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4.1 Introduction

• We already talked about the semantic gap previously:

– With multimedia content, the raw material (signal 

information, pixels) is not suitable for query matches. 

For example, the wolf on the right hand side is a set of 

thousands of pixels that are interpreted by our brain as 

a depiction of an animal. But there is no straightforward 

correlation between the pixels and the concept of 

animal. This is the so-called semantic gap, i.e., we can

not ask with natural language and match that directly to 

the signal information.

– To close the semantic gap, we need to extract concepts 

from the signal information and bring it to a level that 

allows users to match their information need

• In the following, we start with image data:

– First, we have a closer look at human perception (color,

form, shape) and describe perception with low-level 

feature descriptors (e.g., color distribution). With 

similarity search, we can bridge the semantic gap

– Second, we use learning approaches to extract

concepts and classify the content in various ways. 

These classifiers can be treated like meta data or text 

annotations. In a later chapter, we also combine

similarity and text/meta data based search methods

Raw Media

Descriptors

Objects

(segmentation)

Object Labels

(segmentation)

Semantics

Wolf on Road with Snow on 

Roadside in Yosemite 

National Park, California on 

Jan 24, 2004

4.1 Introduction
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• Similarity Search is another approach to close the semantic gap:

– Users are asked to provide samples (or provide feedback on presented results) of what they like 

to find. A good example is Shazam: you record a short fragment of a song, and the service 

returns you all the information about artist, song title, and even lyrics. Instead of tying in 

keywords (for instance fragments of lyrics), you provide a sample of what you’d like to find. 

Similarity search is the challenge of extracting features that allows the systems to find close 

matches (from a human’s perception point of view). A few illustrations compared to text features: 

4.1 Introduction

imagestext documents

docID = doc10

dog → word 10, word 25

cat → word 13

home → word 2, word 27

...

feature

extraction

color

histogram

feature

extraction
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audio files

video files

video sequences key frames

phonemes: imnOrd@namfo:rmita:gs...

text: Im Norden am Vormittag...

acoustical features: 

subtitle: [President] I never had ....

Audio Signal

feature

extraction

feature

extraction
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• Feature design for images 

– Image Normalization includes a number of pre-processing steps including noise elimination, 

normalization of signal information, adjustments and corrections of the raw data. For example, 

when analyzing frames in an interlaced video sequence, deinterlacing is a typical step to reduce 

combing effects that interfere with feature extraction. Heavily depends on the data set. 

– Image Segmentation partitions the image into sub-areas for which perceptual features are 

extracted. We distinguish between global features (for the entire image) and local features (for a 

region within the images). If we have local features, the aggregation step (4) is necessary to 

obtain a global feature for the image.

– Feature Extraction describes the signal information based on perceptual aspects such as color, 

texture, shape, and points of interest. For each category, a number of methods exists with 

different invariances (e.g., robustness against scaling, translation, rotation). We do not consider 

labeling of images in this chapter (see the next chapter for high-level features)

– Feature Aggregation summarizes perceptual features to construct a final descriptor (or a set of 

descriptors). The aggregation often uses statistical approaches like mean values, variances, 

covariances, histograms, and distribution functions. With local features, we can further derive 

statistical measure across the regions (e.g., self-similarity, mean values, variances, covariances). 

In the following we often discuss feature aggregation together with the feature extraction method.

4.1 Introduction

Step 1:

Image Normalization

Step 2:

Image Segmentation

Step 3:

Feature Extraction

Step 4:

Feature Aggregation
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• The definition of similarity also comes with mapping to invariances, i.e., changes applied to the 

material that do not impact similarity (or only have a small impact). Examples include:

– Translation invariant: (small) shifts of the picture have no significant impact on feature values

– Rotation invariant: rotations of the image have no significant impact on feature values

– Scale invariant: up- or down-sampling does not change the feature value. Note that scale 

differences are very common due to different image resolutions. In the absence of a normal sized 

scale, it is even more important to demand scale invariance

– Lightning invariant: Adjustments of lightning (daylight, artificial light, brightness adjustments, 

gamma corrections) have no significant impact on feature values

– Noise robustness: noise, JPEG artefacts, quantization errors, or limited color gamut have no 

significant impact on feature values

• Invariances are important to recognize the same objects under different conditions. For instance,

Shazam is presented with recordings of “bad quality” due to background noise, audio recording 

issues (for instance, you are recording in a bar with poor loudspeakers), or people talking over the 

music. The features used by Shazam must be robust enough to be invariant for a wide range of 

alterations of the raw signal information (user is not able to prevent a “perfect sample”). This goes 

much further than just spelling corrections in text retrieval. The design of such features is beyond 

the material of this course, but we look at some of the basic aspects of perception and invariance.

4.1 Introduction
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• A very common method to measure similarity is through a distance function. Assume we have a 

feature space ℝ𝑑 with 𝑑 dimensions. A query 𝑄 is mapped into this feature space yielding a feature 

vector 𝒒 ∈ ℝ𝑑. The same mapping leads to feature vectors 𝒑𝑖 ∈ ℝ𝑑 for each of the media objects 𝑃𝑖. 
In case of uncorrelated dimensions, a weighted 𝐿𝑘-norm is a good selection to measure distances

– The weights are chosen such that the ranges of all dimensions become comparable. Several 

strategies exist to compute the weights. Here are two examples:

– The distance between the query vector 𝒒 and media vector 𝒑𝑖 is then:

• 𝐿1-norm or Manhattan distance: 

• 𝐿2-norm or Euclidean Distance:

• 𝐿𝑘-norm or 𝑘-norm:

• 𝐿∞-norm or Maximum norm:

4.1 Introduction

𝑤𝑗 =
1
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𝑖

𝑝𝑖,𝑗 −min
𝑖
𝑝𝑖,𝑗
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with 𝜎𝑗 being the standard deviation of values in dimension 𝑗
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– For correlated dimensions, we can use a quadratic function with a matrix 𝐀 ∈ ℝ𝑑 that 

compensates correlation. In this case, weights are already factored into the correlation matrix:

• Quadratic function: 

– The following visualization shows all distance measures. The blue area depicts the neighborhood 

areas around the centers of the areas (e.g., a query vector):

4.1 Introduction

𝛿 𝒒, 𝒑𝑖 = 𝒒 − 𝒑𝑖
⊤𝐀 𝒒 − 𝒑𝑖

Euclidean 

Manhattan 
Quadratic function 

Maximum norm 
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– Example for weights: consider the following two dimensions

• In dimension 𝑑1, all values are between 0 and 1. 

• In dimension 𝑑2, all values are between 100 and 200.

If we would apply an unweighted distance function, dimension 𝑑2 would dominate dimension 𝑑1. 

In other words, regardless of how close the features are in dimension 𝑑1, only the difference in 

dimension 𝑑2 really matters. Similarity is hence based (almost) entirely on dimension 𝑑2. With the 

weights, we can normalize the different ranges along dimensions. Note that all metrics are based 

on differences so that the absolute values do not matter if ranges are similar.

• Searching for the most similar object translates to a search for the object with the smallest distance, 

the so-called nearest neighbor. We note the reversed relationship between similarity values and 

distances:

– large distances correspond to low similarity values

– small distances correspond to high similarity values

We can express similarity search as a nearest neighbor search:

4.1 Introduction

𝒑𝑖

𝒒

Nearest Neighbor Problem:

• Given a vector 𝒒 and a set ℙ of vectors 𝒑𝑖 and a 

distance function 𝛿 𝒒, 𝒑𝑖

• Find 𝒑𝑖 ∈ ℙ such that:

∀𝑗, 𝒑𝑗 ∈ ℙ: 𝛿 𝒒, 𝒑𝑖 ≤ 𝛿(𝒒, 𝒑𝑗)
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• If we want to obtain similarity values from the distances, we need a so-called correspondence 

function ℎ. Let 𝜎(𝒒, 𝒑𝑖) denote a similarity function between query vector 𝒒 and a media vector 𝒑𝑖. 
The following properties must hold:

• 𝜎(𝒒, 𝒑𝑖) is in the range [0,1]

• 𝜎 𝒒, 𝒑𝑖 = 0 denotes total dissimilarity between query vector 𝒒 and a media vector 𝒑𝑖
• 𝜎 𝒒, 𝒑𝑖 = 1 denotes maximum similarity between query vector 𝒒 and a media vector 𝒑𝑖

– The correspondence function translates between distances and similarity values as follows

It must fulfil the following constraints

• ℎ 0 = 1

• ℎ ∞ = 0

• ℎ′ 𝑥 ≤ 0 (ℎ must be a decreasing function)

– The best method to build a correspondence function is to use the distance distribution 𝑝𝛿. We 

obtain the mapping by integrating the distribution function up to the given distance and subtract 

that value from 1. This guarantees that all constraints hold true:

4.1 Introduction

𝜎 𝒒, 𝒑𝑖 = ℎ(𝛿 𝒒, 𝒑𝑖 )                      𝛿 𝒒, 𝒑𝑖 = ℎ−1(𝜎 𝒒, 𝒑𝑖 ) 

ℎ 𝑥 = 1 − න
0

𝑥

𝑝𝛿 𝑥 𝑑𝑥 Distance 

distribution 𝑝𝛿

Correspondence 

function ℎ



Page 4-11Multimedia Retrieval – 2020

• Signal information is often too low level and too noisy to allow for accurate recognition of higher-

level features such as objects, genres, moods, or names. As an example, there are exceedingly 

many ways how a chair can be depicted in an image based on raw pixel information. Learning all 

combinations of pixels or pixel distributions is not a reasonable approach (also consider clipped 

chairs due to other objects in front of them).

• Feature extraction based on machine learning abstracts lower level signal information in a series of 

transformations and learning steps as depicted below. The key ingredient of a learning approach is 

to eliminate noise, scale, and distortion through robust intermediate features and then cascade one 

or many learning algorithms to obtain higher and higher levels of abstractions.

• Newer approaches in deep learning even learn automatically which features to extract and how to 

transform features to make them more robust.

4.1 Introduction
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• Demo:

– Clarifai provides APIs to recognize ‘models’ in images. Developers can use the APIs to retrieve 

tags from existing models or can add and train new models.

– https://www.clarifai.com

• Demo: Windows Hallo (face recognition)

• Demo: Recognition of handwriting

• Demo: Speech Recognition

4.1 Introduction

Probability that the 

model / concept is 

present in the picture

https://www.clarifai.com/
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• Machine learning has greatly improved over the past years because of three factors:

– Deep learning has introduced new layers and methods that removed the limitations of (linear) 

multi-layer networks.

– CPUs and especially GPUs have allowed for much deeper and larger networks. What took 

months in the 90s can be computed within hours 20 years later

– Availability of frameworks like Tensorflow makes it very simple to build a huge distributed network 

to compute large-scale neural nets.

4.1 Introduction

The biggest improvement over the 

past ten years was the creation of 

CUDA, an extreme parallel computing 

platform created by Nvidia. In 

combination with new neural network 

algorithms and the advent of 

map/reduce as a generic distributed 

computing paradigm, enormous 

amounts of data became processable 

through the sheer brute force of 1000s 

of connected machines. Going forward, 

we will see highly specialized chips 

(like Google’s TPUs) and cloud 

compute hardware (like HPEs ‘The 

Machine’) further accelerating the hunt 

in ever larger data lakes.

Fun fact: the next gen game consoles 

have more than 10,000 GFLOP/sSP: single precision (32 bits)

DP: double precision (64 bits)

NVIDIA Titan/Tesla: high-performance 

GPUs with 5000+ CUDA cores

2020: RTX 3090 

CUDA: 35,600 GFLOP/s

Tensor: 285 TFLOP/s
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• Although not every aspect of the human brain is understood, there are a number of key insights that 

helped to further developed and refine deep learning. For instance:

– It was believed that the brain adapts in the first months

of a new born and does not change afterwards. This

belief was disproved: next to short term and long term

memory adjustments, the brain is also able to functionally

change. Areas of the brain that are used more frequently

become more excitable and become easier to activate.

The brain can shift how and when such areas are getting 

activated and with that can provide more neurons for a

task. It has been shown, with limitations, that different

areas can take over functions after brain damages. For

instance, somebody who loses eye sight with age is able

to accentuate other senses and to use them as compensation of the visual information (no longer 

stimulating the visual cortex).

– What does this mean? The brain is most likely working with a “universal algorithm” rather than 

task dedicated learning patterns. The way we learn a musical tune is similar to learn a 

complicated sequence of movements. Even more, it is believed that the algorithms are rather 

simple but given the dynamically built connections and the sizes allow for even very complicated 

tasks. But as you know, learning rates greatly vary between individually. While some learn 

patterns extremely fast, others require months and months of hard training. It is shown that we 

learn best with increasing difficulties and if we struggle in the practice. Every learning session will 

change your brain, but each one will adapt in different ways.

• Many researchers switch between neuroscience and artificial intelligence and have stimulated both 

areas with exchange of ideas.

4.1 Introduction
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4.2 Visual Perception

• Let’s first consider how we perceive and process visual 

information. Perception of light is the result of illumination of 

an object and the amount of illumination that is reflected by 

the objects in front of us: 

– Illumination 𝑙 𝑥, 𝑦, 𝑧 is the amount of lumens per square

meter (=lux). Lumen is a measure of energy per second 

modelled along the eye’s sensitivity range of light.

– Reflectance 𝑟(𝑥, 𝑦, 𝑧) is the amount of illumination 

reflected by the surface of objects. Reflectance is a function 

of wavelength, absorption, and direction of illumination.

Typical illuminance and reflectance values are given below: 

4.2 Visual Perception

Illuminance (lux) Surfaces illuminated by

0.0001 Moonless, overcast night sky

0.05–0.36 Full moon on a clear night

20–50 Public areas with dark surroundings

50 Family living room lights

100 Very dark overcast day

320–500 Office lighting

400 Sunrise or sunset on a clear day.

1000 Overcast day; typical TV studio lighting

10,000–25,000 Full daylight (not direct sun)

32,000–100,000 Direct sunlight

Chlorophyll has its reception peaks in 

the blue and red spectrum of light. 

Hence, we observe only the reflected 

green spectrum of light.
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• The eye receives light and translates the wavelengths into electro-chemical impulses

– The cornea, pupil, and lens form an adaptive optical system to focus on objects (distance) and 

adjust to light exposure (aperture). The lens works like an ordinary camera and projects an 

(upside-down) image of the world onto the retina at the back side of the eye.

– The retina consists of three cone types and rods; they are the photoreceptors that transform 

incoming light energy into neural impulses. The cones enable color vision, specialize on different 

wavelength ranges, and are very frequent in the center of vision (macula and fovea)

• L-cone (long wavelength) peak at 564nm corresponding to the color red

• M-cone (medium wavelength) peak at 534nm corresponding to the color green

• S-cone (short wavelength) peak at 420nm corresponding to color blue

The rods perform better at dimmer light and are located at the periphery of the retina. They focus 

on peripheral vision and night vision. 

4.2 Visual Perception
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– The human eye has about 6 million cones and 120 million rods. The 

distribution is roughly 1% S-cones (blue), 39% M-cones (green) and 

60% L-cones (red). The picture on the right shows the distribution near 

the center of sight (blue cones occur here up to 7%). These ratios can 

greatly vary and cause color blindness. Cones are focused around the 

fovea (see lower right side), while rods fill the periphery of sight.

– Visual Acuity describes the clarity of vision and how well the eye can 

separate small structures. With the standard Snellen chart, a 20/20 vision

denotes that the eye is able, at 20 feet distance, to separate structures 

that are 1.75mm apart. This corresponds to roughly one arcminute 

(1/60 degree). A 20/40 vision denotes that a person can see things at 20 

feet distance as good as a normal person at 40 feet distance. The best

observed vision for humans is 20/10. Visual acuity is limited by the 

optical system (and defects like short-sightedness) and the number of 

cones and rods per mm2.

4.2 Visual Perception

Ratio Metric Snellen Arcminutes

2,0 6/3 20/10 0.5′

1,33 6/4,5 20/15 0.75′

1,0 6/6 20/20 1′

0,8 6/7,5 20/25 1.25′

0,67 6/9 20/30 1.5′

0,5 6/12 20/40 2′

0,4 6/15 20/50 2.5′

0,2 6/30 20/100 5′

0,1 6/60 20/200 10′

0,05 6/120 20/400 20′

Standard 

Snellen 

Chart

1.4’ or less is 

required to 

drive a car
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– The comparison with animals shows great differences in terms of visual sensing. A cat has a 

much lower visual acuity of 20/100 and less cone types (blue at 450nm and yellow at 550nm), 

but cats have better night vision (6-8 times) and a broader range of vision (200 degree vs 180 

degree). Hence, a cat has a much blurred view compared to humans. Dogs are also dichromatic

(blue/yellow) with a visual acuity of 20/75. Elephants have a 20/200 vision, rodents a 20/800

vision, bees a 20/1200 vision, and flies a 20/10800.

On the other side, eagles and bird of prey have a 20/4 vision

(5 times better than the average human). In addition, some birds 

are tetrachromatic and see the word with four independent color

channels. The goldfish and zebrafish also have four different

cone types. The additional cone type is typically in the ultra-

violet range with a peak at about 370nm.

– Conclusion: our color vision is a sensation but not physics. To

understand how we perceive images, we need to follow the way

the human eye (and brain) processes light.

4.2 Visual Perception

Human

Cat
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• The first processing starts within the retina (we will see similar concept in deep learning by means of 

convolution). The chemical process in the rods and cones release glutamate when its dark, and stop

releasing glutamate when its light (this is unusual for a sensory system). The Bipolar Cells connect

to several rods and cones (but never both together) and perform a simple operation:

– On-Bipolar cells, fire when it is bright

– Off-Bipolar cells, do not fire when it is bright

The next stage, the Ganglion Cells build the first receptive fields combining various bipolar cells. In 

a nutshell, they perform edge detection with a center and a surround area.

– On-Center ganglion fires, if center is bright and surrounding is dark

– Off-Center ganglion fires, if center is dark and surrounding is bright

Several additional cell types (horizontal cells, amacrine cells) act as inhibitors to accentuate

contrast. This increased contrast can also lead to falsely under-/oversaturating dark/light

boundaries. Lateral inhibition provides negative feedback to neighbor cells to further strengthen the 

contrast between strong and weak signals. This can lead to so-called after-images.

4.2 Visual Perception

Bipolar cells can connect to 

many Ganglion Cells

Different Ganglion Cells at 

work for their receptive field
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• The Lateral Geniculate Nucleus (LGN) performs similar 

receptive field functions as the ganglion cells but with

massive feedback from the cortex. We first observe a split of 

the two visual fields (visual left is processed by the right side 

of the brain, visual right is processed by the left side). 

Secondly, the information of both eyes is combined. The first 

two layers focus on rods and the detection of movements

and contrast. The next 4 layers process information from 

cones to perceive color and form (finer details).

• The Primary Visual Cortex (V1) performs detection of 

edges, orientation, some of them variant to position, others 

invariant to position. Neurons in the visual cortex fire when

the defined patterns occur within their receptive fields. In the 

lower levels, the patterns are simpler; in higher levels, more 

complex patterns are used (e.g., to detect a face). The 

stream of information flows along two paths to higher levels.

– The Ventral Stream (ventral=underside, belly) specializes 

on form recognition and object representation. It is 

connected with the long-term memory.

– The Dorsal Stream (dorsal=topside, back) focuses on 

motion and object locations, and coordinates eyes, heads, 

and arms (e.g., reaching for an object)

• Cortical magnification denotes the fact that the majority of 

neurons act on the information in the center of vision

(creating a much denser, magnified view of the center)

4.2 Visual Perception
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• The visual perception system is optimized for natural image recognition. Artificial illusions

demonstrate very nicely how the brain processes the perceived environment in many ways:

4.2 Visual Perception
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4.3 Image Normalization

• In image processing, an image is usually described as a discrete function mapping a 2-dimensional 

coordinate to an intensity value (gray images) or a color value. We will use the function 𝑖(𝑥, 𝑦) and 

𝒊(𝑥, 𝑦) to denote such images:

– It is custom to start with the upper left pixel (𝑥 = 1, 𝑦 = 1) and to end with the lower right pixel 

(𝑥 = 𝑁, 𝑦 = 𝑀). 𝑥 denotes the row in the image (vertical axis), while 𝑦 denotes the column in the 

image (horizontal axis).

– Quantization is often applied to avoid fixed point numbers in the image representation. 

Quantification is an approximation of the fixed point number as follows:

– Other quantization with indexed colors exist but can be mapped to one of the above.

4.3 Image Normalization

grayscale images: 𝑖 𝑥, 𝑦 : ℕ2 → 0,1

color images: 𝒊 𝑥, 𝑦 : ℕ2 → 0,1 3 =

𝑟 𝑥, 𝑦

𝑔 𝑥, 𝑦

𝑏 𝑥, 𝑦
𝛼(𝑥, 𝑦)

color channels (red) 𝑟 𝑥, 𝑦 : ℕ2 → [0,1]
color channels (green) 𝑔 𝑥, 𝑦 : ℕ2 → [0,1]
color channels (blue) 𝑏 𝑥, 𝑦 : ℕ2 → [0,1]
𝛼-channel (transparency) 𝛼 𝑥, 𝑦 : ℕ2 → [0,1]

with 1 ≤ 𝑥 ≤ 𝑁, 1 ≤ 𝑦 ≤ 𝑀

True Color (32-bit): መ𝑓 𝑥, 𝑦 : ℕ2 → [0,255] approximating 𝑓 𝑥, 𝑦 =
መ𝑓(𝑥,𝑦)

255

Deep Color (64-bit): መ𝑓 𝑥, 𝑦 : ℕ2 → [65535] approximating 𝑓 𝑥, 𝑦 =
መ𝑓(𝑥,𝑦)

65535

𝑓 denotes one of 

𝑖, 𝑟, 𝑔, 𝑏, 𝛼
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• Depending on the data collection, we need to perform a number of image processing steps to 

normalize the data sets and to achieve the best results when comparing features afterwards. Some 

of the processing steps ensure robustness against noise, rotation, color saturation, or brightness 

which are essential for the algorithms to work. 

– Rotation – if we need rotation invariant features (texture, shape) but do not have enough 

information to normalize direction, we can rotate the image in defined steps of degrees, extract 

features, keep all features for the image, but use them as individual representation (no 

combination of the features). A typical approach is by 90 degrees (which makes it simple). In 

object recognition (faces), more intermediate angles are possible (e.g., 15 degrees)

– Histogram normalization – here, histogram means the distribution of brightness across the 

image. In poor sensing condition, the range of values can be very narrow, making it difficult to 

distinguish differences. Histogram equalization is the extreme case, where

the range of values is forced to a uniform distribution. The picture on the right

shows very nicely the increased contrast and

the sharper contours of objects. With the 

original picture, edge detection may not lead

to the expected results. Similar approaches are

histogram shifts (lighter, darker), histogram

spreading, or gamma correction.

– Grayscale transformation – The original color

image is transformed to a grayscale image.

Depending on the source color model, different

formulae define how to calculate the gray value. 

Often applied before texture and shape analysis

as color information is not needed.

4.3 Image Normalization

Histogram of grey 

values in image
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– Scaling – Up- or down-sampling of the image to fit within a defined range of acceptable sizes. 

For instance, a neural network might expect the input to fit into the input matrix. A shape or 

texture feature is sensitive to different scaling and may yield different results. The usual methods 

are bilinear or bicubic interpolation to avoid the creation of artefacts that could negatively impact 

the algorithms (in combination with Gaussian filters when down-sampling). If the algorithm is 

complex and expensive, down sampling is often applied to reduce the efforts. In such cases, the 

results are computed for the down-sampled image only, and then mapped back to the original 

image (see k-means clustering later on for image segmentation).

– Affine Transformation – The generalization of translation, rotation and scaling. The original 

coordinates (𝑥, 𝑦) are mapped to a new pair (𝑥′, 𝑦′) as follows:

With this matrix representation, we can simplify the concatenation of various operators to obtain 

a single matrix again. To improve results, bilinear or bicubic interpolation is needed to estimate 

pixel values in the new matrix. Note: the affine transformation above does not necessarily map to 

a discrete and positive coordinate systems, and some areas in the new image space may have 

unknown values (think about a rotation by 45 degrees mapped to minimum bounding box).

– Noise Reduction / Sensor Adjustments – Sensors, transcoding and digitization can add noise 

(think of white and black pixels across the image) that can significantly impact the feature 

extraction process. Common methods are mean filter or Gaussian filters as described next. Other 

adjustments may include color corrections, distortions, moiré patterns or compression artifacts. 

4.3 Image Normalization

𝑥′
𝑦′
1

=

𝑎1,1 𝑎1,2 𝑎1,3
𝑎2,1 𝑎2,2 𝑎2,3
0 0 1

𝑥
𝑦
1
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– Convolution is a mathematical operation that combines two functions to produce a new function. 

It is similar to the cross-correlation but considers values “backwards” and integrates them. The 

discrete two-dimensional form is given as (∗ denotes the convolution operation)

• In image processing, 𝑔 is called the Kernel and is typically a very small two-dimensional 

quadratic (and often symmetric) function with range −𝐾,𝐾 × [−𝐾, 𝐾] with small values 𝐾 =
1, 2, 3, 4, …. Applied to an image channel 𝑓(𝑥, 𝑦) we obtain

• As a visualization, assume we calculate the convolution of a 3x3 image with a 3x3 kernel for 

the center point of the image (𝑥 = 𝑦 = 2). For example:

Note that the Kernel is actually flipped horizontally and vertically and then dot-wise multiplied 

with each image element. If the Kernel is symmetric, we can just apply the dot-wise 

multiplication to compute the convolution. Further note, that the Kernel is moved with its center 

across the image to compute a new value for that current pixel. If the Kernel overlaps the 

image, we use 0-padding for pixels beyond the boundary to keep image dimensions.

4.3 Image Normalization

𝑓 ∗ 𝑔 𝑥, 𝑦 = 

𝑛=−∞

∞



𝑚=−∞

∞

𝑓 𝑥 − 𝑛 𝑦 − 𝑚 ∙ 𝑔[𝑛][𝑚]

𝑓 ∗ 𝑔 𝑥, 𝑦 = 

𝑛=−𝐾

𝐾



𝑚=−𝐾

𝐾

𝑓 𝑥 − 𝑛 𝑦 − 𝑚 ∙ 𝑔[𝑛][𝑚]

𝑎 𝑏 𝑐
𝑑 𝑒 𝑓
𝑔 ℎ 𝑖

∗
1 2 3
4 5 6
7 8 9

2,2 = 𝑖 ∙ 1 + ℎ ∙ 2 + 𝑔 ∙ 3 + 𝑓 ∙ 4 + 𝑒 ∙ 5 + 𝑑 ∙ 6 + 𝑐 ∙ 7 + 𝑏 ∙ 8 + (𝑎 ∙ 9)
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• Kernel Examples: (taken from Wikipedia for illustration purposes). When defining a Kernel, it is 

important to normalize the output by the sum of all Kernel values, otherwise channel values 

may exceed the defined boundaries ([0,1] or, if quantized, [0,255]).

4.3 Image Normalization

Operation Kernel Image Result

Identity

0 0 0
0 1 0
0 0 0

Edge Detection

−1 −1 −1
−1 8 −1
−1 −1 −1

Sharpen

0 −1 0
−1 5 −1
0 −1 0

Box Blur
1

9

1 1 1
1 1 1
1 1 1

Here, we need to divide by the 

sum of the Kernel values. In all 

other examples, that sum is 1.
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4.4 Image Segmentation

• Feature design may include the capturing of location information (much like we did with position 

information in text retrieval). Segmentation define areas of interest within the image for which the 

features are computed. To obtain overall features for the image, three different ways are possible:

a) Feature Sets – for each segment an

individual feature is stored. If one or 

more feature match with the query, the

image (with the segment) is returned.

b) Feature Concatenation – the features for

each segment are combined to form an overall feature for the image. This approach is only 

meaningful for pre-defined segmentations but not for object related segmentation with varying 

number of segments.

c) Statistical Summary – the features are summarized with statistical operators like mean, 

variance, co-variance, or distribution functions. The statistical parameters describe the image.

If the segmentation only yields one segment (global features), all methods become identical.

4.4 Image Segmentation

Segmentation
(any method)

Statistical 

Summary

Feature 

Concatenation
Feature Set

Feature Set
Feature Set

Feature 

Extraction

Method b)
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• We can segment images with three approaches (actually the first one does nothing)

– Global features require the entire image as input. No segmentation occurs. This approach is 

often the standard in absence of a clear segmentation task. We will see later that with temporal 

media like audio and video, global features are very rare but quite common for still images.

– Static Segmentation uses a pre-defined scheme to extract areas of interest from the image. 

There are two reasons for such a segmentation

• Add coarse location information to the features. Typically, 

an image consists of a central area (the object) and four 

corner areas (as shown on the right). But any type of

regular and potentially overlapping division is possible. Often,

this method is combined with the concatenation of features

to encode left/right, up/down, or center within the feature.

• Process parts of the query image to detect similar features. 

We use a sliding window that moves from upper left to lower 

right in defined steps. For each position, features are extracted 

and used to find matches. For example, when detection faces

the sliding window technique allows to find many faces together

with their location from a given input picture (see next chapter).

– Object Segmentation extracts areas with embedded objects in

the picture (so-called blobs). These blobs are either analyzed

individually or as a part of the image. Often, feature sets are used

to enable individual retrieval of the blobs. We will study such an

approach in the next chapter (k-means clustering).

4.4 Image Segmentation
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• Example: 9-dimensional color feature with 5 static segments

– Segmentation creates 5 areas for each of which a 9-dimensional feature is extracted

– The feature for the image has 45-dimensions and encode localized color information. To be 

similar with the above picture, the colors not only have to occur in a similar way but they also 

have to be in the same area. On the other side, we loose some invariances, like rotation. An 

upside-down version of the picture does not match with itself. On the other side, a blue lake does 

not match with the blue sky, a white background (snow) does not match with the white dress 

(center), and an object on the left does not match with the same object on the right.

– We will see, that a single feature is often not sufficient to find similar pictures. Rather, we need to 

construct several (very similar) features to encode the different choices for variance and 

invariance. Segmentation, obviously, can both eliminate location information (for instance feature 

sets), enforce location (feature concatenation), or is liberal about the position (statistical summary 

and feature set).

4.4 Image Segmentation

concatenate
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4.5 Color Information

• We split the third step, feature extraction, into color, texture and shape information. We start with 

color in this subsection.

• Color perception is an approximation of the eye to describe the distribution of energy along the 

wavelength of electromagnetic signals. “Approximation” because the distribution cannot be 

described accurately with only 3 values, hence most information is lost. It is possible two construct 

two different spectra which are perceived exactly the same.

• On the other side, this approximation allows us to artificially re-create the perception with using only 

3 additive components emitting wavelengths that match the sensitivity of the red, green, and blue 

cones. These 3 components form the basis of the RGB family which is optimized for human 

perception but may not work for the eyes of animals (different sensitivity ranges; for birds with 

tetrachromatic perception, the UV range is missing).

4.5 Color Information

Spectrum of 

the light of an 

observed 

point

Given the emitted or reflected spectrum of 

light of an observed point 𝑓 𝜆 , we perceive 3 

(4) values for each cone type (and rod). To 

compute the intensity, we apply the sensitivity 

filter of the cones (e.g., 𝑐𝑟𝑒𝑑 𝜆 ) to the 

observed spectrum (multiplication) and 

integrate the result over all wavelengths. For 

instance, for red this is:

𝑟𝑒𝑑 = න

0

∞

𝑓 𝜆 ∙ 𝑐𝑟𝑒𝑑 𝜆 𝑑𝜆
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• Before we can extract features, we need to find a good representation for color that matches human 

perception. Consider the four colors below in the sRGB space. Between two neighboring boxes, the 

color distance is 100 units (only one channel changes). Even though the distance is the same, we 

perceive the color changes differently. The change from green to yellow (1st and 2nd) is significant, 

while the change from red to pink (3rd to 4th) is smaller. The reason is the non-linear interpretation of 

sRGB space as we process the light emission from the monitor (or from the reflection of the paper). 

• There are five major color systems (we only look at the first three models subsequently)

– CIE – created by the International Commission on Illumination (CIE) to define a relation between 

the physical signal and the perception of a (standard) human observer

– RGB – the dominant system since the definition of sRGB by HP and Microsoft in 1996

– HSL/HSV – which translates the cartesian RGB coordinates to cylindrical coordinates for hue and 

saturation, and uses luminance/brightness as third component 

– YUV – used in NTSC and PAL signals and basis of many image and compression algorithms 

such as JPEG and MPEG (using YCbCr)  [not discussed subsequently]

– CMYK – used in printing to subtract color from an initially white canvas. The ink absorbs light and 

a combination of different inks produces the desired color [not discussed subsequently]

4.5 Color Information

(255,200,100) (255,100,100) (255,0,100)(155,200,100)

100 unit change 100 unit change 100 unit change
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• The CIE defined a series of color spaces to better describe perceived colors of human vision. The 

mathematical relationships are essential for advanced color management.

– The CIE XYZ space was defined in 1931 as an attempt to describe human perceived colors. In 

their experiments, they noted that observers perceive green as brighter than red and blue colors 

with the same intensity (physical power). In addition, in low-brightness situations (e.g., at night) 

the rods dominate with a monochromatic view but at much finer resolution of brightness changes. 

• The definition of 𝑋, 𝑌 and 𝑍 does not follow the typical approach of additive or subtractive 

primary colors. Instead, 𝑌 describes the luminance while 𝑋 and 𝑍 describe chromaticity 

regardless of brightness. 𝑌 follows the sensitivity for the M-cones (green), 𝑍 the one of the S-

cones (blue), and 𝑋 is a mix of cone responses.

• To compute 𝑋, 𝑌, and 𝑍 from spectral data, a standard 

(colorimetric) observer was defined based on extensive

experiments. This represents an average human’s 

chromatic response within a 2 degree arc inside the 

fovea (central vision; cones mostly reside inside this 

area). The color matching functions ҧ𝑥 𝜆 , ത𝑦 𝜆 and 

ҧ𝑧 𝜆 describe the spectral weighting for the observed 

spectral radiance or reflection 𝑓(𝜆).  We obtain the 

values for 𝑋, 𝑌, and 𝑍 as follows (note that the spectrum 

is reduced to the range 380nm to 780nm):

4.5 Color Information

𝑋 = න

380

780

𝑓 𝜆 ∙ ҧ𝑥 𝜆 𝑑𝜆 𝑌 = න

380

780

𝑓 𝜆 ∙ ത𝑦 𝜆 𝑑𝜆 𝑍 = න

380

780

𝑓 𝜆 ∙ ҧ𝑧 𝜆 𝑑𝜆
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– The three cone types of human vision require 3 components to describe the full color gamut. The 

concept of color can be divided into different aspects:

• Brightness – visual perception of the radiating or reflected light and dependent on the 

luminance of the observed object. It is, however, not proportional to the luminance itself, 

instead it is an interpretation subjective to the observer.

• Chromaticity – objective specification of the color in absence of luminance. It consists of two 

independent components, hue and saturation. Chromaticity diagrams depict the visible or 

reproducible range of colors. The standard chart is depicted on the right side.

• Hue – describes the degree a color matches the perception of

red, green, blue, and yellow. The hue values are on the boundary

of the chromaticity diagram and is usually measured as a degree

from the neutral white point (e.g., D65). Red corresponds to 0,

yellow to 60, green to 120, and blue to 240.

• Saturation / Chroma / Colorfulness – measure how much the 

light is distributed across the visual spectrum. Pure or saturated

colors focus around a single wavelength at high intensity. To

desaturate a color in a subtractive system (watercolor), one can

add white, black, gray, or the hue’s complement. In the 

chromaticity diagram, saturation is the relative distance to the

white point. Relative means in terms of the maximum distance 

in that direction. Note that green is much farther away from white than red and blue.

– The CIE then defined a series of color models to better capture the above components of color 

perception. We consider in the following the CIE xyY, Lab, and LCH model.

4.5 Color Information

D65
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– The CIE xyY space, defined in 1931, was the first attempt to isolate chromaticity from luminance. 

The 𝑌 value of CIE XYZ was created in such a way that it represents perceived luminance of the 

standard observer. The 𝑥, 𝑦 and 𝑧 components are derived through a normalization

The derived color space consists of 𝑥, 𝑦, and 𝑌. The 𝑥, 𝑦 values define the chromaticity diagram 

as shown in the lower right part of the page (color in absence of luminance). CIE xyY is widely 

used to specify color. It encompasses all visible colors of the standard observer. Note that the 

pictures of the chromaticity diagram here is depicted in the sRGB space an hence does not show 

the full gamut of the space. Given the 𝑥, 𝑦 and 𝑌 values, the back transformation is as follows:

The outer curve of the chromaticity diagram, the so called

spectral locus, show wavelengths in nanometer. The CIE xyY

space describes color as perceived by the standard observer.

It is not a description of the color of an object as the perceived

color of the object depends on the lightning and can change

depending on the color temperature of the light source. In

dim lightning, the human eye looses the chromaticity aspect

and is reduced to a monochromatic perception. 

4.5 Color Information

𝑥 =
𝑋

𝑋 + 𝑌 + 𝑍
𝑦 =

𝑌

𝑋 + 𝑌 + 𝑍
𝑧 =

𝑍

𝑋 + 𝑌 + 𝑍
= 1 − 𝑥 − 𝑦

Chromaticity diagram of CIE xyY

color space. Note that this 

representation is in sRGB and the 

colors outside the sRGB triangle are 

not displayed properly.

𝑋 =
𝑌

𝑦
𝑥 𝑍 =

𝑌

𝑦
(1 − 𝑥 − 𝑦)
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– CIE xyY spans the entire color gamut that is visible for a human eye, but it is not perceptually 

uniform: the perceived difference between two colors with a given distance apart greatly depends 

on the location in the color space. The CIE L*a*b* color space is a mathematical approach to 

define a perceptually uniform color space. It exceeds the gamut of other color spaces and is 

device independent. Hence, it is frequently used to map color from one space to another. 

• The 𝐿 component denotes lightness. It depends on the luminance 𝑌 but adjusted to perception 

to create a uniform scale (1 unit difference is perceived as the same lightness change). It 

typically ranges between 0 and 100, with 𝐿 = 0 representing black, and 𝐿 = 100 being white. 

• The 𝑎∗ component represents the red/green opponents. Negative values correspond to green, 

while positive values correspond to red. The values often range from -128 to 127. 𝑎∗ = 0
denotes a neutral gray.

• The 𝑏∗ component represents the blue/yellow opponents. Negative values correspond to blue, 

while positive values correspond to yellow. The values often range from -128 to 127. 𝑏∗ = 0
denotes a neutral gray.

The transformation from X, 𝑌, Z components under illuminant D65 and 0 ≤ 𝑌 ≤ 255 is: 

4.5 Color Information

𝑓(𝑡) =

3
𝑡 if 𝑡 >

6

29

3

841 ∙ 𝑡

108
+

4

29
otherwise

𝐿∗ = 116 ∙ 𝑓
𝑌

𝑌𝑛
− 16

𝑎∗ = 500 ∙ 𝑓
𝑋

𝑋𝑛
− 𝑓

𝑌

𝑌𝑛

𝑏∗ = 200 ∙ 𝑓
𝑋

𝑋𝑛
− 𝑓

𝑍

𝑍𝑛

𝑋𝑛 = 242.364495

𝑌𝑛 = 255.0

𝑍𝑛 = 277.67358
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– The CIE LCH differs from CIE L*a*b* by the use of cylindrical coordinates. L = L∗ remains, but 𝑎∗

and 𝑏∗ are replaced by the chroma 𝐶 (saturation, colorfulness) and hue 𝐻. Based on the 

definition of the 𝑎∗- and 𝑏∗-axis, the center is at the defined white point (e.g., D65). The hue 𝐻 is 

then the angle from the 𝑎∗-axis (counterclockwise). The chroma 𝐶 is the distance from the center.

• This is not the same as the better known HSL/HSV color models (also use cylindrical 

coordinates). These models are a polar coordinate transformation of the RGB color space, 

while CIE LCH is a polar coordinate transformation of CIE L*a*b*.

• CIE LCH is still perceptually uniform. However, 𝐻 is a discontinuous function as the angle 

abruptly changes from 2𝜋 to 0. This can cause some issues if the angles are not correctly 

“subtracted” from each other.

– The CIE has defined further models like the CIE L*u*v*, CIE RGB, and the CIE UVW which we 

omit here. 

4.5 Color Information

𝐿 = 𝐿∗ 𝐶 = 𝑎∗ 2 + 𝑏∗ 2 𝐻 = arctan(𝑎∗, 𝑏∗) arctan(𝑎∗, 𝑏∗) is the arc tangent of 𝑏∗/𝑎∗

taking the quadrant of (𝑎∗, 𝑏∗) into account



Page 4-37Multimedia Retrieval – 2020

• The RGB color space is the standard model in computing since HP and Microsoft cooperatively 

defined sRGB as an additive color model for monitors, printers and the Internet. It has been 

standardized as IEC 61966-2-1:1999 and is the “default” color model (if the model is not defined). 

– sRGB uses the ITU-R BT.709 (or Rec. 709) primaries to define the color gamut (space of 

possible colors). The advantage, and mostly the reason for its success, was the direct transfer to 

a typical CRT monitor at that time. The primaries are:

– For non-negative values, sRGB colors are bound to the 

triangle depicted in the right-hand figure. Note that the color

gamut is not covering all chromaticities, especially a large

fraction of the green/blue range is missing. 

– The sRGB scales are non-linear (approximately a gamma of

2.2). To convert from linear RGB to sRGB, the specification

provides functions to map channel values. Let 𝑐𝑠𝑅𝐺𝐵 denote

a channel value (red, green, blue) in the sRGB space, and 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 denote a value in linear RGB. 

Both with ranges between 0 and 1 (for quantized value, divide/multiply by 2bits − 1)

4.5 Color Information

The corners of the 

triangle denote the 

primary colorsChromaticity Red Green Blue White Point (D65)

x 0.6400 0.3000 0.1500 0.3127

y 0.3300 0.6000 0.0600 0.3290

Y 0.2126 0.7152 0.0722 1.0000

𝑐𝑠𝑅𝐺𝐵 = ቐ
12.92 ∙ 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 if 𝑐𝑙𝑖𝑛𝑒𝑎𝑟 ≤ 0.0031308

1.055 ∙ 𝑐
𝑙𝑖𝑛𝑒𝑎𝑟

1
2.4 − 0.05 otherwise

𝑐𝑙𝑖𝑛𝑒𝑎𝑟 =

𝑐𝑠𝑅𝐺𝐵
12.92

if 𝑐𝑠𝑅𝐺𝐵 ≤ 0.04045

𝑐𝑠𝑅𝐺𝐵 + 0.055

1.055

2.4

otherwise
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– The conversion from CIE XYZ to linear RGB is as follows:

• Note that the transformation above is a mapping between linear RGB and XYZ. To obtain 

sRGB values, a further transformation is needed (see previous page). 

• Also note that the RGB space is not covering the entire XYZ space and the visible colors of 

human perception. If the mapping leads to values outside of 0,1 , the value is mapped to the 

closest limit (0 for negative values, and 1 for values ≥ 1).

– RGB values are often quantized to integer ranges. The mapping is simply a multiplication and 

division by 2bits − 1. For true color (32-bit), the multiplier is 255, for 

deep color (64-bit), the multiplier is 65536. In some cases, 

quantization is based on 2bits reference colors (color palette). 

A color is then represented by its nearest neighbor in the palette.

– Next to the sRGB and linear RGB model, various alternatives were 

defined. In essence, it is simple to construct an RGB space by 

defining the primaries and the white point. Alternative RGB model 

extend the original, rather constrained sRGB to a wider range of 

color gamut. For instance, Rec. 2020 for ultra-high-definition 

television (UHDTV). It has a much broader color gamut than HDTV

which is based on Rec. 709. Some RGB models even excess the

chromaticity chart to cover more of the green/blue area.

4.5 Color Information

𝑟𝑙𝑖𝑛𝑒𝑎𝑟
𝑔𝑙𝑖𝑛𝑒𝑎𝑟
𝑏𝑙𝑖𝑛𝑒𝑎𝑟

=
3.240479 −1.537150 −0.498535
−0.969256 1.875992 0.041556
0.055648 −0.204043 1.057311

𝑋
𝑌
𝑍

𝑋
𝑌
𝑍

=
0.412453 0.357580 0.180423
0.212671 0.715160 0.072169
0.019334 0.119193 0.950227

𝑟𝑙𝑖𝑛𝑒𝑎𝑟
𝑔𝑙𝑖𝑛𝑒𝑎𝑟
𝑏𝑙𝑖𝑛𝑒𝑎𝑟
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• Artists often start with a relatively bright color and than add a) white to “tint” the color, or b) black to 

“shade” the color, or c) white and black (gray) to tone the color. To enable such techniques in 

computer graphics, HSL and HSV color models are alternative representations of the RGB space 

designed to simplify color making. Both use hue (𝐻) and chroma (𝑆) to define chromaticity. The HSL 

uses lightness (𝐿) and places fully saturated colors at 𝐿 = 1/2. It allows both tinting (𝐿 → 1) and 

shading (𝐿 → 0) without change of saturation. HSV uses value (𝑉) and places fully saturated colors 

at 𝑉 = 1. It allows shading (𝑉 → 0) without changing saturation, but tinting adjusts saturation.

4.5 Color Information

𝑀 = max(𝑅, 𝐺, 𝐵)

𝑚 = min(𝑅, 𝐺, 𝐵)

𝐶 = 𝑀 −𝑚
𝐻′ =

0 if 𝐶 = 0
𝐺 − 𝐵

𝐶
mod6 if 𝑀 = 𝑅

𝐵 − 𝑅

𝐶
+ 2 if 𝑀 = 𝐺

𝑅 − 𝐺

𝐶
+ 4 if 𝑀 = 𝐵

𝐻 = 60° ∙ 𝐻′

𝑆𝐻𝑆𝑉 = ቐ
0 if 𝑉 = 0
𝐶

𝑉
otherwise

𝐿 =
1

2
(𝑀 +𝑚)𝑉 = 𝑀

𝑆𝐻𝑆𝐿 = ቐ
0 if 𝐿 = 1
𝐶

1 − 2𝐿 − 1
otherwise

𝐻 = 60° ∙ 𝐻′
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• Color Histogram: histograms are a simple way to describe the distribution of colors using a set of

reference colors. The fixed reference colors are the “vocabulary” of the collection. The color of each 

pixel is mapped to the nearest reference color, then we count how often the reference colors occur 

in the image. To make the feature scale invariant, the counts are normalized by the total number of 

pixels. The result can also be interpreted as the probability that a reference color occurs.

– Selection of reference colors

• The most simple way is to quantize the R, G, B values in the linear 

RGB space as on the right hand side. With 2 bits, for example, we 

obtain 4 uniform ranges along each channel, and a total of 64 

reference colors 𝑐𝑖 with 1 ≤ 𝑖 ≤ 64. We can use any number of

uniform ranges (e.g., 5) to obtain the desired number of colors.

• To improve perceptual matching of color, it is better to use a non-

uniform distribution. For instance, in the HSV color space, we can

divide the color hexagon into areas of perceived similar colors like

on the right side. The V-dimension may have more bins to account

for the increased brightness sensitivities. With 7 chromaticity values

and 9 bins along the V-dimension, we obtain 63 reference colors 𝑐𝑖.

• If the color space itself is uniform, like in L*a*b*, then we can use 

uniform ranges. The 𝐿∗-axis should have more ranges than the 𝑎∗- and

𝑏∗-axis to account for brightness sensitivity. 

• We can measure the distance 𝑑𝑖,𝑗 between reference color 𝑐𝑖 and 𝑐𝑗 to denote similarities 

between colors. In cartesian coordinates, this is the Euclidean distance between the centers of 

the areas representing the colors. In cylindrical coordinates, like the HSV example above, we  

obtain angle differences as min 𝛼 − 𝛽 , 2𝜋 − 𝛼 − 𝛽 and apply a Manhattan distance. In all 

cases, value ranges have to be normalized before distance calculations (e.g., to range [0,1])

4.5 Color Information
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– Comparison of histogram (distance measure)

• Let ℎ𝑖 and 𝑔𝑖 denote the normalized histograms of two images ordered by the 𝑁 reference 

colors 𝑐𝑖 with 0 ≤ ℎ𝑖 , 𝑔𝑖 ≤ 1. Note that even though we use a 3-dimensional color space for 

quantization, the histograms are one-dimensional (through enumeration of reference colors). 

We also have the distances 𝑑𝑖,𝑗 = 𝑑𝑗,𝑖 between two reference colors 𝑐𝑖 and 𝑐𝑗. 

• A first naïve approach is to compute a Manhattan (or Euclidean) distance between histograms

This distance formulae work quite well, however, they do not take similarity between reference 

colors into account. A small shift in lightning or color representation can yield large distances. 

• To account for cross-correlation between reference colors, we need to use a quadratic distance 

measure and use a matrix 𝐀 which is based on the distance between reference colors:

• If the user provides a sketch as the query, or the user selects a number of colors that should be 

present in the picture, histogram intersections (equals to a partial match query) are better 

suited. Let 𝑔𝑖 ≠ 0 denote the user selected colors and 𝑔𝑖 = 0 the colors without user input.
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– Variants:

• A simpler variant is the use of luminance or brightness histograms. The chromaticity aspects 

are not taken into account. As a first step, brightness or luminance is calculated, for instance, 

with 𝐿∗ from CIE L*a*b*. The luminance value is quantized using 𝑁 uniform ranges. The rest is 

identical to the approaches above (including quadratic distances to account for similarities 

between brightness/luminance values). The resulting features describe brightness of the image 

and is often used for shot detection in videos (different lightning denotes shot boundary)

• Equally, we can only quantize the chromaticity aspects and disregard brightness/luminance. 

Candidate color spaces are CIE L*a*b, CIE LCH, HSL, or HSV. The resulting features 

describes color distribution and is invariant to lightning (as long as the lightning does not 

significantly impact the perception of chromaticity). 

– Discussion:

• Histograms are very simple and yield already good results. They are robust against translation, 

rotation, noise, and scale; in some cases, also against lightning differences.

• The lack of spatial relation between colors may lead to unexpected results. A blue lake (bottom 

of the picture) will match with a blue sky (top of the picture) and a blue car (middle of the 

picture). It is simple to construct two images with the same histogram but different content. 

• The histogram intersection method is useful to guide a retrieval system to the desired color of 

(main) objects. The user can pick a color and the search is extended with a histogram sub-

query using the intersection method.

• Color histograms tend to have a very high-dimensionality. 64 dimensions is often a minimum 

for good retrieval, but more than 1000 dimensions can result. Search in such spaces is costly 

and inefficient. Dimensionality reduction may help to deal with both correlation of reference 

colors and the reduction of dimensions (see principal component analysis, PCA).

4.5 Color Information
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• Color Moments: statistical moments are another way to describe the distribution of colors in the 

selected color space. We can select any of the color spaces discussed before, but again, to 

calculate distances and similarities, the perceptual uniform spaces are better suited. We often use 

L*a*b* as the basis color model (over LCH to avoid the more complicated angular differences)

– Single channel moments compute statistical parameters for one channel only (𝐿∗ , 𝑎∗, 𝑏∗). Let 𝑐
denote a color channel, 𝑁 denote the number of rows in the image, and 𝑀 the number of 

columns, then the first four moments are given as:

Mean 𝜇𝑐 and variance 𝑣𝑐 describe the peak position and width of the peak in the distribution. The 

skewness 𝑠𝑐 describes whether peak is wider to the left or to the right. And Kurtosis 𝑘𝑐 denotes 

the presence of outliers (far away from mean). With three channels, we obtain 12 feature values

in this way. 

– We can add additional covariance values between pairs of channels. Let 𝑐1 be a first channel, 

and 𝑐2 be a second channel. With three channels, we obtain 3 additional covariance value from 

the possible pairs of channels:
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– When calculating the moments, it is possible to transform the formulas such that only one pass is 

necessary to compute all the values (𝑐 denotes a color channel):

Using the CIE L*a*b* color space, we obtain 12 moments and 3 covariances, a total of 15 feature 

values. We can combine the values into a vector 𝒎 (in a defined order) and compare to feature 

vectors 𝒎𝑖 and 𝒎𝑗 of two images using either Euclidean or Manhattan distance:
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– Variants: like with histograms, we can construct moments for brightness/luminance only. Co-

variance becomes obsolete and we obtain 4 brightness/luminance moments. We can further 

construct moments only for the chromaticity aspect, disregarding brightness/luminance. In this 

case we have 8 moments and one covariance value, resulting in a 9 dimensional feature.

– Discussion:

• The value ranges of moments vary significantly. Before we can apply a distance measure, we 

need to scale the values into the same range (e.g., [0,1]). Due to the differences in the distance 

measure, it is sufficient to just scale the values either by 𝑚𝑎𝑥 −𝑚𝑖𝑛 of each component, or the 

standard deviation of the values along this dimension (not to be confused with the variance 

color moments; the standard deviation is taken from the actual values along each moment). 

We can obtain this scaling factors from a large enough sample set and use them as constant 

factors when extracting the features.

• Color moments, like histograms, are robust against translation, rotation, noise, and scale; in 

some cases, also against lightning differences. The lack of spatial relation between colors may 

lead to unexpected results (like with histograms).

• In contrast to histograms, the color moments are independent from each other and we do not 

need a cross-correlation matrix for a quadratic distance function. The resulting vectors are also 

much shorter (15 if all moments are taken) than the histograms (up to 1000 bins possible). The 

compact representation leads to obvious performance gains but no loss in retrieval quality.

4.5 Color Information
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4.6 Texture Information

• Texture describe the structure of a surface or part of the image and provides us with information 

about the spatial arrangement of colors, changes in this arrangement, and the direction and 

frequency of these changes. We can analyze texture in three ways:

– Structural approach: Find sets of primitive so-called texels that are composed to regular and 

repeated patterns as per the examples below:

This approach is limited to artificially generated images and does not work for natural images. 

The inverse problem of creating texture on the surface of objects is well supported by today’s 

graphic processors (see texels, and Voronoi tessellation). 

– Statistical approach: Measure the arrangements in the neighborhood of pixels, quantify them, 

and create statistical summaries (histograms, moments). We will look at edge detection and 

optimized filters to get texture features.

– Fourier approach: Transform the image into the frequency space via Fourier transformation and 

extract information about the support for so-called Gabor filters in the frequency space. 

• Often, we study texture only in grayscale images. For that purpose, we can compute the 𝑌 or 𝐿∗

components in the CIE color models. Recall, that the original picture first needs to be transformed to 

linear RGB before computing the transformation to CIE XYZ and CIE L*a*b* (see sRGB → linear 

RGB). In the following, we assume monochromatic images with only a brightness/luminance 

channel. Advanced methods may also consider chromaticity information for textures.

4.6 Texture Information
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• Edge magnitude and direction (structural approach)

– Edges in images are caused by several factor as shown on 

the picture on the right hand side. The detection of edges is

the search for gradients with high energy (abrupt change of

neighboring pixels). The standard approach is to apply a

Sobel operator (convolution) on a smoothed (Gaussian)

version of the image, and to determine 𝑔𝑥 and 𝑔𝑦 values

for a pixel. The kernel matrices are given as:

We can omit the factor 1/8 but then the gradient values are 8 times larger (not a problem for the 

method shown here). The operators yield a 𝑔𝑥 and 𝑔𝑦 for each pixel. We can now compute the

gradient magnitude 𝑔𝑚𝑎𝑔(𝑥, 𝑦) and the direction of the gradient 𝑔𝑑𝑖𝑟(𝑥, 𝑦) as follows:

– With the above transformation, we obtain 2 values for each pixel in the image. The first value 

describes how large the change is (energy), the second value represents the direction of change 

(from darker to lighter). A value of 𝑔𝑑𝑖𝑟 = 0 is a vertical edge (change direction is normal to the 

edge) and the lighter pixel is on the right hand side.
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– We now can create simple texture based features. 

• Edgeness of image: Proportion of image with 𝑔𝑚𝑎𝑔 𝑥, 𝑦 ≥ 𝜏 for a given threshold 𝜏. This 

expresses how many edges we can expect on the picture with high enough energy. Continuous 

areas of them image with, for example, the sky or a lake will result in low values, while several 

objects or city images with lead to higher values.

• Gradient Histograms: same approach as with color histogram. We now have to values per 

pixels and quantify the direction and the magnitude. The distance between reference gradients 

is calculated similar as for the HSV color model. Recall that differences in direction are 

calculated as min 𝛼 − 𝛽 , 2𝜋 − 𝛼 − 𝛽 . We need to normalize energy and direction ranges to 

compute the distance 𝑑𝑖,𝑗 between two reference gradients. This allows us to compute the 

matrix 𝐀 for the quadratic distance measure. Given to histograms 𝒉 and 𝒈, and assuming 𝑁
reference gradients, we obtain distances as follows:

As with color histograms, the same issues with high dimensionality occurs.
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• Gradient Moments: as before, we compute moments for the magnitude and the direction, and a 

covariance value for magnitude and direction. Let 𝑐 denote either magnitude or direction:

This results in 9 feature values describing the distribution of gradients.

• Laws’ Texture Energy (structural approach)

– Laws texture masks compute 9 values for a pixel in the image to capture various aspects of 

texture features. The masks are based on 4 prototype vectors:
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– From these base vectors, we can compute 16 matrices by multiplication of pairs of prototype 

vectors. For the instance E5L5, for instance, we obtain the Kernel matrix 𝐆𝐸5𝐿5 as follows:

Since E5L5 and L5E5 measure a similar aspects, we collapse them into a single Kernel and use 

the average of both matrices. With such reductions, we obtain 9 Kernel matrices:

– With these 9 Kernel matrices, we apply a convolution to obtain 9 texture energy values 𝑒𝑖(𝑥, 𝑦)
per pixel (with 1 ≤ 𝑖 ≤ 9). From here, we can apply the same approaches as before:

• Histograms: although feasible, we are faced here with 9 values per pixel. If we quantize them 

with 4 ranges, we obtain 49 = 262,144 reference energies. This clearly exceeds our 

expectations of a computationally meaningful feature, especially, if we consider the necessity of 

a quadratic function. Using only 2 ranges yields 29 = 512 reference energies. Acceptable, but 

the quantification error is significant.

• Moments: for each energy value, we can calculate 4 moments, and co-variance values for the 

36 possible pairs. This yields a 72 dimensional feature vector. If the dimensionality is too high, 

we can reduce the number of moments (only first 2 or 3) or omit the co-variances.
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• Gabor Moments (Fourier approach)

– The 2D Fourier transformation maps a (grayscale) image into its frequency space. More formally, 

it creates a real and imaginary matrix. For the visualizations, we can compute the log of the sum 

of squared components (the log-function helps for visualization of the large differences in 

energy).  The 2D Fast Fourier Transformation is an accelerated version of the algorithm reducing 

computational efforts significantly. However, it is only applicable to image sizes of 2𝑎 × 2𝑏. The 

picture bellow depicts the transformation:

– To display the frequencies such that low frequencies are in the middle and high frequencies in 

the outer areas, we need to map the quadrants of the matrix as per below:
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– Examples for the frequency map: The pictures below show the grayscale original images, 

and the log-scaled frequency map; the brighter a pixel, the more energy for the corresponding 

frequency. Low frequencies are in the center, high frequencies in the out areas. The direction 

from the center to the frequency denotes the normal of an edge in the image for that frequency.
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– In the Fourier space, we apply a bank of so-called Gabor filters that select different ranges of 

frequencies and directions. The Gabor filter is multiplied with the Fourier transformation of the 

image (a complex matrix), and the result is mapped back via inverse Fourier transformation (here 

the fast implementation iFFT) to the image space. The filtered image now provides information 

about the support for the selected frequencies and directions in the original image space. Using 

banks with 5 orientations and 3 scales, we have 15 Gabor filters and obtain 15 different filtered 

images. We extract statistical moments for each of these filters to obtain a wide range of texture 

descriptors. The following pages show the filter banks and its application in the Fourier space.
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– The Gabor filter is defined as a Gaussian kernel multiplied by a complex sinusoid. In 

Neurophysiological experiments, it was shown that the Gabor filters, with the right parameters, 

behave similar to the receptive fields in the primary visual cortex. Its definition is as follows

Before application to the Gaussian and sinusoid, the coordinates are rotated by 𝜃. With this 

definition and varying the parameters, it is possible to construct various filters that are sensitive to 

frequencies and direction. Mapping the Filter bank into the Fourier space leads to the following 

layout: 
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• Example (1)
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• Example (2)
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• Example (3)
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– There are two approaches to compute Gabor filtered images:

• Fourier space: compute the Gabor filters in the Fourier space and apply them to the Fourier 

transformed image. To enable the use of FFT, the size of the image is scaled to the next higher 

2𝑎 × 2𝑏 dimension with one of the following methods

– Stretching: stretch the image to match the new size. This changes proportions and thus 

frequencies and directions in the image. 

– Filling: copy the image 1:1 and fill the remaining area with a neutral color.

– Tiling: create a 2-by-2 tile of the same image and crop to the new size.

– Mirroring: create a 2-by-2 tile, but mirror the image at the middle axis. This reduce hard 

edges that otherwise become visible as spikes. But it adds wrong directions.

A further alternative: we use the next smaller 2𝑎 × 2𝑏 dimension and apply the method 4 times 

for the 2𝑎 × 2𝑏 areas in each corner. At the end, we average all feature values across all areas.

4.6 Texture Information
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• Image/spatial space: compute a Gabor filter bank and apply it to the image through 

convolution. Since the Gabor filter is complex, we take absolute values of the resulting complex 

numbers to map back to real numbers. Most image processing libraries (OpenCV, scikit-image) 

provide implementations for Gabor kernels. 

– Once we have the filtered images (like shown in the right hand columns on the pages before with 

the image examples), we can summarize the results with the usual approaches of histograms or 

moments. We typically select 3-7 directions (0 ≤ 𝜃 ≤ 𝜋) and 2-5 scales (or frequencies; 1/𝜆
usually measured in pixels and ranging from 0.05 to 0.5). With a large number of filters, the 

moments are again a better choice to reduce the number of dimensions and avoid the complexity 

of quadratic distance functions.

• With moments, we simply treat the absolute values in the filtered image as the raw data points 

and compute mean, variance, skewness, and Kurtosis on these values. To further reduce the 

number of dimensions, it is possible to select only the first 2 or 3 moments. Let ෩𝑓𝑖(𝑥, 𝑦) be the 

filtered (complex) image representation after applying the 𝑖-th Gabor filter. We obtain:

The overall feature is simply the concatenation of all moments across all filters.
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4.7 Shape Information

• In this section, we consider three approaches to define shape features.

– Identify key shape related features in the entire image. There are no segments or objects taken 

into account, i.e., the features are global for the image.

– Given a segmentation of the image into objects/blobs, describe the shape of this region to 

retrieve similar shape from the database. This also works for 2D/3D objects.

– Identify key points of interest in the picture and describe these points to identify similar objects. 

This method is used for stitching of panorama images, object recognition, and motion detection.

• Global Features: very similar to the texture features, but we are more interested in the contours 

and direction of these contours than the rest of the image. The basic idea is to apply an edge 

detector to obtain the outlines of the principle shapes of the image. The Canny edge detector is a 

solid reference detector with 5 phases (the first two steps are the same as before with texture):

1. Apply Gaussian filter to smooth the image and to remove noise or compression artifacts

2. Compute gradients with their magnitude and direction (as seen before, Sobel operators)

3. Eliminate values that are not a local maximum in the positive/negative direction of the gradient 

4. Identify strong edges (magnitude above high threshold) and weak edges (magnitude between 

low and high threshold) and eliminate values below low threshold. 

5. Track edges and eliminate isolated weak edges. Keep only weak edges if in their immediate 

proximity, there is a strong edge.

4.7 Shape Information
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– With the edges, we now can summarize the directions of these edges (the magnitudes have 

been eliminated in the process) with histograms. The examples on the right side are from an

early prototype by Vailaya (1996), Michigan State University.

• The histograms are normalized by the

number of edge pixels and sum up to 1.

The step size was 10 degrees hence

36 bins for the histograms. 

• Comparison between histograms is 

based on the usual distance function. 

Again, a quadratic distance function is

recommended to account for the similarity

between angles

• The feature is translation and scale invariant.

With appropriate normalization of the

image, we can achieve lightning invariance.

However, it is not rotational invariant.

• To obtain rotational invariance, we need to

determine the principle direction and rotate

the image such that the principle direction

points, for example, upwards. The principle

direction is the weighted sum of the original

gradients, with the magnitude as weights.

4.7 Shape Information
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– The Angular Radial Partitioning by Chalechale (2003) follows a similar approach to detect 

edges but uses a different approach to create histograms. The method has 5 steps

1. Convert the images to grayscale, e.g., by mapping pixels to the L*-channel

2. Normalize size of images to obtain comparable numbers

3. Apply Canny edge detector to find strong edges in the image

4. Partition the resulting edge-map into 𝑀 × 𝑁 radial angular partitions. 𝑀 is the number of 

radial sectors, 𝑁 the number of slices

5. Count the number of edge pixels in each partition to obtain a raw histogram

6. Apply a Fourier transform to the histogram and use absolute values (energy) to obtain the 

final feature vector

The method is depicted on the right

side with an example from the paper.

• The feature is robust against 

translation and scale due to initial 

normalization process. It is robust

to small rotational changes as only

few pixels will change the partition.

• The feature is robust against 

discrete rotations of the angle of the 

slice due to the Fourier transformation.

• The feature is robust against 

omissions of smaller details and noise

during edge detection.

4.7 Shape Information
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– The Histogram of oriented gradients dates back to 1986 but regained interest with the work of 

Dalal and Triggs in 2005 to detect pedestrians. The methods has since been extended and is 

often used as input into neural networks. 

• Step 1: compute gradients, for instance, with Sobel operators on a grayscale version of the 

image. In contrast to other approaches, HOG uses unsigned gradients, i.e., the direction lies in 

the range of 0 to 𝜋. Values between 𝜋 and 2𝜋 are rotated by 𝜋. Some HOG implementation let 

users choose between unsigned and signed gradients, but Dalal and Triggs found that this 

worked best for pedestrian detection

• Step 2: As shown in the picture below, the image is divided into cells each with 8x8 pixels. For 

each of the cell, HOG computes a 9-bin histogram (9 was found to be optimal for their use 

case) over the gradient directions of the 64 pixels and weighted by their gradient magnitudes. 

• Step 3: gradient magnitudes are variant to illumination and hence require normalization before 

we can compare histograms with each. Rather than normalizing the 9-bin histograms at each 

cell, HOG combines 4 neighboring cells

and normalizes the concatenated histograms

(now 36 bins) so it sums up to 1. The 4 

neighboring cells (2x2 cells, each with 8x8 pixels)

are moved along the image in steps of 8 pixels. 

Each block yields a normalized histogram of 36 

bins. These blocks are partially overlapping. 

• Step 4: combine histograms to global features or 

keep a “bag” of local features for search.

• Optional: The HOG features can be used as 

input into machine learning algorithm. Dalal and 

Triggs used an SVM to detect pedestrians. 

4.7 Shape Information
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• Descriptions of blobs/regions/objects: given a set of segments, blobs or objects, we can describe 

the regions based on a set of simple spatial metrics. Due to different resolutions and the absence of 

a standard size of a pixel (unless provided by the image format), spatial metrics are often in relation 

to the entire image. For example:

– Area: percentage of pixels within the segment (over the entire image)

– Centroid: average of all x-values and of all y-values in the region (in absence of mass values)

– Axis of Least Inertia: this is the axis which allows the rotation of the object with least energy. It is 

given by the line that minimizes the squared distances to the boundary of the region. This can be 

used to normalize regions into a primary direction

– Eccentricity: given a bounding box in the principle direction, the ratio of length to width of the box 

denotes the eccentricity

– Circularity Ratio: how closely the shape resembles a circle. There are different definitions, for 

instance, the ratio of the area of the smallest circle containing the region to the area of the region

– …and many more

An alternative approach is to normalize the position of the region (principle direction points upwards) 

and to measure the overlap with a predefined grid to compute histograms. The histogram values are 

the relative area covered by the grid. There are different ways to define the grid, for instance:

– The grid is always such that it contains

the region and is a small as possible.

– With the circular structures, the center

is the center of gravity, and the radius is

the largest distance of a point to the 

center of gravity.

4.7 Shape Information



Page 4-65Multimedia Retrieval – 2020

– Ludwig-Maximilians University Munich (Berchtold, 1997) studied methods to compare and 

index 2D and 3D objects. But the methods are similarly applicable to recognized segments in an 

image. The example on the right side shows 2 complex molecule structure normalized in 

direction. The partitioning methods extract 4 different histograms, each with 120-122 bins. This is 

the description of the structure

and can be used in combination

with a distance measure to find

similar objects in the database

• To make the feature scale

invariant, the histogram bins

are normalized to sum up to 1.

• Some of the features are

rotation invariant (like the first

partitioning). With the initial

normalization to a principle

direction, rotation invariance

is given for all partitioning

scheme.

• The feature is translation 

invariant due to the use of 

the center of gravity.

4.7 Shape Information
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• Key Points of Interests: There are many approaches but we consider here only the Scale 

Invariant Feature Transform (SIFT). Due to the complexity of the approach, we summarize the 

main steps to identify key points of interest and consider how to describe these points to find 

matches. SIFT extracts features in a very robust way, so that they match again even after significant 

viewpoint changes. SIFT is used for object recognition, image stitching, motion tracking, and many 

other use cases, The images below depict the same mountain from slightly different perspective. 

SIFT is able to match the two highlighted key points despite rotation and scale differences.

– The algorithms works roughly in 4 steps

1. Identify scale-space extrema using band-pass filters (difference of Gaussians, DOG)

2. Keypoint localization with scale; these are the resulting points of interest

3. Orientation assignment (primary direction of the region around a keypoint for normalization)

4. Keypoint descriptors that can be used for similarity search

4.7 Shape Information
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– Step 1: We create a pyramid of images using 

Gaussian filters at different standard deviations 𝜎 and 

scales. SIFT calls the different scales “octaves” as 

shown on the right side. Each octave is down sampled 

to a ¼ of the previous octave. For each octave, the 

image is progressively blurred (Gaussian filters with 

increasing 𝜎). 

• In each octave, neighboring images are subtracted 

to create the difference of Gaussians (DOG) which 

act like edge detectors for a defined frequency band

• The DOG image pyramid contains potential edges 

and point of interests. They are the local minima 

and maxima in the DOG.

4.7 Shape Information
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– Step 2: We detect the local minima and maxima in the DOG pyramid

with a one pixel neighborhood. As shown in the picture on the right, 

where “x” marks the current pixel, we have 8 neighbors in the same 

plane and 9 neighbors from each the plane above and below. If the pixel

is a maxima or minima in this neighborhood, mark it as such. Otherwise

dismiss the pixel. 

• Starting with 5 Gaussian blurred images in each octave, we created

4 DOG images which now create 2 extrema images at each octave.

• To thin out the number of keypoints, we dismiss all pixels whose value

in the DOG is smaller than a threshold (these are points in the “flat”). We further dismiss all 

edges by considering their gradients. An edge has big gradient orthogonal to the edge, and a 

small gradient along the edge. But we are interested in corner points with two big gradients. 

• The output of step 2 is a set of keypoints with location and scale.

– Step 3: To construct a rotation invariant feature, we need to calculate a major orientation for the 

keypoint. SIFT accumulates a local histogram of gradient directions from the neighborhood of the 

keypoint. The area of the neighborhood window is proportional to the scale. A gradient direction 

is added to the histogram with its magnitude as the weight. Finally, the histogram bin with the 

highest value corresponds to the dominant direction (if there are ties, use all directions). 

• SIFT uses the dominant direction to normalize feature gathering as shown in the next step. If 

several directions are found, it constructs features for all directions. The normalization allows 

us to compare keypoints found from different viewpoints with a simple metric.

• The dominant direction of the keypoint is not necessarily its gradient direction.

4.7 Shape Information



Page 4-69Multimedia Retrieval – 2020

– Step 4: Using the keypoint as the center, SIFT lies a 4x4 grid in the dominant direction over the 

image with the size of the grid being dependent on the scale of the keypoint. For each grid cell, a 

finer 4x4 mesh defines its neighborhood and a histogram with 8 directions captures the directions 

within the cell. For each point in this finer mesh, we calculate the gradient orientation and the 

magnitude. We use the magnitude and a Gaussian weight (based on the distance to the 

keypoint) to add the direction to the histogram. For each cell of the bigger 4x4 grid we obtain a 

histogram with 8 values, resulting in a total of 128 feature values.

– The SIFT features are invariant to scale, translation and rotation by construction. It follows the 

idea of the receptive fields in the primary visual cortex to capture local features based on 

directions. The features are very distinct for the objects and even small objects can yield many 

descriptors. Although rather complex in construction, features can be obtained close to real-time. 

SIFT features are widely used for object recognition, motion detection, image alignment and 

stitching. OpenCV has a SIFT implementation, scikit-image supports similar approaches (daisy, 

harris). As with HOG, SIFT descriptors can be used as input for machine learning.

4.7 Shape Information
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4.8 Blob Recognition (unsupervised clustering)

• With unsupervised learning tasks, the machine learning algorithm observes data set without targets 

and infers a function that captures the inherent structure and/or distribution of the data. In a 

clustering scenario, that function is a set of clusters and the ability to assign new data items to one 

(or several) of the clusters. In this chapter, we study the k-means clustering and the Expectation 

Maximization over a Gaussian mixture to infer a mapping of features to clusters. In the context of 

multimedia data, typical applications are:

– Feature quantization, i.e., reducing a multivariate feature to a small number of discrete values. 

The quantized value serve as an approximated or smoothed version of the original ones much 

like histograms approximates the distribution of data values

– Cluster analysis, i.e., the validation of the cluster hypothesis and the extraction of clusters to infer 

labels for the clusters. 

– Image segmentation, i.e., the extraction of different areas in an image that “belong” to each 

other. In a first step, clustering reduces the number of features through quantization. In a second 

step, morphological operators build coherent regions for segmentation.

• As we do not know the number of clusters that are present in the data (we have no labels!), we need 

to guide clustering algorithms in the selection of the optimal number 𝐾 of clusters. Again,  poor 

choice for the number of clusters can lead to underfitting (extreme case is 𝐾 = 1) and overfitting 

(extreme case is 𝐾 = 𝑁 with 𝑁 being the number of training items). As we have no targets, we 

cannot use a validation set to measure accuracy of prediction. Instead, we utilize a target function

for the compactness of the clusters and the separation between clusters and must prevent, at the 

same time, an excessive number of clusters.

• We conclude this section with an example from image segmentation and a very early application 

called Blobworld.

4.8 Blob Recognition (unsupervised clustering)
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• k-means clustering goes back to the 1960s as an approach to quantify vectors for signal 

processing. It subsequently became very popular in data mining for cluster analysis. k-means 

clusters the data set into 𝑘 clusters in such a way that each data point belongs to the cluster with the 

nearest centroid (or prototype of the cluster). The centroids are the mean position over all points in 

the cluster. The centroids divide the space into Voronoi diagrams defining the cluster shapes.

– Although the computation of the optimal 𝐾 centroids is a NP-hard problem, there are very

efficient heuristics that lead to a (local) optimum. We will first describe the classical approach 

using Lloyd’s algorithm and then re-interpret the approach with Expectation Maximization.

– Let 𝑁 be the number of data items with the 𝑑-dimensional representations 𝒙1, … , 𝒙𝑁. We then 

want to partition the data items into 𝐾 sets 𝕊 = 𝕊1, … , 𝕊𝐾 such that the within-cluster sum of 

squares (WCSS, also called the variance) become minimal, i.e.:

with 𝝁𝑘 denoting the mean of items in 𝕊𝑘, and 𝜎𝑘
2 being the variance of items in 𝕊𝑘. With Lloyd’s 

algorithm, we obtain a local optimum with a simple iterative algorithm:

4.8 Blob Recognition (unsupervised clustering)
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– Initial choice of centroids

• Random points: pick 𝐾 random items from the data set. This leads to a spread of centroids 

across the data space.

• Random partition: assign each data item to a random cluster (1 to 𝐾) and compute centroids 

over these random clusters. These centroids tend to be closer together near the center of the 

data set.

• k-means++: the first centroid is chosen randomly from the data set. Each subsequent centroid 

(up to 𝐾) is chosen from the remaining items with probabilities proportional to the their squared 

distance to closest centroid. Although more expensive, it leads to much smaller final errors and 

faster convergence during the iterative part.

• Expectation Maximization (EM) (and interpretation of k-means algorithm)

– Expectation maximization is an iterative method to estimate parameters in a statistical model 

than cannot be solved in closed form. It assumes that the observations (here: the training set) are 

obtained from probability distribution, typically a mixture of several distributions with a soft 

assignment. In k-means, we used a hard assignment, that is, every data point is assigned to 

exactly one cluster. In EM, soft assignment denotes that cluster assignment of a point follows a 

conditional distribution. Finally, the objective is to find the soft assignment and the parameters of 

the distributions (e.g., with Gaussian, these are the means and variances) that best explain the 

observations (maximum likelihood). 

– Solving above objective function in closed form is not always possible. The EM algorithm consists 

of two steps: in the expectation step, the distribution parameters are constant and we compute 

the best soft assignment. In the maximization step, we keep the soft assignment constant and 

choose the parameters that maximize the objective function. With each step, the objective 

function increases and eventually converges, but not necessarily to a global maximum.

4.8 Blob Recognition (unsupervised clustering)
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– Let us start with a simple one dimensional example with a 

mixture of two (𝐾 = 2) Gaussian distributions 𝒩 𝜇𝑘 , 𝜎𝑘
2 . The 

picture on the right shows the two Gaussian distributions and 

their mixture. With an infinite number of Gaussians, a mixture 

can model any distribution. Each Gaussian represent a sub-

population (cluster) of the data items that follow its 

distribution. In addition, a prior 𝑃 𝐶𝑘 defines how likely data 

items come from 𝑘-the cluster with σ𝑃 𝐶𝑘 = 1. 

– Now, assume we make the observations 𝕋 = {𝑥1, … , 𝑥𝑁}. 
Further assume, we know that all 𝑥 ∈ 𝕊1 stem from the blue 

cluster 𝐶1, and all 𝑥 ∈ 𝕊2 = 𝕋 ∖ 𝕊1 stem from the red cluster 

𝐶2. We then can easily compute the parameters and the 

priors of the distributions using the (biased) estimators:

– On the other side, assume we know the parameters 𝜇𝑘 , 𝜎𝑘
2 of 

the distributions and the priors 𝑃 𝐶𝑘 , can we estimate the 

probability 𝑃 𝐶𝑘 𝑥𝑖 that a point 𝑥𝑖 is part of cluster 𝐶𝑘? 

4.8 Blob Recognition (unsupervised clustering)

𝜇𝑘 =
σ𝑥∈𝕊𝑘

𝑥

𝕊𝑘
𝜎𝑘
2 =

σ𝑥∈𝕊𝑘
𝑥 − 𝜇𝑘

2

𝕊𝑘
𝑃 𝐶𝑘 =

𝕊𝑘
𝑁

𝑃 𝐶𝑘 𝑥𝑖 =
𝑃 𝑥𝑖 𝐶𝑘 ∙ 𝑃 𝐶𝑘

𝑃 𝑥𝑖
=

𝑃 𝑥𝑖 𝐶𝑘 ∙ 𝑃 𝐶𝑘
σ𝑘𝑃 𝑥𝑖 𝐶𝑘 ∙ 𝑃 𝐶𝑘

with    𝑃 𝑥𝑖 𝐶𝑘 = 𝑓 𝑥𝑖; 𝜇𝑘, 𝜎𝑘
2 =

1

2𝜋𝜎𝑘
2
∙ exp −

𝑥𝑖−𝜇𝑘
2

2𝜎𝑘
2



Page 4-74Multimedia Retrieval – 2020

– Given the probabilities 𝑃 𝐶𝑘 𝑥𝑖 that 𝑥𝑖 belongs to cluster 𝐶𝑘 we 

no longer have a hard assignment as above with 𝕋 = 𝕊1 ∪ 𝕊2, 

and 𝕊1 ∩ 𝕊2 = ∅, but utilize soft assignments. In other words,

we are not entirely sure from which sub-population the points 

come from but have a fairly good understanding how likely they 

stem from each cluster. To estimate the parameters and the 

priors, we need to take the soft assignments into account:

– Now we can summarize the EM algorithm: to this end, we introduce the responsibility 𝛾𝑖,𝑘 =

𝑃 𝐶𝑘 𝑥𝑖 denoting the soft assignment of data item 𝑥𝑖 to cluster 𝐶𝑘, and the weights 𝑤𝑘 = 𝑃 𝐶𝑘
representing the prior of cluster 𝐶𝑘. The algorithm runs as follows:

4.8 Blob Recognition (unsupervised clustering)
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– Once convergence of EM is reached after 𝜗 iterations, we can (hard) assign a data item 𝑥𝑖 to its 

most likely cluster 𝐶𝑘∗ by solving the following equation:

– We can generalize this approach to 𝑑-dimensional spaces with 𝑑 = 𝑀 being the number of 

features. We create a mixture of 𝐾 multi-variate (or multi-dimensional) Gaussian distribution 

𝒩(𝝁𝑘 , 𝚺𝑘) with 𝝁𝑘 = E 𝒙 ∈ 𝕋𝑘 denoting the centroid of items of cluster 𝐶𝑘, and 𝚺𝑘 = E𝒙∈𝕋𝑘[

]

(

)

𝒙 −

𝝁 𝒙 − 𝝁 𝑇 the covariance matrix of items in cluster 𝐶𝑘.  

– Again, we obtain a hard assignment for a data item 𝒙𝑖 to its most likely cluster 𝐶𝑘∗ as follows:
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– Where does the name Expectation Maximization come from? Let 𝕏 = 𝒙𝑖 be the set of data 

items and 𝕐 = 𝑤1, 𝜇1, 𝜎1, … , 𝑤𝑘 , 𝜇𝐾 , 𝜎𝐾 be the set of unknown parameters of the mixture of K 

Gaussian distributions. In addition, we have the latent unobserved data items ℤ = 𝛾𝑖,𝑘 denoting 

the soft memberships of 𝑥𝑖 to cluster 𝐶𝑘. Given, 𝕏 we want to find the parameters 𝕐 that 

maximize the probability that the data items in 𝕏 are observations from the mixture using these 

parameters. This is called the maximum likelihood estimate (MLE):

In other words, if 𝕐 is known, how likely is it that data items in 𝕏 follow the mixture of the K 

Gaussian distributions. Adding the soft memberships ℤ, 𝑝(𝕏|𝕐) is given by the marginal 

probability of 𝑝(𝕏, ℤ|𝕐) over all possible sets of ℤ. This equation, however, is often not solvable in 

closed forms. Instead, an iterative method is used, that improves log 𝑝(𝕏|𝕐) with each iteration. 

EM uses a so-called Q-function that indirectly improves log 𝑝(𝕏|𝕐) given current estimates 𝕐 𝑡 :

The right hand side is the expectation function over log 𝑝(𝕏, ℤ|𝕐) given the conditional distribution 

of ℤ given 𝕏 and the current estimates 𝕐 𝑡 . Now, the E-step generates this expectation function 

by computing the probabilities 𝑃 𝐶𝑘 𝑥𝑖 for ℤ (soft assignment) given 𝕏 and the current estimates 

𝕐 𝑡 and uses Bayes’ rule as we have done above. Then, given ℤ, the M-step maximizes the Q-

function over all possible 𝕐 to obtain a new estimate 𝕐 𝑡+1 . With log-probabilities and Gaussian 

distributions, we can cancel log and exp in the equation, and solutions are found by solving for 

the maximum (partial derivative is zero). We omit proof for solutions and convergence.

4.8 Blob Recognition (unsupervised clustering)
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– Let us reconsider the k-means algorithm as an EM problem. We can re-write the objective 

function (within-cluster sum of squares, WCSS) as follows:

𝛾𝑖,𝑘 are the hard assignments of 𝑥𝑖 to 𝐶𝑘, i.e., for each 1 ≤ 𝑖 ≤ 𝑁 exactly one 𝛾𝑖,𝑘 = 1 and all 

others are 0. We can transform k-means to an EM algorithm over a mixture of K Gaussian 

distributions with hard assignments as follows:

4.8 Blob Recognition (unsupervised clustering)
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• For both k-means and EM, we need to control then number 𝐾 of clusters. If the number is too small, 

the error value is high and the algorithms suffer from underfitting. If we select a large 𝐾, we can 

reduce the error but at risk of overfitting. Let 𝕊𝑘 be the set of data items 𝒙 that are assigned to 

cluster 𝐶𝑘. To control K, we determine the sum of squared errors 𝑆𝑆𝐸 over all clusters: 

If we plot this SSE as a function of K, we obtain a graph like on the right side below. As we increase 

the number 𝐾, the SSE decreases. However, we cannot simply solve for 𝐾 that minimizes the SSE 

function as 𝐾 = 𝑁 would have an 𝑆𝑆𝐸 = 0 but clearly overfits the data. Rather, we look for the so-

called elbow point as highlighted in the figure where the SSE-functions “abruptly” levels out as is 

decreasing much slower than before the elbow. We can obtain an optimal 𝐾 in two ways:

a) Vary 𝐾 from 2 to an upper bound (here 20) and determine the point that lies farthest away 

from the line between the start and the end of the curve.

b) Start with 𝐾 = 2 and determine the distance to the point

(2,0). While increasing 𝐾 observe the distance. Stop if

the distance starts growing.

Method b) has the advantage of iterating less over 𝐾. For both

variants to work, we need to normalize the two dimensions, for

instance with a min/max scaling, to obtain a meaningful result.
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• Example: Image Segmentation (Blobworld)

– Blobworld was a project at the University of Berkeley and published first in 1999. It was using 

segmentation to divide an image into distinct regions and used descriptors on these regions to 

retrieve objects embedded in images. The right hand side shows an example of the 

segmentation

a) The original image contains  too many edges and 

corners yielding a large number of potential regions

b) A rough Gaussian filter smooths the image and

eliminates finer structures

c) Color is transformed into the L*a*b* space. For

each pixel, Blobworld extract additional texture

features describing the polarity (clear direction

of edges in a neighborhood), edgeness, and

texture contrast. The feature vector consists

of the pixel position (𝑥, 𝑦), the 3 color and the 

3 texture values at that position.

d) Apply the EM algorithm on a Gaussian mixture

model over the 8 feature values. This is

computed for 2, 3, 4, and 5 clusters.

e) To steer the number of clusters, a special 

objective function based on the Minimum 

Description Length (MDL) was applied.

f) Blobworld hard assigns pixels to a cluster and 

selects a unique color for each cluster.

4.8 Blob Recognition (unsupervised clustering)
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4.9 Simple Neural Network Classifier

• Artificial neural networks are machine learning models that are inspired by how the brain works. Indeed, 

brain research has frequently led to new approaches like the use of connections between neurons of 

different layers rather than adjacent ones (multi-layer approach). Neural network, on the other hand, are 

often employed to model the brain and its learning algorithms.

• The first wave of neural network research started in the late 1950s and was focusing on a single 

perceptron (in hardware). It was possible to use multiple perceptrons in parallel, but they were only 

connected to input and output states. The problem of perceptrons was articulated in its famous inability to 

learn a simple XOR function. Even though it was shown that a two-layer network could indeed encode an 

XOR function, the limitations were obvious and a first AI winter began.

• The second wave started with research in the 1960s with the introduction of hidden layers. Several 

researchers were developing similar ideas but the credits usually go the Rumelhart, Hinton, and Williams 

and their 1986 paper on backpropagation which describes the approach with such clarity that it is still the 

basis for many descriptions in text books. The area revived quickly and lead to convolutional networks, 

recurrent networks, belief networks with many of the concepts found today in deep learning. However, the 

field suffered from calculation issues (vanishing and exploding gradients) and the computational limitations 

in the 1980s and 1990s.

• At the beginning of the 2000s, almost no research was published or cited and funding was very sparse. 

However, the Canadian government funded a small research team around Hinton that first rebranded the 

field into “Deep Learning” and then published in 2006 a break-through paper with a  fast learning algorithm 

for deep belief nets. In parallel, compute power has significantly grown. Inspired by the Canadian research 

team, the field arose again and soon it was found that GPUs were up to 100 times faster than CPUs. This 

allowed the training of deep networks within hours and days rather than weeks and months. Google 

started in 2011 its Google Brain research project to connect thousand of CPUs for a network with 1 billion 

weights. Since then, research has generated an enormous amount of improvements and efficient learning 

frameworks leading to an overwhelming success story of AI with many applications.

4.9 Simple Neural Network Classifier
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source: https://www.nvidia.com/en-us/data-center/dgx-server/

source: ttps://beamandrew.github.io/deeplearning/2017/02/23/deep_learning_101_part1.html

source: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-

googles-first-tensor-processing-unit-tpu

https://www.nvidia.com/en-us/data-center/dgx-server/
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• We first consider the original perceptron idea: in principle, it is a binary classifier mapping a real-

valued input vector 𝒙 ∈ ℝ𝐾 to a binary output value 𝑓 𝒙 :

where 𝒘 ∈ ℝ𝐾 are the weights and 𝑏 is the bias. From this definition we derive that the perceptron is 

splitting the space with a hyperplane given by 𝒘𝑇𝒙 + 𝑏. In a more general setup, 𝐿 perceptrons with 

weights 𝒘𝑙 and bias 𝑏𝑙 are connected to the 𝐾 input value 𝑖𝑘 and produce 𝐿 binary output values 𝑜𝑙. 
We can visualize this general setup as follows:

The learning algorithm is then as follows:                  (demo: https://www.cs.utexas.edu/~teammco/misc/perceptron/)

Convergence is only reached if the data set is linearly separable. Otherwise, the algorithm may fail 

completely. A number of variants address this later issue.
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• Intuitively, the perceptron learning algorithm only adjust weights (and bias) if the target differs from 

the output. If the output is 0 but the target is 1, then weights and bias are incremented, otherwise 

they are decremented (assuming 𝑥𝑙 ≥ 0). We also note that the algorithm does not aim to optimize 

any objective function but merely is a heuristic approach to learn the weights. If data is separable, it 

converges to binary partition of the space with a hyperplane (one of many that partition the space).

• In contrast, the support vector machine (SVM) computes an optimal solution for the hyperplane 

that separates the sets and maximizes the margin (the distance of marginal points to the 

hyperplane). SVM even works if the data is not separable; it then finds a solution that minimizes the 

partitioning error. We are not considering here how SVMs are computed. 

• In any case, a binary classifier can be used to learn multiclass outputs as well. The “one-vs-all” 

approach learns a binary classifier for each of the 𝐿 classes to separate a class 𝐶𝑙 from the rest. In 

other words, we use 𝐿 perceptrons and the binary target vector 𝒕 has 𝑡𝑙 = 1 and all other 

components are 0. For prediction, the output with the highest value denotes the “winning” class. 

Alternatively, the “one-vs-one” strategy uses 𝐿(𝐿 − 1)/2 perceptrons to separate two classes from 

each other learning the perceptrons individually. For prediction, the output with the highest value 

indicates the “winning” class.

4.9 Simple Neural Network Classifier
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• The linear classification approach of SVM seems rather limiting (like for perceptron). However, SVM 

has the “kernel trick”: the idea is that data points are mapped to a higher dimensional space that 

enables better separability of the data by a hyperspace. The mapping to this higher dimensional 

space is typically non-linear. The “kernel-trick” now means that we do not explicitly compute the 

mapping to the high-dimensional space, but rather only compute the inner product between data 

points that is required for the SVM calculations. For instance, the kernel 𝐾 𝒙, 𝒚 = 1 + 𝒙⊤𝒚 2 with 

𝒙, 𝒚 ∈ ℝ2 is an efficient way to compute the inner product of two mapped values 𝜑 𝒙 and 𝜑 𝒚 in a 

6-dimensional space. With a Gaussian kernel 𝐾 𝒙, 𝒚 = exp −𝛾 𝒙 − 𝒚 2 we obtain an infinite-

dimensional mapping function 𝜑.

• The “kernel trick” is often considered as a human intervention into the machine learning process. 

SVM classification works very well and is efficient but we need to design an appropriate kernel 

function for the problem at hand.

4.9 Simple Neural Network Classifier
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• Multilayer networks introduce a number of changes to the original perceptron

– several “hidden” layers between input and output

– different activation functions to “fire” a neuron, and not necessarily only binary output

– objective functions to define an optimal state for all network parameters

– a new algorithm to learn the weights (the so-called backpropagation)

• Let us start with a simple two-layer network to understand the fundamentals with a concrete 

example, and then we generalize the concepts to arbitrary shaped networks. 

• The network consists of two input neurons 𝑖1, 𝑖2, two hidden neurons ℎ1, ℎ2 and two output neurons 

𝑜1, 𝑜2. We have two (shared) biases, 𝑏1 for the hidden neurons and 𝑏2 for the output neurons. Note 

that we modeled the bias as a weight from a neuron that always has the state 1.  𝑤1, … , 𝑤8 denote 

the weights on the connections. Even though we have 6 neurons, the connections are only from one 

layer to the next one and especially, there are no inter-layer connections or cycles. This is an 

important topological constraint that will simplify our learning algorithm. Finally, we added nodes to 

capture the training error: 𝐽1 and 𝐽2 measure the error between the first and the second target 

component 𝑡1 𝒙 and the computed output of the network. 𝐽 denotes the training error.

4.9 Simple Neural Network Classifier
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• Feed-Forward: given a data sample 𝒙 from the training set 𝕋, the network is computing the state of 

each neuron using a simple model:

We use s to indicate the result of the summation, and  we employ the logistic activation function 𝜑
also known as soft step. With this, we can determine every state of a neuron, given the input 𝒙 ∈ 𝕋:

The calculations are straightforward. The term feed-forward denotes that we “feed” the data sample 

first into the input layer, and then forward the results from one layer to the next one. Each layer can 

be computed concurrently.

Later on, we will see different activation functions and also different approaches to connectivity and 

sharing of weights between subsequent layers. The principle model for neurons remain the same for 

most deep networks. We will also encounter special dropout neurons, that set input elements to 

zero with a certain probability to prevent overfitting of the network.

4.9 Simple Neural Network Classifier
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ℎ1 = 𝜑 𝑠ℎ1 = 𝜑 𝑤1 ∙ 𝑥1 +𝑤2 ∙ 𝑥2 + 𝑏1 and ℎ2 = 𝜑 𝑠ℎ2 = 𝜑 𝑤3 ∙ 𝑥1 + 𝑤4 ∙ 𝑥2 + 𝑏1

𝑜1 = 𝜑 𝑠𝑜1 = 𝜑 𝑤5 ∙ ℎ1 +𝑤6 ∙ ℎ2 + 𝑏2 = 𝜑 𝑤5 ∙ 𝜑 𝑤1 ∙ 𝑥1 +𝑤2 ∙ 𝑥2 + 𝑏1 + 𝑤6 ∙ 𝜑 𝑤3 ∙ 𝑥1 + 𝑤4 ∙ 𝑥2 + 𝑏1 + 𝑏2

𝑜2 = 𝜑 𝑠𝑜2 = 𝜑 𝑤7 ∙ ℎ1 +𝑤8 ∙ ℎ2 + 𝑏2 = 𝜑 𝑤7 ∙ 𝜑 𝑤1 ∙ 𝑥1 +𝑤2 ∙ 𝑥2 + 𝑏1 + 𝑤8 ∙ 𝜑 𝑤3 ∙ 𝑥1 + 𝑤4 ∙ 𝑥2 + 𝑏1 + 𝑏2

𝜑 𝑠 =
1

1 + 𝑒−𝑠

𝜑 𝑠

weights

bias
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• Error function: we want to measure how well the network is able to predict the targets for all given 

data samples in the training set 𝕋. As a starting point, we use the mean square error (MSE):

where 𝜽 denotes the parameters of the network. In our example: 𝜽 = (𝑤1, … , 𝑤8, 𝑏1, 𝑏2). Learning a 

network means finding parameters 𝜃∗ that minimizes the error function:

– Due to the size of networks and the number of data items, it is generally not feasible to solve the 

equation in closed form. Instead, we use the gradient descent method to find a (local) optimum 

through an iterative approach. Let 𝛁𝐽(𝜽) be the gradient of 𝐽 𝜃 for the parameters 𝜃 of the 

network. The gradient descent method defines the learning strategy for the network:

– Gradient descent is relatively slow close to the minimum and often “zigzags”  for poorly 

conditioned convex functions. In addition, for large-scale data sets and networks, gradient 

descent requires enormous computational and storage requirements to determine the gradient 

(which we can derive in closed form for the network as we will see later).
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𝐽 𝜽 =
1

𝕋


𝒙∈𝕋

𝐽 𝒙; 𝜽 =
1

2 ∙ 𝕋


𝒙∈𝕋

𝑡 𝒙 − 𝑜 𝒙; 𝜽 2
2

𝜽∗ = argmax
𝜽

𝐽 𝜽 =
1

2 ∙ 𝕋


𝒙∈𝕋

𝑡 𝒙 − 𝑜 𝒙; 𝜽 2
2

1. Choose an initial random vector for 𝜽(0) and a learning rate 0 ≤ 𝜂 ≤ 1

2. Repeat until 𝜽 𝑡+1 − 𝜽 𝑡
2

2
≤ 휀 or    𝑡 > 𝑡𝑚𝑎𝑥

• Compute gradient: ∆(𝑡)= 𝜂 ∙ 𝛁𝐽 𝜽 𝑡

• Adjust parameters: 𝜽 𝑡+1 = 𝜽 𝑡 − ∆(𝑡)
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– Instead of gradient descent, neural network algorithms use the stochastic gradient descent 

(SGD) often in combination with a momentum method to prevent the afore mentioned zigzag 

issue. SGD approximates the true gradient of 𝐽 𝜽 with a single data sample (instead of over all 

data samples). As we will see with backpropagation, this allows us to quickly update the weights 

with minimal storage overhead. SGD still suffers from slow convergence especially towards the 

end of the iterations. Momentum is one method to accelerate the descent. We keep the gradient 

of the past iteration and re-apply some fraction 𝛾 of it in the descent:

The momentum 𝛾 defines how long a previous gradient is still used. Generally, we start with

𝛾 = 0.5 and then increase it after the initial learning stabilizes to 𝛾 = 0.9 or even higher.

– The above algorithm defines the overall learning strategy. Each batch (step 2) runs against the 

entire training set and for each data samples, the weights and biases in the network are adjusted 

for each data sample. What remains to do is to compute the gradient 𝛁𝐽(𝒙; 𝜽) for the current data 

sample and the current set of parameters of the network. 
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1. Choose an initial random vector for 𝜽(0), a learning rate 0 ≤ 𝜂 ≤ 1, and a momentum 0 ≤ 𝛾 ≤ 1.

2. Repeat until 𝜽 𝑡+1 − 𝜽 𝑡
2

2
≤ 휀 or    𝑡 > 𝑡𝑚𝑎𝑥

• Randomly shuffle the training set 𝕋

• 𝜽 𝑡+1 = 𝜽 𝑡

• For each 𝒙 ∈ 𝕋
• Compute gradient: ∆= 𝛾 ∙ ∆ + 𝜂 ∙ 𝛁𝐽(𝒙; 𝜽(𝑡+1))

• Adjust parameters: 𝜽 𝑡+1 = 𝜽 𝑡+1 − ∆
• Increase 𝛾

𝐽 𝒙; 𝜽 =
1

2
𝑡 𝒙 − 𝑜 𝒙; 𝜽 2

2 𝛁𝐽 𝒙; 𝜽 =?
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• Gradient computation: before we consider the backpropagation algorithm, let us re-consider our 

example network from the beginning with two input nodes, two hidden nodes, and two output nodes. 

For the stochastic gradient descent, we need to compute the gradient. Note that in our example, we 

have 𝜽 = (𝑤1, … , 𝑤8, 𝑏1, 𝑏2). The gradient is then given as the partial derivatives over 𝐽 𝒙; 𝜽 :

with given targets 𝑡1 and 𝑡2 for data sample 𝒙, and 𝑜1 and 𝑜2 as given previously as a function of 𝒙
and the weights 𝑤1, … , 𝑤8 and the biases 𝑏1 and 𝑏2.

– Let us start simple: consider 𝑤5. It only occurs in 𝑜1 but not in 𝑜2. Thus the partial derivative is:
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𝛁𝐽 𝒙; 𝜽 =
𝜕𝐽

𝜕𝑤1
, … ,

𝜕𝐽

𝜕𝑤8
,
𝜕𝐽

𝜕𝑏1
,
𝜕𝐽

𝜕𝑏2 𝐽 𝒙; 𝜽 = 𝐽1 𝒙; 𝜽 + 𝐽2 𝒙; 𝜽 =
1

2
∙ 𝑡1 − 𝑜1

2 +
1

2
∙ 𝑡2 − 𝑜2

2

𝑜1 = 𝜑 𝑠𝑜1 = 𝜑 𝑤5 ∙ ℎ1 +𝑤6 ∙ ℎ2 + 𝑏2 𝑜2 = 𝜑 𝑠𝑜2 = 𝜑 𝑤7 ∙ ℎ1 + 𝑤8 ∙ ℎ2 + 𝑏2

𝜕𝐽

𝜕𝑤5
=

𝜕

𝜕𝑤5

1

2
∙ 𝑡1 − 𝑜1

2 +
1

2
∙ 𝑡2 − 𝑜2

2 =
𝜕

𝜕𝑤5

1

2
∙ 𝑡1 − 𝑜1

2 = 𝑡1 − 𝑜1 ∙
𝜕𝑜1
𝜕𝑤5

𝜕𝑜1
𝜕𝑤5

=
𝜕

𝜕𝑤5
𝜑 𝑠𝑜1 = 𝜑 𝑠𝑜1 ∙ 1 − 𝜑 𝑠𝑜1 ∙

𝜕𝑠𝑜1
𝜕𝑤5

= 𝑜1 ∙ 1 − 𝑜1 ∙
𝜕𝑠𝑜1
𝜕𝑤5

𝜕𝑠𝑜1
𝜕𝑤5

=
𝜕

𝜕𝑤5
𝑤5 ∙ ℎ1 +𝑤6 ∙ ℎ2 + 𝑏2 = ℎ1

all together:

𝜕𝐽

𝜕𝑤5
= 𝑡1 − 𝑜1 ∙ 𝑜1 1 − 𝑜1 ∙ ℎ1

𝜑 𝑠 =
1

1 + 𝑒−𝑠

𝜑′ = 𝜑 ∙ 1 − 𝜑

Additional information — not part of the exams
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– Similarly, we obtain the other partial derivatives 
𝜕𝐽

𝜕𝑤6
, 

𝜕𝐽

𝜕𝑤7
, 

𝜕𝐽

𝜕𝑤8
, and 

𝜕𝐽

𝜕𝑏2
. Altogether, we have:

We already note the recurring patterns in the calculations: the derivatives on the error function 

are multiplied by the derivative on the activation function and are multiplied by the derivative on 

the summation. For the gradients, we require the results (=states) from the feed-forward step and 

can the efficiently compute the gradients (see backpropagation).

– Now to the remaining partial derivatives (see next page how to derive for 𝑤1):
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𝜕𝐽

𝜕𝑤5
= 𝑡1 − 𝑜1 ∙ 𝑜1 1 − 𝑜1 ∙ ℎ1

𝜕𝐽

𝜕𝑤6
= 𝑡1 − 𝑜1 ∙ 𝑜1 1 − 𝑜1 ∙ ℎ2

𝜕𝐽

𝜕𝑤7
= 𝑡2 − 𝑜2 ∙ 𝑜2 1 − 𝑜2 ∙ ℎ1

𝜕𝐽

𝜕𝑤8
= 𝑡2 − 𝑜2 ∙ 𝑜2 1 − 𝑜2 ∙ ℎ2

𝜕𝐽

𝜕𝑏2
= 𝑡1 − 𝑜1 ∙ 𝑜1 1 − 𝑜1 + 𝑡2 − 𝑜2 ∙ 𝑜2 1 − 𝑜2

𝜕𝐽

𝜕𝑤1
= ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 ∙ 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7

𝜕𝐽

𝜕𝑤2
= ℎ1 ∙ 1 − ℎ1 ∙ 𝑥2 ∙ 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7

𝜕𝐽

𝜕𝑤3
= ℎ2 ∙ 1 − ℎ2 ∙ 𝑥1 ∙ 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤6 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤8

𝜕𝐽

𝜕𝑤4
= ℎ2 ∙ 1 − ℎ2 ∙ 𝑥2 ∙ 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤6 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤8

𝜕𝐽

𝜕𝑏1
= ℎ1 ∙ 1 − ℎ1 ∙ 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7 +

ℎ2 ∙ 1 − ℎ2 ∙ 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤6 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤8
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– Let us now consider 𝑤1: we note that 𝑤1 only occurs in ℎ1 which in turn is part of both 𝑜1 and 𝑜2.
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𝑜1 = 𝜑 𝑠𝑜1 = 𝜑 𝑤5 ∙ ℎ1 +𝑤6 ∙ ℎ2 + 𝑏2 𝑜2 = 𝜑 𝑠𝑜2 = 𝜑 𝑤7 ∙ ℎ1 + 𝑤8 ∙ ℎ2 + 𝑏2

ℎ1 = 𝜑 𝑠ℎ1 = 𝜑 𝑤1 ∙ 𝑥1 +𝑤2 ∙ 𝑥2 + 𝑏1 ℎ2 = 𝜑 𝑠ℎ2 = 𝜑 𝑤3 ∙ 𝑥1 +𝑤4 ∙ 𝑥2 + 𝑏1

𝜕𝐽

𝜕𝑤1
=

𝜕

𝜕𝑤1

1

2
∙ 𝑡1 − 𝑜1

2 +
1

2
∙ 𝑡2 − 𝑜2

2 = 𝑡1 − 𝑜1 ∙
𝜕𝑜1
𝜕𝑤1

+ 𝑡2 − 𝑜2 ∙
𝜕𝑜2
𝜕𝑤1

𝜕𝑜1
𝜕𝑤1

=
𝜕

𝜕𝑤1
𝜑 𝑠𝑜1 = 𝜑 𝑠𝑜1 ∙ 1 − 𝜑 𝑠𝑜1 ∙

𝜕𝑠𝑜1
𝜕𝑤1

= 𝑜1 ∙ 1 − 𝑜1 ∙
𝜕𝑠𝑜1
𝜕𝑤1

𝜕𝑠𝑜1
𝜕𝑤1

=
𝜕

𝜕𝑤1
𝑤5 ∙ ℎ1 +𝑤6 ∙ ℎ2 + 𝑏2 = 𝑤5 ∙

𝜕ℎ1
𝜕𝑤1

𝜕ℎ1
𝜕𝑤1

=
𝜕

𝜕𝑤1
𝜑 𝑠ℎ1 = 𝜑 𝑠ℎ1 ∙ 1 − 𝜑 𝑠ℎ1 ∙

𝜕𝑠ℎ1
𝜕𝑤1

= ℎ1 ∙ 1 − ℎ1 ∙
𝜕𝑠ℎ1
𝜕𝑤1

𝜕𝑠ℎ1
𝜕𝑤1

=
𝜕

𝜕𝑤1
𝑤1 ∙ 𝑥1 +𝑤2 ∙ 𝑥2 + 𝑏1 = 𝑥1

all together:

𝜕𝐽

𝜕𝑤1
= 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 +

𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1

𝜑 𝑠 =
1

1 + 𝑒−𝑠

𝜑′ = 𝜑 ∙ 1 − 𝜑

𝜕𝑜2
𝜕𝑤1

= 𝑜2 ∙ 1 − 𝑜2 ∙
𝜕𝑠𝑜2
𝜕𝑤1

𝜕𝑠𝑜2
𝜕𝑤1

= 𝑤7 ∙
𝜕ℎ1
𝜕𝑤1
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• Evidentially, it is possible to compute all partial derivatives for the gradient, but it seems tedious 

work to do so (and error prone). Can we do it simpler? Yes, we can. Backpropagation is an 

astonishingly simple scheme that computes the gradient starting at the error node and working back 

towards the input nodes. It does not provide us with the closed forms of the derivatives, but it 

computes the gradient avoiding multiple computations of the same sub-expressions. 

– Let us look again at the chain rule from calculus:

In graphical notation, we obtain the forward path to compute the composite function:

Now to compute the derivative 
𝑑𝑧

𝑑𝑥
for 𝑥 we move backwards. We first compute 𝑓′(𝑦) and then 

multiply it with 𝑔′(𝑥). To this end, we need to keep track of intermediate results and use them on 

the back path to calculate the derivative:
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𝐹 𝑥 = 𝑓 ∘ 𝑔 = 𝑓 𝑔 𝑥 𝐹’ 𝑥 = 𝑓′ 𝑔 𝑥 ∙ 𝑔′(𝑥)

or in Leibniz notation with 𝑧 = 𝑓(𝑦) and 𝑦 = 𝑔(𝑥):  
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
= 𝑓′(𝑦) ∙ 𝑔′(𝑥)

𝑔 𝑓𝑥 𝑧
𝑦 = 𝑔(𝑥)𝑥 𝑧 = 𝑓(𝑦)

𝑔 𝑓𝑥 𝑧
𝑦 = 𝑔(𝑥)𝑥 𝑧 = 𝑓(𝑦)

𝑔′ 𝑓′
𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
1

𝑑𝑧

𝑑𝑦
= 𝑓′(𝑦)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙ 𝑔′(𝑥) 1

𝑥 𝑦
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– Similarly, we can look at multivariable chain rules

In graphical notation, we obtain the forward path to compute the function:

Now to compute the derivative 
𝑑𝑧

𝑑𝑥
for 𝑥 we move backwards similarly as before:
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𝐹 𝑥 = 𝑓 𝑔 𝑥 , ℎ(𝑥) 𝐹’ 𝑥 = 𝑓′ 𝑔 𝑥 , ℎ(𝑥) ∙ 𝑔′(𝑥) + 𝑓′ 𝑔 𝑥 , ℎ 𝑥 ∙ ℎ′ 𝑥

or in Leibniz notation with 𝑧 = 𝑓 𝑦 , 𝑦 = 𝑔(𝑥) and 𝑤 = ℎ(𝑥)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
+
𝑑𝑧

𝑑𝑤
∙
𝑑𝑤

𝑑𝑥
= 𝑓′ 𝑦,𝑤 ∙ 𝑔′ 𝑥 + 𝑓′ 𝑦,𝑤 ∙ ℎ′ 𝑥

𝑔

𝑓𝑥 𝑧

𝑦 = 𝑔(𝑥)𝑥

𝑧 = 𝑓(𝑦,𝑤)

𝑑𝑧

𝑑𝑦
= 𝑓′(𝑦,𝑤)

𝑦,𝑤

ℎ𝑥 𝑤 = ℎ(𝑥)

𝑔

𝑓𝑥 𝑧

𝑦 = 𝑔(𝑥)𝑥

𝑧 = 𝑓(𝑦,𝑤)

ℎ𝑥
𝑤 = ℎ(𝑥)

𝑔′

𝑓 1

1

ℎ′ 𝑑𝑧

𝑑𝑦
= 𝑓′(𝑦,𝑤)

𝑥

𝑥
𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙ 𝑔′(𝑥)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙ ℎ′(𝑥)

𝑑𝑧

𝑑𝑥
=
𝑑𝑧

𝑑𝑦
∙
𝑑𝑦

𝑑𝑥
+
𝑑𝑧

𝑑𝑤
∙
𝑑𝑤

𝑑𝑥
+
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• Let us apply the chain rule to our neural network. Let start with the output neurons. To simplify the 

structure, we introduce a node 𝑎0 which always has the state 1, and the weight 𝑤0 = 𝑏 which 

represents the bias. All formulas become a bit simpler. The visualization for the forward and 

backward path are given below:

– Every layer outputs the 𝛿-values that are propagated back to the inputs and are used to adjust 

the parameters in every layer. Above, we used a separate bias 𝑏𝑙 for each node. If we would 

share the bias across the layer like in the example, we need to simply sum up the deltas over the 

nodes using the same bias, i.e.: 
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Σ 𝜑

𝑠𝑙 = 
𝑘
𝑎𝑘 ∙ 𝑤𝑘,𝑙

𝑎𝑘 𝐽𝑙 𝐽

𝑜𝑙 = 𝜑 𝑠𝑙 𝐽𝑙 =
1

2
𝑡𝑙 − 𝑜𝑙

2

𝑡

𝑡𝑙

𝐽 =
𝑙
𝐽𝑙

𝑤𝑘,𝑙 , 𝑤0,𝑙 = 𝑏𝑙

Σ′ 𝜑′

𝛿𝑙 = 𝑜𝑙 ∙ 1 − 𝑜𝑙 ∙ 𝑡𝑙 − 𝑜𝑙

𝐽𝑙 ′ 𝐽

(𝑡𝑙 − 𝑜𝑙) 1
1

𝑡𝑙 , 𝑜𝑙 𝐽𝑙𝑜𝑙𝑎𝑘

𝜕𝐽

𝜕𝑤𝑘,𝑙
= 𝑎𝑘 ∙ 𝛿𝑙

𝛿𝑙

𝑎0 = 1

𝑤𝑘,𝑙
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– Hidden layers are calculated similarly, however, there are 𝐿 incoming edges from the subsequent 

layer during backpropagation. The visualization for the forward and backward path are as follows:

– Let us sum up the backpropagation algorithm: during the stochastic gradient descent, we search 

for the optimal parameters (weights, biases, etc.) of the network. To compute the gradient for 

these parameters with respect to an error function 𝐽, we first use the network in forward mode to 

predict the output with the current set of parameters. At the same time, we keep track of 

intermediate values that are required on the backward path. We then compute the error with 

regard to a single sample and propagate the partial derivatives backwards to the previous layers. 

At each layer, we compute the ∆-values for the weights to obtain new estimates for them. Note 

that the old weights are still required for the preceding layer to compute its partial derivative (see 

figure above, the (+)-node requires weights 𝑣𝑙 , 𝑚 from the subsequent layer). 

4.9 Simple Neural Network Classifier
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• Generic implementation of multilayer networks: let us model a dense multilayer network. We 

assume 𝑁 layers 𝐿𝑖 and we denote  𝐿0 to be the input layer and 𝐿𝑁 to be the output layer. Each 

layer has 𝑀𝑖 neurons with states 𝑜𝑖,𝑘 with 0 ≤ 𝑖 ≤ 𝑁 and 0 ≤ 𝑘 ≤ 𝑀𝑖 whereby 𝑜𝑖,0 = 1 (used for the 

bias). Further we use weights 𝑤𝑖,𝑘,𝑙 with 1 ≤ 𝑖 ≤ 𝑁, 0 ≤ 𝑘 ≤ 𝑀𝑖 and 1 ≤ 𝑙 ≤ 𝑀𝑖−1 to connect the 𝑙-th

node of Layer 𝐿𝑖−1 with the 𝑘-th node of Layer 𝐿𝑖. In addition, we keep track of the increments ∆𝑖,𝑘,𝑙

for the computation of the gradients 
𝜕𝐽

𝜕𝑤𝑖,𝑘,𝑙
. 

– Example with 3 layers:

– Feed Forward is then given as:

So far we have used the logistic activation function 𝜑 𝑠 =
1

1+𝑒−𝑧
and the mean square error 

(MSE) with 𝐽 𝜃 =
1

2∙ 𝕋
σ𝒙∈𝕋 𝑡 𝒙 − 𝑜 𝒙; 𝜽 2

2 such that 𝐸𝑘 𝑜𝑁,𝑘; 𝑡𝑘 =
1

2
𝑡𝑘 − 𝑜𝑁,𝑘

2
. We will 

see further activation functions and error (or loss) functions in the deep learning section. 
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1. Initialize 𝑜𝑜,𝑘 = 𝑥𝑘 from the current data sample 𝒙 ∈ 𝕋 ⊂ ℝ𝑀0 with target 𝒕 ∈ ℝ𝑀𝑁

2. For each layer 𝐿𝑖 with 𝑖 iterating from 1 to 𝑁:

• Compute 𝑜𝑖,𝑘 = 𝜑(σ𝑙𝑤𝑖,𝑘,𝑙 ∙ 𝑜𝑖−1,𝑙) with a selected activation function 𝜑 for all 1 ≤ 𝑘 ≤ 𝑀𝑖

3. Compute 𝐽𝑘 = 𝐸𝑘(𝑜𝑁,𝑘; 𝑡𝑘) with a selected error function 𝐸 for all 1 ≤ 𝑘 ≤ 𝑀𝑁

4. Compute training error 𝐽 𝑥; 𝜃 = σ𝑘 𝐽𝑘 = 𝐸(𝑜𝑁,𝑘; 𝑡𝑘) for current sample
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– Backpropagation is finally (e.g., with logistic activation function and mean square error):

Note: it is tempting to update the weights in the inner loop (step 4). However, we need the old 

weights in the preceding layer (next iteration in step 4) to compute 𝛿𝑖,𝑘. 

• While multilayer networks are still used in later layers in deep learning scenarios, the original 

approaches in 1980s and 1990s suffered from a number of issues (we will discuss them in the deep 

learning section). Essentially, the main issues involved numerical problems while computing the 

gradients (vanishing and exploding values) and the vast compute power necessary to learn 

moderate to large network. The smaller networks, on the other hand, did not work too well on typical 

classification scheme, and with SVM and kernel functions superior alternatives emerged.

4.9 Simple Neural Network Classifier

1. Given target 𝒕 and assume output 𝒐𝑁 from feed forward step; assume learning rate 𝜂 and momentum 𝛾

2. Initialize ∆𝑖,𝑘,𝑙= 0

3. Compute 𝛿𝑁,𝑘 = 𝜑′ 𝑜𝑁,𝑘 ∙ 𝐸𝑘
′ 𝑜𝑁,𝑘; 𝑡𝑘 = 𝑜𝑁,𝑘 ∙ 1 − 𝑜𝑁,𝑘 ∙ 𝑡𝑘 − 𝑜𝑁,𝑘 for all 1 ≤ 𝑘 ≤ 𝑀𝑁

4. For each layer 𝐿𝑖 with 𝑖 iterating from 𝑁 − 1 down to 1:

• Compute  𝛿𝑖,𝑘 = 𝜑′ 𝑜𝑖,𝑘 ∙ σ𝑙𝑤𝑖+1,𝑙,𝑘 ∙ 𝛿𝑖+1,𝑙 for all 1 ≤ 𝑘 ≤ 𝑀i

• Compute ∆𝑖,𝑘,𝑙= 𝛾 ∙ ∆𝑖,𝑘,𝑙 + 𝜂 ∙ 𝑜𝑖−1,𝑙 ∙ 𝛿𝑖,𝑘 for all 1 ≤ 𝑘 ≤ 𝑀i

5. Update weights 𝑤𝑖,𝑘,𝑙 = 𝑤𝑖,𝑘,𝑙 − ∆𝑖,𝑘,𝑙
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• Example: Face Detection

– Rowley, Baluja, Kanade [1998], Carnegie Mellon University, defined an elaborated algorithm for 

detecting faces at any scale and direction. To keep the neural network small, their approach was 

to first learn only normalized faces, and to then apply an exhaustive search for faces on images. 

The detection network is based on a 20x20 input network (preprocessed image window). In a first 

layer, 3 types of receptive fields are created: a) four 10x10 areas, b) 16 5x5 areas, and c) six 

overlapping 20x5 areas. Each area is fully connected to a hidden unit which is fully connected to 

an output. An output of 1 denotes a face, and an output of -1 denotes no face. 

– A second network (router network) was trained to estimate the direction of a face within a 

window. The 20x20 input network (preprocessed image window) is fully connected to hidden 

units which in turn are fully connected to 36 output values representing an angle of 𝑖 ∙ 36°. The 

angle can be used in the predication phase to normalize the face before application of the 

detection network.

4.9 Simple Neural Network Classifier
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– Once trained, we can find faces in an image as follows: first, we build a pyramid of images by 

subsampling to smaller and smaller sizes. This allows us to find faces of different sizes. Then, a 

20x20 windows is sliding across the image and for each location, the network tests whether the 

window contains a face. Due to the usage of normalized faces, the algorithm can return the 

location and direction of faces as well as estimating the position of the eyes.

4.9 Simple Neural Network Classifier
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4.10 Deep Learning

• The second wave of neural network research died very quickly after discovering more structural 

issues with how the learning algorithm works. Even though it was proven that neural networks can 

learn any function, that theory often would not materialize in practice. Especially, it was observed 

that adding additional hidden layers does not lead to better results, and bigger networks were 

becoming increasingly instable to operate. The famous notion of vanishing and exploding 

gradients and the competition of support vector machine (SVM) with elaborated kernels drove a 

whole research field into a dead end. Only the Canadian government continued to fund neural 

network research: Geoff Hinton and team published in 2006 a paper on deep belief network where 

they showed how they could learn a network layer wise overcoming the issues of early 

backpropagation learning. In parallel, the massive amount of labeled data sets (a prerequisite to 

start learning) and the massive parallelism of GPUs greatly accelerated the success of what is know 

simply called deep learning (although the concepts are much older).

• Let us first consider the vanishing gradient problem. In the network of the previous section, we had a 

input layer, a hidden layer, and an output layer and were optimizing the networks parameters by 

minimizing a quadratic cost function. The backpropagation algorithm computes gradients and would 

update a weight on the first layer with:

The gradient is the sum of two multiplications, each with factors of the form 𝑥 ∙ (1 − 𝑥) due to the 

usage of the sigmoid activation function. Note that 𝑥 stands for the outcome of a neuron after the 

activation function, hence 𝑥 = 𝜑 𝑠 =
1

1+𝑒−𝑠
. In addition, the multiplications include the weights of the 

last layer. If we add more hidden layers to the network, more factors of the form 𝑥 ∙ (1 − 𝑥) and 

more weights of later layers appear in the gradients of weights and bias of the first layer. 

4.10 Deep Learning

𝜕𝐽

𝜕𝑤1
= 𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 + 𝑡2 − 𝑜2 ∙ 𝑜2 ∙ 1 − 𝑜2 ∙ 𝑤7 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1
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– The derivative of the sigmoid function 𝜑 𝑠 =
1

1+𝑒−𝑠
is plotted 

on the right hand side. We note that the maximum value is

¼ and that values quickly drop on both sides. If we initialize

weights between 0 and 1, the gradient computation turns into

a series of multiplications of small values yielding very small

updates weights and biases even if they a significantly wrong.

This requires a huge number of iterations to move weights and 

biases towards their optimal values, hence, learning is very slow and expensive.

As a consequence, gradients are reduced to a fourth for each layer in the backpropagation 

making it very slow to train networks with lots of layers (GoogLeNet used ~20 layers). 

– On the other hand, if we scale the weights and input values beyond the typical −1,1 range, the 

gradients will explode as we a now multiply several numbers larger than 1. With only a few 

layers, gradients become exponentially larger as we propagate back, and with that the weights 

and biases grow in absolute values, resulting in potentially even larger gradients in the next 

iteration. Several attempts for deeper networks failed due to instable gradient computations.

• Deep learning addressed these issues with backpropagation friendly activation functions (ReLu), 

improved architecture (convolution, pooling, inception modules, residual networks), and improved 

regularization techniques (dropout, ReLu, L1, L2). We consider some of these concepts 

subsequently.

4.10 Deep Learning

𝜑′ =
1

1 + 𝑒−𝑠
∙ 1 −

1

1 + 𝑒−𝑠

𝑡1 − 𝑜1 ∙ 𝑜1 ∙ 1 − 𝑜1 ∙ 𝑤5 ∙ ℎ1 ∙ 1 − ℎ1 ∙ 𝑥1 ≤ 1/16

≤ 1/4 ≤ 1/4≤ 1



Page 4-102Multimedia Retrieval – 2020

• The rectified linear unit (ReLU) is a simple activation function replacing 

the sigmoid function used previously. There are now many alternative 

activation functions, but the ReLU marked an important step towards 

more stable gradient computations. It is defined as

The function is plotted on the right hand side. What is so special about this function? First, its is 

closer to the way biological neurons works while the sigmoid function (and its counterpart the 

hyperbolic tangent) were inspired by probability theory. Second, its gradient is either 0 or 1:

Hence, the gradients of the activation function do not accelerate the vanishing and exploding effects 

as described before. ReLU have become the standard activation function for deep learning despite 

some of the challenges that come with them:

– The output is no longer in the range [0,1]. If we train classifiers, how can we map the output of 

the last layer to class labels? The softmax function can be used to convert output values to class 

probabilities. It is often used together with the cross-entropy loss function to simplify gradient 

calculations as follows. Let 𝑜𝑘 be the 𝑘-th output value, and 𝑦𝑘 be the target label. Then:

4.10 Deep Learning

𝜑 𝑠 = max 0, 𝑠

𝜑′ 𝑠 = ቊ
0, 𝑠 < 0
1, 𝑠 ≥ 0
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𝜕𝐽

𝜕𝑜𝑘
= 𝑝𝑘 − 𝑦𝑘

𝐽 𝜽 = −

𝑘

𝑦𝑘 ∙ log𝑝𝑘

that is 

simple!

𝑱 is defined as the cross-entropy 

loss function. 𝜽 contains all 

parameters of the network, i.e., 

weights and biases.
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– The derivative of the ReLU can become 0 which means that back 

propagation stops at this unit and predecessors are not adjusted. 

While some see this as a regularization of the network by thinning 

out the connections (much like neurons in the brain are also not 

fully connected), others are concerned that an initial selection of 

weights and biases may randomly close paths and the network 

can only slowly recover from that (if at all). Instead, a common extension is the leaky ReLU

which is defined as (including its derivative):

The advantage is that the derivative is never becoming 0; it is small for negative values allowing 

a network to recover a closed path

• To overcome the vanishing and exploding gradient, deep learning improved the architecture of the 

network: instead of fully connected, cascading layers, deep networks uses convolution, pooling, 

inception, residuals, and regularizations to structure the network. Convolution, for instance, uses a 

few weights and biases that feed into several thousands output neurons. Hence, during 

backpropagation, even though the gradients may have become small, thousands of updates are 

summed up in one iteration. Regularizations, as another example, reduces the number of active 

connections. Similar to convolutions, this reduces the number of (active) parameters in the network 

making it more efficient to train and faster to learn. We look at these individual measure first in 

isolation and then put all together for a truly deep learning network.

4.10 Deep Learning

𝜑 𝑠 = ቊ
0.01 ∙ 𝑠, 𝑠 < 0
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• Convolution

– So far, we considered layers that were fully connected with the 

previous layer. Each connection had its own weight, and neurons

hat either their own bias or a shared bias.

– In contrast, the visual perception of nature works with receptive

fields that extract features from a spatial neighborhood. The fields

work the same across the entire visual range. In the traditional

learning, hence, images were pre-processed using different

algorithms (Gaussian, Sobel, HOG). However, that also limited the ways a network can learn.

– Deep learning introduced a new layer, the convolutional layer. As depicted above, it connects 

only a small spatial neighborhood (here 5x5 input neurons) to a hidden neuron. This occurs for all 

locations in the matrix, creating an identically sized hidden layer (using padding at the 

boundaries). The output of the neuron is given as:

An interesting aspect is that the weights 𝑤𝑘,𝑙 and the bias 𝑏 are shared across the neurons of the 

new layer. In fact, the above formula correspond to the convolution approach we have seen in 

the previous chapter (hence the name). Only, here we task the network to learn the best 

convolution for the task at hand.

– In addition, we can define an arbitrary number of such filters within a single convolution layer. 

The output at the hidden neuron is then not only a single value, but a 𝑁-dimensional vector which 

can be used as the input for the next layer.

4.10 Deep Learning

𝑜𝑖,𝑗(𝒙) = 𝜑 𝑏 +

𝑘,𝑙

𝑤𝑘,𝑙 ∙ 𝑥𝑖+𝑘,𝑗+𝑙
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– As the output of a convolution can be 𝑁-dimensional, so can the input be an 𝑀-dimensional 

vector. In fact, when processing images, we typically start with three channels. These three 

channels can then be mapped through convolution to an arbitrary number 𝑁 of output features (𝑁
is often called the depth of the output). The more general convolution functions is hence a 

mapping of an 𝑀-dimensional input vector 𝒙 to an 𝑁-dimensional output vector 𝒐. For a pixel 

location 𝑖, 𝑗 , we obtain:

For example, let us assume a 5x5 convolution on three (𝑀 = 3) input channels, and we want to 

convolute to 𝑁 = 20 output feature. The above formula contains shared biases 𝑏𝑛 for each output 

feature 1 ≤ 𝑛 ≤ 𝑁, and shared weights 𝑤𝑘,𝑙,𝑚,𝑛 for each of the 5x5 positions of the window, for 

each channel 1 ≤ 𝑚 ≤ 𝑀 and each output feature 1 ≤ 𝑛 ≤ 𝑁. Hence, we have 20 biases and 

5x5x3x20=1500 weights. The shared parameters are then used for all pixel locations in the 

image. If we started with a 256x256 input image with 3 channels, the output of the convolution is

now a 256x256x20 arrays. Interestingly, we do not need to map the color spaces as the network 

now can also learn the best linear combination of the channels.

4.10 Deep Learning

𝑜𝑖,𝑗,𝑛 𝒙 = 𝜑 𝑏𝑛 + 

𝑘,𝑙,𝑚

𝑤𝑘,𝑙,𝑚,𝑛 ∙ 𝑥𝑖+𝑘,𝑗+𝑙,𝑚
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– The special case of a 1x1 convolution is often used to reduce the dimensionality of the input 

values. Assume we want to learn a 5x5 convolution with 20 output features and we have 20 input 

features: we would need to learn 5x5x20x20=10’000 weights and 20 biases (in total 10’020 

parameters). A 1x1 convolution can reduce the number of parameters to learn as follows:

• We can first apply a 1x1 convolution to generate 3 output features (from the 20 input features). 

We require 1x1x20x3=60 weights and 3 biases for this layer (63 parameters in total).

• We then feed the 3 features from the 1x1 convolution into a 5x5 convolution with 20 output 

features. We require 5x5x3x20=1’500 weights and 20 biases (1’520 parameters in total)

• Overall, the new network structure has 1’583 parameters compared to the 10’020 with the 

naïve, straightforward mapping.

– An interesting aspect of convolution is that its complexity (number of parameters) is independent 

of the input size of the network. However, computational complexity (forward and backward 

steps) depend on the number of input values. For instance, an input sizing for 256x256 is 4 times 

faster than for a 512x512 sizing. If images are the input, the typical approach is to scale them 

down to a reasonable size that can be fed into the network. We will see later techniques to deal 

with scale variance, e.g., recognizing objects at different scales.

– Strides: convolution uses a sliding window which is applied at each location to compute an 

output value. In addition, it is also possible to define how far apart two subsequent windows must 

lie. A stride of (2,2) means that only every other value in both dimensions is used as the starting 

location of the window. Thus, only half as many rows and columns are created in the output. 

Strides can be used to reduce the initial size of the network. A (2,2) stride will lead to 4 times less 

output neurons. For images, this allows to scale down the size and compute features at various 

scales.

4.10 Deep Learning
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• Convolution layers are often followed by Pooling Layers. Pooling reduces the number of neurons 

and thus simplify the overall information. 

– A pooling layer is again a spatially organized structure. It 

summarizes the values of a window in the previous layer. For

example consider the picture on the right hand side: a 2x2 

max-pooling layer outputs the maximum value of the 2x2 window.

If we additionally use a stride of (2,2), this reduces the “feature

map” by 4 times. If the input consists of multiple channels, then

the pooling operator is applied at each channel individually. Here,

we do not apply an activation function:

– Next to max pooling, other summarization functions are possible. Typical examples include 

average pooling and 𝐿2-Norm pooling. 

– In deep learning, for instance image object recognition, pooling layers are an important control 

mechanism to reduce the spatial size of the representation and with that the number of 

parameters in the network model. This not only greatly reduces the amount of computation but 

also reduces the risk of overfitting. Recall that the best model is the simplest one among equally 

good methods. Also note that pooling only reduce spatial dimensions if the stride is larger than 1. 

It does, however, not reduce the number of features (depth). For that, a 1x1 convolution is 

required as described before.

4.10 Deep Learning

𝑜𝑖,𝑗,𝑛 𝒙 = max
𝑙,𝑘

𝑥𝑖+𝑘,𝑗+𝑙,𝑛
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• Regularization is an important element in deep learning to prevent overfitting to the training data. 

– As we discussed earlier, overfitting occurs if the model has too many

parameters and hence memorizes the data rather than generalizing

rules from it. The picture on the right hand shows a simple example

of what overfitting means. While the models on the right side may use

dozens of parameters, a deep neural network can have several

millions of parameters. Hence, how do we prevent the network

from simply memorizing the input to target mapping, and how can

we detect an overfitting problem.

– Overfitting is the lack of generalization and will become evident if we apply a trained to new data 

items that were not used during training. The validation set can be used to detect overfitting. 

Overfitting can be recognized as follows:

• Almost perfect accuracy for the training set at the end of the learning

• Significant lower accuracy for the validation set at the end of the learning

• The gap between training accuracy and validation accuracy is growing over the learning time

4.10 Deep Learning
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– We have several options for regularization

• Adjust the network structure and reduce the number of parameters—not really an option 

given that we want to learn complex tasks. The success of small networks was rather limited.

• Expand the training set—not always feasible, but we can modify and alter the existing data 

set. For instance, small rotations, varying brightness, adding noise, Gaussian filters, etc. With a 

few such modifications, we can create 10 to 100 times more training data without any 

additional labelling costs.

• Adjust the cost function to prefer simpler models. A simple method is to add a penalty to the 

cost functions for the use of large weights. Smaller weights (preferably 0) reduce the 

complexity of the model. This way we can balance overfitting to the training with a penalty for 

more complex models. Our cost function looks now as follows (L2 regularization):

With 𝕋 being the number of training samples and 𝜆 > 0 the regularization parameter. Note 

that we only add penalties for the weights but not for the biases. With this, we have a new 

update for 𝑤𝑖 during back propagation. Let ∆𝑖 be the update for 𝑤𝑖 without regularization, then:

Regularization adds a weight decay factor 1 −
𝜂𝜆

𝕋
for each weight, making them gradually 

smaller unless the gradient compensates enough to increase weights in the learning step. This 

was shown to greatly reduce the risk of overfitting.
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• The Dropout technique heuristically adjust the network structure during the learning phase. At 

any point in time during the learning phase, only parts of the network are active (with a random 

selection of nodes). This selection can change over time: 

– At each training step, nodes are dropped out with a probability of 1 − 𝑝. Over the learning 

time, different sets of active nodes learn the training example

– Feed forward: if a node is dropped out, its output value is set to 0. We keep weights and 

biases as the node may become active in a subsequent training step

– Back propagation: if a node is dropped out, it does no longer propagate changes. The 

weights of connection to/from such a node do not receive an update.

– The final model for prediction uses all nodes but compensates their weights with (1 − 𝑝). 

We can interpret the dropout technique as learning many different networks at the same time.

Finally, we combine all the individual networks into a single, bigger network. This helped with 

overfitting as each individual subset of the network has adapted differently to the training set. 

By “averaging” the networks for prediction, the impact of overfitting in one such sub-network is 

evened out the other sub-networks (which may have overfitted other aspects of the training set)

4.10 Deep Learning
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• Putting all together

– Let us start with a simpler example: the MNIST 

database (see next page) consists of 28x28 

images depicting hand written digits (0, 1, 2, …, 9)

– The conventional approach with neural network 

used fully connected hidden layers like in the 

picture on the top right. Its performance was ok 

but methods like SVM and k-NN classification 

proved to be better.

– The deep learning approach: use of convolution 

and pooling greatly improved performance. The 

picture on the bottom right show a possible 

architecture. The first 5x5 convolution produces 

20 features with a ReLU activation (here, no 

padding is applied hence the size of the network 

reduces to 24x24). A subsequent 2x2 max-pooling 

layer reduces the spatial dimension to 12x12 (with 

20 features). These 12x12x20=2880 elements are 

fully connected to 100 neurons. Finally, a softmax

layer reduces the 100 neurons to 10 classes. The 

output neuron with the highest value denotes the 

class for prediction.
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• The original black and white images from NIST 

were size normalized to fit in a 20x20 pixel box 

while preserving their aspect ratio. The 

resulting images contain grey levels as a result 

of anti-aliasing. The images were centered in a 

28x28 image by computing the center of mass 

of the pixels and moving the 20x20 image.

• The data set consists of 60’000 training items 

and 10’000 test items. The algorithms must 

learn a prediction method to map an image to 

one of the 10 classes 0, 1, 2, …, 9. The error 

rate is computed against the test data.

• The best method currently (a convolutional 

network) has an error rate of 0.23%. It is 

noteworthy to comment that some of the 

wrongly labelled images are also a challenge 

for humans to read correctly.

• List of further datasets for machine learning

– https://en.wikipedia.org/wiki/List_of_dataset

s_for_machine_learning_research
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• GoogleLeNet for image classification

– GoolgLeNet was the winner of the ILSVRC 2014 Classification Challenge. The contest consisted 

of 500k images with object labeling in 200 classes. 

– A key ingredient of their network architecture included the use of inception modules which are 

building blocks for the network as shown below:

• The inception module applies different operators on the output of a previous layer. In the 

example below, 1x1, 3x3, 5x5 convolutions and a 3x3 max pooling are all applied in parallel. 

Their output is then concatenated to produce the output features. The idea is that the network 

should learn itself, which of the operator works best for certain scenarios. 

• To control the complexity of the model, 1x1 convolutions (marked in yellow) are added to 

reduce the number of features. As previously discussed, this greatly helps to reduce the 

computational complexity of a 3x3 or 5x5 convolution.

4.10 Deep Learning
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• The full architecture of GoogleLeNet for 

image classification

– Input: 224x224 RGB images

4.10 Deep Learning

Type size/stride output #params #ops

convolution 7×7/2 112×112×64 2.7K 34M

max pool 3×3/2 56×56×64

convolution 3×3/1 56×56×192 112K 360M

max pool 3×3/2 28×28×192

inception (3a) 28×28×256 159K 128M

inception (3b) 28×28×480 380K 304M

max pool 3×3/2 14×14×480

inception (4a) 14×14×512 364K 73M

inception (4b) 14×14×512 437K 88M

inception (4c) 14×14×512 463K 100M

inception (4d) 14×14×528 580K 119M

inception (4e) 14×14×832 840K 170M

max pool 3×3/2 7×7×832

inception (5a) 7×7×832 1072K 54M

inception (5b) 7×7×1024 1388K 71M

avg pool 7×7/1 1×1×1024

dropout -40% 1×1×1024

linear 1×1×1000 1000K 1M

softmax 1×1×1000
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• Tensorflow

– Tensorflow was developed by the Google Brain team, initially for Google internal use only. But 

meanwhile the framework is openly available under Apache 2.0 license and provides a simple to 

use Python programming front end to its core.

– The term tensor stands for an arbitrary dimensional array holding the data values (often float32). 

– Tensorflow has two elements

• Nodes are operators on input tensors and produce an output tensor

• Data edges combine nodes and connect outputs with inputs

– The Python front-end provides a simple way of building these

graphs based on constants, variables and a rich set of defined

operators. In the context of deep learning, most known methods

have been implemented into tensorflow allowing for an efficient

way of learning and applying a network

– Another aspect of tensorflow is the distributed execution of the graph

and the support for CUDA (GPU based operations) and parallel

execution of operations. The largest networks can span hundreds of

machines and can run against thousands of CUDA cores accelerating

computations of large graphs. All this is transparent to the end-user,

i.e., the user only must define the graph and tensorflow considers the

fastest way to compute the graph.

– For more information see: www.tensorflow.org
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• In this chapter, we only looked at deep learning for 

spatial data sets (images, videos). But there is a 

great number of further architecture extensions to 

support, for instance, natural language processing, 

memorization of facts and data, and so on.

• The Asimov Institute published in 2016 a map 

outlining the neural network zoo

http://www.asimovinstitute.org/neural-network-zoo/
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• Frameworks and Libraries

– OpenCV (https://opencv.org) is an advanced computer vision library original written for C/C++. 
But there are also bindings for Python, Java, and other languages.

– scikit-image (http://scikit-image.org) is an advanced computer vision library written in Python. It 
provides all basic image manipulation operations as well as advanced feature extraction 
algorithms (however, not SIFT but alternative approaches to SIFT)

– Librosa (http://librosa.github.io/librosa/) is a Python library for advances audi and music analysis. 
It provides base algorithms to create music retrieval systems.

• Interesting courses at other universities

– Multimedia Content Analysis,National Chung Cheng University, Taiwan, 
https://www.cs.ccu.edu.tw/~wtchu/courses/2014f_MCA/lectures.html#00

– Computer Vision, University of Washington, USA, 
https://courses.cs.washington.edu/courses/cse455/

– Computer Vision, Penn State University, USA, http://www.cse.psu.edu/~rtc12/CSE486/

– Computer Vision, University of Illinois, USA, https://courses.engr.illinois.edu/cs543/sp2012/

– Computational Photography, University of Illinois, USA, 
https://courses.engr.illinois.edu/cs498dh/fa2011/
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(CVPR), 2015.

– Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997. 

– M. Nielsen, Neural Networks and Deep Learning, free online book, Dec 2017.

– I. Goodfellow, Deep Learning (Adaptive Computation and Machine Learning series), 2016. Free 

online version available at: http://www.deeplearningbook.org

– Tensorflow, Apache 2.0, https://www.tensorflow.org/

– Scikit-learn, BSD, http://scikit-learn.org/

– Online Neural Network: http://playground.tensorflow.org/
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