a query 𝑄 first needs to be mapped to the reduced space of the collection. This is

achieved with the following transformation

Next, we have to compare 𝒒 with all the reduced representations of documents (𝐕𝑘) to identify the

most similar ones. The following functions provide two examples of how to compare vectors:

Similar to vector space retrieval, documents are sorted by decreasing similarity values.

3.4.3 Query evaluation with LSI

𝒒⊤ = 𝒒⊤𝐔𝑘𝐒𝑘
−1

𝑠𝑖𝑚 𝑄,𝐷𝑖 = 𝒒 ∙ 𝒅𝑖 =෍

𝑗=1

𝑀

𝑞𝑗 ∙ 𝑑𝑖,𝑗

𝑠𝑖𝑚 𝑄,𝐷𝑖 =
𝒒 ∙ 𝒅𝑖
𝒒 ∙ 𝒅𝑖

=
σ𝑗=1
𝑀 𝑞𝑗 ∙ 𝑑𝑖,𝑗

σ𝑗=1
𝑀 𝑞𝑗

2 ∙ σ𝑗=1
𝑀 𝑑𝑖,𝑗

2

Page 3-58Multimedia Retrieval – 2020

3.4.4 A Simple Example

• The following documents are given:

c1 Human machine interface for Lab ABC computer applications

c2 A survey of user opinion of computer system response time

c3 The EPS user interface management system

c4 System and human system engineering testing of EPS

c5 Relation of user-perceived response time to error measurement

m1 The generation of random, binary, unordered trees

m2 The intersection graph of paths in trees

m3 Graph minors IV: Widths of trees and well-quasi-ordering

m4 Graph minors: A survey

• Let the query be: "human computer interaction"

– Boolean search with “AND” returns no documents

– Boolean search with “OR” or vector space retrieval returns the

documents c1, c2, c4

– Also compare with results from exercise with probabilistic retrieval

3.4.4 A Simple Example

Page 3-59Multimedia Retrieval – 2020

• Example: the document-term matrix

3.4.4 A Simple Example

c1 c2 c3 c4 c5 m1 m2 m3 m4

human 1 1

interface 1 1

computer 1 1

user 1 1 1

system 1 1 2

response 1 1

time 1 1

EPS 1 1

survey 1 1

trees 1 1 1

graph 1 1 1

minors 1 1

A =

(M=12, N=9)

terms which appear in only one document and stop words are omitted

Page 3-60Multimedia Retrieval – 2020

• Example: singular value decomposition

3.4.4 A Simple Example

0.2214 -0.1132 0.2890 -0.4148 -0.1063 -0.3410 0.5227 -0.0605 -0.4067
0.1976 -0.0721 0.1350 -0.5522 0.2818 0.4959 -0.0704 -0.0099 -0.1089
0.2405 0.0432 -0.1644 -0.5950 -0.1068 -0.2550 -0.3022 0.0623 0.4924
0.4036 0.0571 -0.3378 0.0991 0.3317 0.3848 0.0029 -0.0004 0.0123
0.6445 -0.1673 0.3611 0.3335 -0.1590 -0.2065 -0.1658 0.0343 0.2707
0.2650 0.1072 -0.4260 0.0738 0.0803 -0.1697 0.2829 -0.0161 -0.0539
0.2650 0.1072 -0.4260 0.0738 0.0803 -0.1697 0.2829 -0.0161 -0.0539
0.3008 -0.1413 0.3303 0.1881 0.1148 0.2722 0.0330 -0.0190 -0.1653
0.2059 0.2736 -0.1776 -0.0324 -0.5372 0.0809 -0.4669 -0.0363 -0.5794
0.0127 0.4902 0.2311 0.0248 0.5942 -0.3921 -0.2883 0.2546 -0.2254
0.0361 0.6228 0.2231 0.0007 -0.0683 0.1149 0.1596 -0.6811 0.2320
0.0318 0.4505 0.1411 -0.0087 -0.3005 0.2773 0.3395 0.6784 0.1825

U =

3.3409
2.5417

2.3539
1.6445

1.5048
1.3064

0.8459
0.5601

0.3637

S =

0.1974 0.6060 0.4629 0.5421 0.2795 0.0038 0.0146 0.0241 0.0820
-0.0559 0.1656 -0.1273 -0.2318 0.1068 0.1928 0.4379 0.6151 0.5299
0.1103 -0.4973 0.2076 0.5699 -0.5054 0.0982 0.1930 0.2529 0.0793
-0.9498 -0.0286 0.0416 0.2677 0.1500 0.0151 0.0155 0.0102 -0.0246
0.0457 -0.2063 0.3783 -0.2056 0.3272 0.3948 0.3495 0.1498 -0.6020
-0.0766 -0.2565 0.7244 -0.3689 0.0348 -0.3002 -0.2122 0.0001 0.3622
0.1773 -0.4330 -0.2369 0.2648 0.6723 -0.3408 -0.1522 0.2491 0.0380
-0.0144 0.0493 0.0088 -0.0195 -0.0583 0.4545 -0.7615 0.4496 -0.0696
-0.0637 0.2428 0.0241 -0.0842 -0.2624 -0.6198 0.0180 0.5199 -0.4535

𝐕T =

Page 3-61Multimedia Retrieval – 2020

• Example: reduction of dimensions

• with k=2, we obtain

• It follows for: 𝐀𝑘 = 𝐔𝑘𝐒𝑘𝐕𝑘
⊤ and 𝒒⊤ = 𝒒⊤𝐔𝑘𝐒𝑘

−1

3.4.4 A Simple Example

0.2214 -0.1132
0.1976 -0.0721
0.2405 0.0432
0.4036 0.0571
0.6445 -0.1673
0.2650 0.1072
0.2650 0.1072
0.3008 -0.1413
0.2059 0.2736
0.0127 0.4902
0.0361 0.6228
0.0318 0.4505

3.3409
2.5417

0.1974 0.6060 0.4629 0.5421 0.2795 0.0038 0.0146 0.0241 0.0820
-0.0559 0.1656 -0.1273 -0.2318 0.1068 0.1928 0.4379 0.6151 0.5299

𝐔𝑘 𝐒𝑘 𝐕𝑘
T

0.1621 0.4005 0.3790 0.4676 0.1760 -0.0527 -0.1151 -0.1591 -0.0918
0.1406 0.3698 0.3290 0.4004 0.1650 -0.0328 -0.0706 -0.0968 -0.0430
0.1524 0.5050 0.3579 0.4101 0.2362 0.0242 0.0598 0.0869 0.1240
0.2580 0.8411 0.6057 0.6974 0.3923 0.0331 0.0832 0.1218 0.1874
0.4488 1.2344 1.0509 1.2658 0.5563 -0.0738 -0.1547 -0.2096 -0.0489
0.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169
0.1596 0.5817 0.3752 0.4169 0.2765 0.0559 0.1322 0.1889 0.2169
0.2185 0.5496 0.5110 0.6281 0.2425 -0.0654 -0.1425 -0.1966 -0.1079
0.0969 0.5321 0.2299 0.2118 0.2665 0.1368 0.3146 0.4444 0.4250
-0.0613 0.2321 -0.1389 -0.2656 0.1449 0.2404 0.5461 0.7674 0.6637
-0.0647 0.3353 -0.1456 -0.3014 0.2028 0.3057 0.6949 0.9766 0.8487
-0.0431 0.2539 -0.0967 -0.2079 0.1519 0.2212 0.5029 0.7069 0.6155

𝐀𝑘=

new representation

of document c1

1
0
1
0
0
0
0
0
0
0
0
0

𝒒

𝐔𝑘𝐒𝑘
−1

0.1382
-0.0276

𝒒

Page 3-62Multimedia Retrieval – 2020

• Visualization in reduced feature space

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Q

c1

c3
c4

c5

m1

m2

m4

m3

c2

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7





acos(RSV) < 

• Let the cosine measure be

the similarity function: all

documents which lie inside

the green area are relevant

• Documents c1,...,c5 are

similar to the query. Notice

that c3 does not contain

any query term but still is

among the best matching

documents

• In this (constructed)

example, we identify two

main topics (k=2): the c-

documents have larger

values on the horizontal

axis, the m-documents

have larger values on the

vertical axis

3.4.5 Visualization in reduced feature space

Page 3-63Multimedia Retrieval – 2020

• Advantages:

– Synonyms are automatically detected

– Simplifies features extraction; no dictionary and ontology required; different languages and cross-

language retrieval are for free; stemming not necessary

– Good retrieval quality

• Disadvantages:

– Extremely expensive computation of SVD; fast algorithms for parallel computations necessary

(but not available)

– Expensive evaluation of queries; there exists no optimal index structure to support LSI queries;

inverted lists are no longer feasible due to dense vectors obtained after transformation

– Retrieval quality not much better than with other methods; ratio of quality over performance is

very poor

3.4.5 Visualization in reduced feature space

Page 3-64Multimedia Retrieval – 2020

3.5 Naive Bayes

• Bayesian classifiers go back to 1950. It has been applied in many areas, and still is competitive in
text classification and medical diagnosis. Especially, Naïve Bayes scales very well to large feature
dimensions where other methods, like decision trees, struggle from the curse of dimensionality.

• In the following, we use Naïve Bayes for a simple sentiment analysis of text. We first introduce the
generic method and then apply it to a bag-of-word model of text documents. “Sentiment” is just one
example of extracting a higher-level classifier. Other examples include “spam filter”, “email routing”,
“language detection”, “genre classification”, and “author detection”.

• In a nutshell, Naïve Bayes classification uses terms and their frequency to automatically detect
correlation between terms and classes with the help of a (labeled) test data set. With these
correlations, we can automatically classify new documents and process them accordingly. Naïve
Bayes uses a simple and very efficient approach and classifies with high quality.

3.5 Naive Bayes

Page 3-65Multimedia Retrieval – 2020

• Naïve Bayes uses a conditional probability model based on Bayes theorem:

where 𝒙 is a feature vector and 𝐶𝑘 the class (=target). 𝑃 𝐶𝑘 is the so-called “prior”, i.e., the
knowledge (here a probability) about the distribution of classes 𝐶𝑘. 𝑃 𝒙 𝐶𝑘 is the likelihood to
observe the feature 𝒙 for a given class 𝐶𝑘, and 𝑃 𝒙 is the evidence to observe 𝒙 (for any class).
𝑃 𝐶𝑘 𝒙 is then the so-called “posterior”, i.e., the knowledge we gain (or better: predict) given the
observation of feature 𝒙 to infer that it belongs to class 𝐶𝑘.

• Let x be a high-dimensional vector, for instance, from a huge term space for documents. Due to the
high-dimensionality and the limited set of training data, it is difficult to accurately describe the
probability distribution function in such a sparse space. To simplify matters, naïve Bayes assumes
conditional independence of features. This immediately leads to the following simplification:

• Given the probability model, we pick the hypothesis (here: class 𝐶𝑘∗) which is most probable. This
selection rule is also known as the maximum a posteriori (MAP):

3.5.1 Naive Bayes

𝑃 𝐶𝑘 𝒙 =
𝑃 𝒙 𝐶𝑘 ∙ 𝑃 𝐶𝑘

𝑃 𝒙
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 =

𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 ∙ 𝑝𝑟𝑖𝑜𝑟

𝑒𝑣𝑖𝑑𝑒𝑛𝑐𝑒

𝑃 𝐶𝑘 𝒙 = 𝑃 𝐶𝑘 𝑥1, … , 𝑥𝑀 =
1

𝑃 𝒙
∙ 𝑃(𝐶𝑘) ∙ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘
Note that 𝑃 𝒙 is a constant over classes

𝑐𝑘 and scales the probabilities. For our

purposes, we do not need to know it.

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

𝑃(𝐶𝑘) ∙ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘
That is it! The equation describes the decision rule

of Naïve Bayes. The only thing left are the estimates

for the probabilities on the right hand side

Page 3-66Multimedia Retrieval – 2020

• To obtain the prior and the likelihood, we need to estimates the probability distributions based on the

training set. And we need to address a number of practical issues such as numerical underflow due

to the multiplication of many (small) probabilities, smoothing to address missing features, and

feature selection. At the end, we apply the method to text classification

• Learning process

– Estimating 𝑃 𝐶𝑘 is the easy part: let 𝑁𝑘 bet the number of training items with label 𝐶𝑘 and let 𝑁
be the total number of training items. Then:

If the exact numbers are not clear (for instance, spam classifier: what is the ratio between spam

and normal email?), the probabilities can be approximated with 𝑃 𝐶𝑘 = 1/𝐾 with 𝐾 denoting the

number of classes, i.e., equiprobable classes. This is not accurate but works well.

– To find the probability distribution 𝑃 𝑥𝑗 𝐶𝑘 we first need to model the underlying distribution of

values for 𝑥𝑗, and then learn the model parameters from the training set. The typical approach to

learn estimators from training data is the maximum likelihood estimation (MLE), i.e., choosing

model parameters that maximize the likelihood of making the observations given the parameters.

– Let 𝑥𝑗 be discrete with values from 𝕍𝑗. Let 𝑁𝑘 𝑥𝑗 = 𝑣 with 𝑣 ∈ 𝕍𝑗 be the number of training items

with label 𝐶𝑘 that have 𝑥𝑗 = 𝑣. In other words, it denotes how often 𝑥𝑗 = 𝑣 is observed in the

training set for items belonging to the class 𝐶𝑘. Naturally, we obtain

3.5.1 Naive Bayes

𝑃 𝐶𝑘 =
𝑁𝑘
𝑁

𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 =
𝑁𝑘 𝑥𝑗 = 𝑣

𝑁𝑘

Page 3-67Multimedia Retrieval – 2020

– What if a value 𝑣 is never seen for 𝑥𝑗 over a class 𝐶𝑘. Obviously, 𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 = 0 and with that:

In other words, if 𝑣 was never observed for a class 𝐶𝑘, its presence in a new data item eliminates

𝐶𝑘 as a prediction regardless how well the other features support 𝐶𝑘. To prevent 0-probabilities,

we need to smooth the probability distribution, commonly using Laplace smoothing (add-1).

The idea is that we “steal” probability mass and distribute it to the values with 0-probabilities:

Note: the sum of 𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 over all values 𝑣 ∈ 𝕍𝑗 is still 1. But we got rid of 0-probabilities.

Red indicates “stolen” probability mass and green denotes added probability mass.

3.5.1 Naive Bayes

𝑃 𝐶𝑘 𝒙 = 𝑃 𝐶𝑘 𝑥1, … , 𝑥𝑗 = 𝑣,… , 𝑥𝑀 = 0

𝑃 𝑥𝑗 = 𝑣 | 𝐶𝑘 =
𝑁𝑘 𝑥𝑗 = 𝑣 + 1

𝑁𝑘 + 𝕍𝑗

stolen

added

Page 3-68Multimedia Retrieval – 2020

– A special case is a discrete Boolean value 𝑥𝑗 ∈ {0,1} denoting the presence (𝑥𝑗 = 1) or absence

(𝑥𝑗 = 0) of a feature in the training data. In this case, the distribution follows a Bernoulli event

model (or a multivariate Bernoulli event model if several values are Boolean). As the

probabilities sum up to 1, only one parameter is required:

with 𝑝𝑘,𝑗 representing the probability that the feature is present, i.e., how often 𝑥𝑗 = 1 is observed

in the training set for objects with label 𝐶𝑘. Hence:

Note that smoothing is done with stealing 1 only in the extreme case that all observations are the

same (either all 𝑥𝑗 = 1 or all 𝑥𝑗 = 0).

– A final case for discrete values is the multinomial event model which is given by a feature

vector 𝒙 = 𝑥1, … , 𝑥𝑀 representing a histogram with 𝑥𝑗 counting the number of times a feature or

event 𝑗 was observed in the training set. We will see an example later on with 𝑥𝑗 denoting the

number of occurrences of a term 𝑡𝑗 in a document. The probability distribution is given by:

Let 𝑛𝑘,𝑗 be the total number of occurrences of feature j in all training items with label 𝐶𝑘. Then:

3.5.1 Naive Bayes

𝑃 𝑥𝑗 | 𝐶𝑘 = 𝑝𝑘,𝑗
𝑥𝑗
∙ 1 − 𝑝𝑘,𝑗

1−𝑥𝑗

𝑝𝑘,𝑗 =
𝑁𝑘 𝑥𝑗 = 1

𝑁𝑘
𝑝𝑘,𝑗 =

min 𝑁𝑘 − 1,max 1,𝑁𝑘 𝑥𝑗 = 1

𝑁𝑘
or smoothed:

𝑃 𝒙 | 𝐶𝑘 =
σ𝑗 𝑥𝑗 !

ς𝑗 𝑥𝑗!
∙ෑ

𝑗

𝑝𝑘,𝑗
𝑥𝑗 Note that the factor to the left of the product symbol is a constant when

looking for the best class 𝐶𝑘 and hence drops in the argmax equation

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗
σ𝑙 𝑛𝑘,𝑙

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗 + 1

σ𝑙 𝑛𝑘,𝑙 +𝑀
or smoothed:

Page 3-69Multimedia Retrieval – 2020

– If feature values 𝑥𝑖 are continuous, we need to choose a model for the probability distribution

𝑝 𝑥𝑖 𝐶𝑘 and then learn the parameters of the model using the training set. A common approach

is assuming a Gaussian distribution with the two parameters 𝜇𝑘,𝑖 denoting the mean value, and

𝜎𝑘,𝑖
2 being the variance. The probability distribution is defined as:

To estimate the two parameters, we need to use the unbiased estimators based on the

observations from the training set. Let 𝑁𝑘 = 𝐶𝑘 be the number of training items with label 𝐶𝑘:

– Using a Gaussian mixture model, we can adopt to arbitrarily shaped distribution function. We

overlay 𝐿 normal distributions 𝒩 𝜇𝑘,𝑖,𝑙 , 𝜎𝑘,𝑖,𝑙
2 with weights 𝑤𝑙:

To learn the parameters of the normal distributions, we can use the Expectation Maximization

approach (we will see this later for clustering methods). In addition, we should use a validation

set to adjust the hyper-parameter 𝐿, i.e., if 𝐿 is large, we may fit the probability distribution for the

training set very well, but cannot generalize well to the validation set due to overfitting. Using

least mean squared errors over the validation set provides an instrument to control 𝐿.

3.5.1 Naive Bayes

𝑝 𝑥𝑖 𝐶𝑘 =
1

2𝜋𝜎𝑘,𝑖
2

∙ 𝑒
−
𝑥𝑖−𝜇𝑘,𝑖

2

2𝜎𝑘,𝑖
2

𝜇𝑘,𝑖 =
1

𝑁𝑘
෍

𝒙∈𝐶𝑘

𝑥𝑖 𝜎𝑘,𝑖 =
1

𝑁𝑘 − 1
෍

𝒙∈𝐶𝑘

𝑥𝑖 − 𝜇𝑘,𝑖
2

When estimating variance from samples, we must

account for the error in the estimated mean value, that

is, we underestimate the variance because differences

between values and the estimated mean are too small.

𝑝 𝑥𝑖 𝐶𝑘 =෍

𝑙=1

𝐿

𝑤𝑙 ∙𝒩 𝜇𝑘,𝑖,𝑙 , 𝜎𝑘,𝑖,𝑙
2

Page 3-70Multimedia Retrieval – 2020

• Prediction

– To predict the class 𝐶𝑘∗ to which a new data item with features 𝒙 belongs to, we apply the

maximum a posteriori (MAP) selection:

With moderate to large numbers for M, we run into practical issues due to the multiplications of

small probabilities (numerical underflow). To provide a stable calculation of the probabilities,

naïve Bayes algorithms compute log-probabilities as the logarithm does not impact the ordering:

– To reduce the noise of a large number of features, we can focus on a few features only that are

sufficient to classify data items. In general terms, we want to identify features whose presence or

absence is correlated with the data item having or not having a label. This leads to 4 tests for

each of the combinations of {“feature present”, “feature not present”} and {“item in class”, “item

not in class”}. If there is a strong correlation for any combination of events, then the feature is

discriminative for classification. Literature provides several approaches with Chi-square and

mutual information being the most prominent ones. A much simpler approach is to select the

most discriminative features, much like we have seen in classical text retrieval.

3.5.1 Naive Bayes

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

𝑃(𝐶𝑘) ∙ෑ

𝑗=1

𝑀

𝑃 𝑥𝑗 𝐶𝑘

𝑘∗ = argmax
𝑘

log 𝑃 𝐶𝑘 𝒙 =argmax
𝑘

log𝑃 𝐶𝑘 +෍

𝑗=1

𝑀

log𝑃 𝑥𝑗 𝐶𝑘

Page 3-71Multimedia Retrieval – 2020

• Example: Text Classification – Naïve Bayes is quite popular due to its simplicity, its speed, and

accuracy. Common applications include spam detection, author identification, age/gender

identification, language identification, and sentiment analysis. With sentiment analysis, for example,

we want to distinguish positive from negative movie reviews.

– There are two models for text classification: 1) set of words, and 2) bag of words. With the

former, we consider only the presence of terms and apply a multivariate Bernoulli model. With

the latter, we count term occurrences and use the multinomial model. Both approaches assume

that the position of terms in the text does not matter and that terms are conditionally independent.

– Set of words and multivariate Bernoulli: like with Boolean text retrieval models, a binary

feature vector 𝒙 denotes the presence of terms, taken from a defined vocabulary, in the given

documents. The training documents have labels for classes 𝐶𝑘, and we use the training set to

estimate the probabilities. Let 𝑁𝑘 bet the number of training items with label 𝐶𝑘, then

Let 𝑥𝑗 = 1 denote that term 𝑡𝑗 is present in the document represented by 𝒙. Then:

Prediction means finding the class that maximizes 𝑃 𝐶𝑘 𝒙 for a document with representation x:

Instead of using all terms of the vocabulary, we can reduce the features (see feature selection) or

only take the terms present in the document (i.e., we only consider 𝑥𝑗 = 1).

3.5.1 Naive Bayes

𝑃 𝐶𝑘 =
𝑁𝑘
𝑁

𝑃 𝐶𝑘 =
1

𝐾
or if 𝑁𝑘 is not known:

𝑝𝑘,𝑗 =
𝑁𝑘(𝑥𝑗 = 1)

𝑁𝑘
𝑝𝑘,𝑗 =

min 𝑁𝑘 − 1,max 1,𝑁𝑘(𝑥𝑗 = 1)

𝑁𝑘
or smoothed:

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

log𝑃(𝐶𝑘) +෍

𝑗=1

𝑀

𝑥𝑗 log𝑝𝑘,𝑗 + 1 − 𝑥𝑗 log 1 − 𝑝𝑘,𝑗

Page 3-72Multimedia Retrieval – 2020

– Bag of words and multinomial: like with vector space retrieval models, a feature vector 𝒙
denotes the number of occurrences of terms, taken from a defined vocabulary, in the given

documents. The training documents have labels for classes 𝐶𝑘, and we use the training set to

estimate the probabilities. Let 𝑁𝑘 bet the number of training items with label 𝐶𝑘, then

Let 𝑛𝑘,𝑗 be the total number of occurrences of term 𝑡𝑗 in all training documents with label 𝐶𝑘:

Prediction means finding the class that maximizes 𝑃 𝐶𝑘 𝒙 for a document with representation x:

That is, we select the best class only with the terms that are present in the document.

• Summary: Naïve Bayes is not so naïve. Even though the strong assumption of independence does

not always apply in practices, it excels due to high speed, low storage requirements, robustness to

noise, and very good performance (accuracy). There are better methods but still naïve Bayes is an

excellent baseline for text classification.

3.5.1 Naive Bayes

𝑃 𝐶𝑘 =
𝑁𝑘
𝑁

𝑃 𝐶𝑘 =
1

𝐾
or if 𝑁𝑘 is not known:

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗
σ𝑙 𝑛𝑘,𝑙

𝑝𝑘,𝑗 =
𝑛𝑘,𝑗 + 1

σ𝑙 𝑛𝑘,𝑙 +𝑀
or smoothed:

𝑘∗ = argmax
𝑘

𝑃 𝐶𝑘 𝒙 =argmax
𝑘

log𝑃(𝐶𝑘) + ෍

𝑥𝑗>0

𝑥𝑗 log 𝑝𝑘,𝑗

Page 3-73Multimedia Retrieval – 2020

• Application: Sentiment Analysis of tweets

– We use NLTK to learn positive and negative tweets (corpus twitter_samples)

Positive
twitter_samples.strings

('positive_tweets.json')

Negative
twitter_samples.strings

(‘negative_tweets.json')

stop word

elimination and

stemming

stop word

elimination and

stemming

bag of words

(or set of words)

bag of words

(or set of words)

Label =

Positive

Label =

Negative

Naïve Bayes

Classifier (train)

Testset
(with label Pos/Neg)

3
0

%
 o

f
d

a
ta 7
0

%
 o

f
d

a
ta

Model

Evaluation (e.g. accuracy)

Bernoulli (set) or

multinominal (bag)

probability model

Page 3-74Multimedia Retrieval – 2020

3.6 Literature and Links

Publications

– Brin, S.; Page, L. (1998). "The anatomy of a large-scale hypertextual Web search engine" (PDF). Computer
Networks and ISDN Systems. 30: 107–117.

– Page, Lawrence; Brin, Sergey; Motwani, Rajeev; Winograd, Terry (1999). "The PageRank citation ranking:
Bringing order to the Web"., published as a technical report on January 29, 1998 PDF

– Lempel, R.; Moran S. (April 2001). "SALSA: The Stochastic Approach for Link-Structure Analysis" (PDF). ACM
Transactions on Information Systems. 19 (2): 131–160.

– G. Jeh and J. Widom. SimRank: A Measure of Structural-Context Similarity. In KDD'02: Proceedings of the
eighth ACM SIGKDD international conference on Knowledge discovery and data mining, pages 538-543. ACM
Press, 2002. PDF

– J. Dean, M. Henzinger, Finding related pages in the World Wide Web, Computer networks 31 (11), 1467-1479.
PDF

– J. Kleinberg. "Hubs, Authorities, and Communities". ACM Computing Surveys 31(4), 1999.

Books

– Steven Bird, Ewan Klein, and Edward Loper. Natural Language Processing with Python. O'Reilly Media, 2009.
Free online version: http://www.nltk.org/book/

Thesaurus & Ontologies for selected Languages

– EuroWordNet: http://www.illc.uva.nl/EuroWordNet/

– GermanNet: http://www.sfs.uni-tuebingen.de/lsd/

– WordNet: http://www.cogsci.princeton.edu/~wn/

Implementations

– Natural Language Toolkit (NLTK), http://www.nltk.org

– Apache Lucene, https://lucene.apache.org

3.6 Literature and Links

http://infolab.stanford.edu/pub/papers/google.pdf
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf&compression=
http://dbpubs.stanford.edu:8090/pub/showDoc.Fulltext?lang=en&doc=1999-66&format=pdf&compression=
http://ilpubs.stanford.edu:8090/422/1/1999-66.pdf
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.38.5859
https://en.wikipedia.org/wiki/SIGKDD
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
http://ilpubs.stanford.edu:8090/508/1/2001-41.pdf
http://www.ra.ethz.ch/cdstore/www8/data/2148/PDF/PD1.PDF
http://www.cs.brown.edu/memex/ACM_HypertextTestbed/papers/10.html
http://www.nltk.org/book/
http://www.nltk.org/
https://lucene.apache.org/

