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4.1 Introduction

+ We already talked about the semantic gap previously:

— With multimedia content, the raw material (signal
information, pixels) is not suitable for query matches.
For example, the wolf on the right hand side is a set of
thousands of pixels that are interpreted by our brain as
a depiction of an animal. But there is no straightforward
correlation between the pixels and the concept of
animal. This is the so-called semantic gap, i.e., we can
not ask with natural language and match that directly to
the signal information.

— To close the semantic gap, we need to extract concepts
from the signal information and bring it to a level that
allows users to match their information need

* In the following, we start with image data:

— First, we have a closer look at human perception (color,
form, shape) and describe perception with low-level
feature descriptors (e.g., color distribution). With
similarity search, we can bridge the semantic gap

— Second, we use learning approaches to extract
concepts and classify the content in various ways.
These classifiers can be treated like meta data or text
annotations. In a later chapter, we also combine
similarity and text/meta data based search methods

Wolf on Road with Snow on
Roadside in Yosemite
National Park, California on
Jan 24, 2004

Raw Media

-

Descriptors

-

Objects
(segmentation)

-

Object Labels
(segmentation)

-

Semantics
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« Similarity Search is another approach to close the semantic gap:

— Users are asked to provide samples (or provide feedback on presented results) of what they like
to find. A good example is Shazam: you record a short fragment of a song, and the service
returns you all the information about artist, song title, and even lyrics. Instead of tying in
keywords (for instance fragments of lyrics), you provide a sample of what you'd like to find.
Similarity search is the challenge of extracting features that allows the systems to find close
matches (from a human’s perception point of view). A few illustrations compared to text features:

text documents Images

feature
extraction

! feature
‘ extraction
docID =doc10
dog —» word 10, word 25 .@u

cat > word 13 color
home — word 2, word 27 histogram

v
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audio files

phonemes: imnOrd@namfo:rmita:gs...

feature _ '
I text: Im Norden am Vormittag...
acoustical features: D:U]:D
video files

video sequences

16 kH=
12 kH=

8 KkH=

4 kH=

subtitle: [President] | never had ....
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* Feature design for images

Step 1: Step 2: Step 3: Step 4:
Image Normalization Image Segmentation Feature Extraction Feature Aggregation

— Image Normalization includes a number of pre-processing steps including noise elimination,
normalization of signal information, adjustments and corrections of the raw data. For example,
when analyzing frames in an interlaced video sequence, deinterlacing is a typical step to reduce
combing effects that interfere with feature extraction. Heavily depends on the data set.

— Image Segmentation partitions the image into sub-areas for which perceptual features are
extracted. We distinguish between global features (for the entire image) and local features (for a
region within the images). If we have local features, the aggregation step (4) is necessary to
obtain a global feature for the image.

— Feature Extraction describes the signal information based on perceptual aspects such as color,
texture, shape, and points of interest. For each category, a number of methods exists with
different invariances (e.g., robustness against scaling, translation, rotation). We do not consider
labeling of images in this chapter (see the next chapter for high-level features)

— Feature Aggregation summarizes perceptual features to construct a final descriptor (or a set of
descriptors). The aggregation often uses statistical approaches like mean values, variances,
covariances, histograms, and distribution functions. With local features, we can further derive
statistical measure across the regions (e.g., self-similarity, mean values, variances, covariances).
In the following we often discuss feature aggregation together with the feature extraction method.
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» The definition of similarity also comes with mapping to invariances, i.e., changes applied to the
material that do not impact similarity (or only have a small impact). Examples include:

Translation invariant: (small) shifts of the picture have no significant impact on feature values
Rotation invariant: rotations of the image have no significant impact on feature values

Scale invariant: up- or down-sampling does not change the feature value. Note that scale
differences are very common due to different image resolutions. In the absence of a normal sized
scale, it is even more important to demand scale invariance

Lightning invariant: Adjustments of lightning (daylight, artificial light, brightness adjustments,
gamma corrections) have no significant impact on feature values

Noise robustness: noise, JPEG artefacts, quantization errors, or limited color gamut have no
significant impact on feature values

» Invariances are important to recognize the same objects under different conditions. For instance,
Shazam is presented with recordings of “bad quality” due to background noise, audio recording
issues (for instance, you are recording in a bar with poor loudspeakers), or people talking over the
music. The features used by Shazam must be robust enough to be invariant for a wide range of
alterations of the raw signal information (user is not able to prevent a “perfect sample”). This goes
much further than just spelling corrections in text retrieval. The design of such features is beyond
the material of this course, but we look at some of the basic aspects of perception and invariance.
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« A very common method to measure similarity is through a distance function. Assume we have a
feature space R? with d dimensions. A query Q is mapped into this feature space yielding a feature
vector g € R9. The same mapping leads to feature vectors p; € R¢ for each of the media objects P;.
In case of uncorrelated dimensions, a weighted L;-norm is a good selection to measure distances

— The weights are chosen such that the ranges of all dimensions become comparable. Several
strategies exist to compute the weights. Here are two examples:

1

1
w; = : w; = —  with g; being the standard deviation of values in dimension j
mlaX pi,j — miln pi,j O']

— The distance between the query vector g and media vector p; is then:

L,-norm or Manhattan distance: | 6(q,p;) = zwj |a; —vijl
j

L,-norm or Euclidean Distance: | §(q,p,) = \/z w? - (q; — pij)
j

Ly-norm or k-norm: 5(q,p)) = "JZ Wk (2= pi,)°
7

Ls-norm or Maximum norm: 5(q,p;) = max(w; - |q; — pi|)
]
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— For correlated dimensions, we can use a quadratic function with a matrix A € R? that
compensates correlation. In this case, weights are already factored into the correlation matrix:

* Quadratic function: 5(q,p,) = (q —p)TA(q — D))

— The following visualization shows all distance measures. The blue area depicts the neighborhood
areas around the centers of the areas (e.g., a query vector):

A

Euclidean

\

dimension 1

/ Maximum norm

~~

uadratic function
Manhattan = Q

»

dimension 2
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— Example for weights: consider the following two dimensions
 In dimension d,, all values are between 0 and 1.
* In dimension d,, all values are between 100 and 200.

If we would apply an unweighted distance function, dimension d, would dominate dimension d;.
In other words, regardless of how close the features are in dimension d;, only the difference in
dimension d, really matters. Similarity is hence based (almost) entirely on dimension d,. With the
weights, we can normalize the different ranges along dimensions. Note that all metrics are based
on differences so that the absolute values do not matter if ranges are similar.

« Searching for the most similar object translates to a search for the object with the smallest distance,
the so-called nearest neighbor. We note the reversed relationship between similarity values and

distances:

— large distances correspond to low similarity values

— small distances correspond to high similarity values

We can express similarity search as a nearest neighbor search:

Nearest Neighbor Problem:

» Given a vector g and a set P of vectors p; and a
distance function 6(q, p;) P;
l

* Find p; € P such that:
vj,pj € P:6(q,p;) <6(q,p))
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« If we want to obtain similarity values from the distances, we need a so-called correspondence
function h. Let g(q, p;) denote a similarity function between query vector g and a media vector p;.
The following properties must hold:

e g(q,p;) is in the range [0,1]

» o(q,p;) = 0 denotes total dissimilarity between query vector g and a media vector p;

e g(q,p;) = 1 denotes maximum similarity between query vector q and a media vector p;
— The correspondence function translates between distances and similarity values as follows

o(q,p;) = h(5(q,p))) 5(q,p;) = h™'(o(q,p))

It must fulfil the following constraints

e h(0) =1

e h(0) =0

e h'(x) <0 (h must be a decreasing function)

— The best method to build a correspondence function is to use the distance distribution ps. We
obtain the mapping by integrating the distribution function up to the given distance and subtract

that value from 1. This guarantees that all constraints hold true:
distribution ps

X

h(x) =1 —f ps(x)dx 08

0

Correspondence
function h
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« Signal information is often too low level and too noisy to allow for accurate recognition of higher-
level features such as objects, genres, moods, or names. As an example, there are exceedingly
many ways how a chair can be depicted in an image based on raw pixel information. Learning all
combinations of pixels or pixel distributions is not a reasonable approach (also consider clipped

chairs due to other objects in front of them).

« Feature extraction based on machine learning abstracts lower level signal information in a series of
transformations and learning steps as depicted below. The key ingredient of a learning approach is
to eliminate noise, scale, and distortion through robust intermediate features and then cascade one
or many learning algorithms to obtain higher and higher levels of abstractions.

* Newer approaches in deep learning even learn automatically which features to extract and how to

transform features to make them more robust.

c
=
E
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. pemo: clarifai

— Clarifai provides APlIs to recognize ‘models’ in images. Developers can use the APIs to retrieve
tags from existing models or can add and train new models.

— https://www.clarifai.com

English (en)

chair 0.987

i Probability that the

— model / concept is

furniture present in the picture

wooden 0.972

retro 08.963

seat 0.945

family 8.915

aesidh it

antique 0.892

interior design 0.882

stool 8.872 :::ﬁaﬁ:;'e" QUL
g TRY YOUR OWN IMAGE OR VIDEO saceration i

empty 8.861

« Demo: Windows Hallo (face recognition)
» Demo: Recognition of handwriting
« Demo: Speech Recognition
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* Machine learning has greatly improved over the past years because of three factors:

— Deep learning has introduced new layers and methods that removed the limitations of (linear)
multi-layer networks.

— CPUs and especially GPUs have allowed for much deeper and larger networks. What took
months in the 90s can be computed within hours 20 years later

— Availability of frameworks like Tensorflow makes it very simple to build a huge distributed network
to compute large-scale neural nets.

5000 7]

2020: RTX 3090
CUDA: 35,600 GFLOP/s
Tensor: 285 TFLOP/s

GeForce GTX TITAN

4500 -

NVIDIA Titan/Tesla: high-performance

NVIDIA GPU SP

GPUs with 5000+ CUDA cores

4000;
35005
3oooé
2500%

2000 -

Theoretical peak (GFLOP/s)

Ry

1]

(=

o
1

1000 -

500 -

GeForce FX 5800
01 V\ﬁllame‘ﬁ_e:( Prescott

GeForce GTX 580
GeForce GTX 480

k20X NVIDIA GPU DP
Tes! 02075/
s Haswell ' | tel DP

Sandy /Budg( vy Bridge
crest Harpengsﬁla C1060WW

Bloomfield

2000 2002 2004

2006 2008 2010 2012 2014
Release date

SP: single precision (32 bits)
DP: double precision (64 bits)

The biggest improvement over the
past ten years was the creation of
CUDA, an extreme parallel computing
platform created by Nvidia. In
combination with new neural network
algorithms and the advent of
map/reduce as a generic distributed
computing paradigm, enormous
amounts of data became processable
through the sheer brute force of 1000s
of connected machines. Going forward,
we will see highly specialized chips
(like Google’s TPUs) and cloud
compute hardware (like HPEs ‘“The
Machine’) further accelerating the hunt
in ever larger data lakes.

Fun fact: the next gen game consoles
have more than 10,000 GFLOP/s
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« Although not every aspect of the human brain is understood, there are a number of key insights that
helped to further developed and refine deep learning. For instance:

— It was believed that the brain adapts in the first months S
of a new born and does not change afterwards. This it
belief was disproved: next to short term and long term i
memory adjustments, the brain is also able to functionally |1 j
change. Areas of the brain that are used more frequently L
become more excitable and become easier to activate.
The brain can shift how and when such areas are getting o
activated and with that can provide more neurons for a :
task. It has been shown, with limitations, that different
areas can take over functions after brain damages. For
instance, somebody who loses eye sight with age is able
to accentuate other senses and to use them as compensation of the visual information (no longer
stimulating the visual cortex).

— What does this mean? The brain is most likely working with a “universal algorithm” rather than
task dedicated learning patterns. The way we learn a musical tune is similar to learn a
complicated sequence of movements. Even more, it is believed that the algorithms are rather
simple but given the dynamically built connections and the sizes allow for even very complicated
tasks. But as you know, learning rates greatly vary between individually. While some learn
patterns extremely fast, others require months and months of hard training. It is shown that we
learn best with increasing difficulties and if we struggle in the practice. Every learning session will
change your brain, but each one will adapt in different ways.

« Many researchers switch between neuroscience and artificial intelligence and have stimulated both
areas with exchange of ideas.
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4.2 Visual Perception

» Let’s first consider how we perceive and process visual

information. Perception of light is the result of illumination of

an object and the amount of illumination that is reflected by
the objects in front of us:

— lllumination I(x,y, z) is the amount of lumens per square

meter (=lux). Lumen is a measure of energy per second
modelled along the eye’s sensitivity range of light.

— Reflectance r(x,y, z) is the amount of illumination

reflected by the surface of objects. Reflectance is a function

of wavelength, absorption, and direction of illumination.
Typical illuminance and reflectance values are given below:

[lluminance (lux) Surfaces illuminated by

0.0001
0.05-0.36
20-50

50

100

320-500

400

1000
10,000-25,000
32,000-100,000

Moonless, overcast night sky

Full moon on a clear night

Public areas with dark surroundings
Family living room lights

Very dark overcast day

Office lighting

Sunrise or sunset on a clear day.
Overcast day; typical TV studio lighting
Full daylight (not direct sun)

Direct sunlight

Reflectance [%]

100
90
80
70 i _ Pine trees

ree:

60

50-
40-
30-
20~
10-

Surface Normal (N)

z

R:G:B;

Light Source (L)

Perfect Reflector (R)

A\

; Vie;fJer v)

Fragment

Material Reflectance (RmGmBm)

Chlorophyll has its reception peaks in
the blue and red spectrum of light.
Hence, we observe only the reflected
green spectrum of light.

-

VI S YRS TR (R [yl PR NN VI 1| el | [ Y | ] |

 ELERLEE LSRR

Natural surfaces

Light sandy soil

0.5

1.0

1.5 2.0

Wavelength [um]
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* The eye receives light and translates the wavelengths into electro-chemical impulses

— The cornea, pupil, and lens form an adaptive optical system to focus on objects (distance) and
adjust to light exposure (aperture). The lens works like an ordinary camera and projects an
(upside-down) image of the world onto the retina at the back side of the eye.

— The retina consists of three cone types and rods; they are the photoreceptors that transform
incoming light energy into neural impulses. The cones enable color vision, specialize on different
wavelength ranges, and are very frequent in the center of vision (macula and fovea)

* L-cone (long wavelength) peak at 564nm corresponding to the color red
* M-cone (medium wavelength) peak at 534nm corresponding to the color green
« S-cone (short wavelength) peak at 420nm corresponding to color blue

The rods perform better at dimmer light and are located at the periphery of the retina. They focus
on peripheral vision and night vision.

420 nm 498 nm 534 nm 564 nm
Green Red
Blue cones Rods cones cones

Retinal Pigment Epithelium 100 PO .

Cornea

50

Normalized absorbance

*., Medium \ Long

0 -4 - |IIIlIllII]IIII|IIII]‘IIII|IIII|

400 500 600 700

Violet Blue Cyan Green - Red

Wavelength (nm)

Optic Nerve
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— The human eye has about 6 million cones and 120 million rods. The
distribution is roughly 1% S-cones (blue), 39% M-cones (green) and
60% L-cones (red). The picture on the right shows the distribution near
the center of sight (blue cones occur here up to 7%). These ratios can
greatly vary and cause color blindness. Cones are focused around the
fovea (see lower right side), while rods fill the periphery of sight.

— Visual Acuity describes the clarity of vision and how well the eye can
separate small structures. With the standard Snellen chart, a 20/20 vision
denotes that the eye is able, at 20 feet distance, to separate structures
that are 1.75mm apart. This corresponds to roughly one arcminute
(1/60 degree). A 20/40 vision denotes that a person can see things at 20
feet distance as good as a normal person at 40 feet distance. The best
observed vision for humans is 20/10. Visual acuity is limited by the

optical system (and defects like short-sightedness) and the number of
cones and rods per mm?,
2,0 6/3 20/10 0.5' Snellen E P
Chart P,
1,33 6/45  20/15 0.75'
1,0 6/6  20/20 1 FP o Rods
0,8 6/7,5 20/25 125: 'lrgqa:rI:dS?ols T o Z 3 2070 Blind spot
0,67 6/9 20/30 1.5 drive a car LPED 4 2050
0,5 6/12  20/40 2' pper> o Cones
[ ¥ ——
0,4 6/15  20/50 25 Triores v NSRRI SRR
0,2 6/30 20/100 5' — & 2= Angle from fovea
01 6/60  20/200 10’ PR 0
0,05 6/120  20/400 2 "
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— The comparison with animals shows great differences in terms of visual sensing. A cat has a
much lower visual acuity of 20/100 and less cone types (blue at 450nm and yellow at 550nm),
but cats have better night vision (6-8 times) and a broader range of vision (200 degree vs 180
degree). Hence, a cat has a much blurred view compared to humans. Dogs are also dichromatic
(blue/yellow) with a visual acuity of 20/75. Elephants have a 20/200 vision, rodents a 20/800

Human

Cat

On the other side, eagles and bird of prey have a 20/4 vision
(5 times better than the average human). In addition, some birds L vem o wsmo s S
are tetrachromatic and see the word with four independent color
channels. The goldfish and zebrafish also have four different
cone types. The additional cone type is typically in the ultra-
violet range with a peak at about 370nm.

Absorbance
&
|

— Conclusion: our color vision is a sensation but not physics. To
understand how we perceive images, we need to follow the way . . | .
the human eye (and brain) processes light. o
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The first processing starts within the retina (we will see similar concept in deep learning by means of
convolution). The chemical process in the rods and cones release glutamate when its dark, and stop
releasing glutamate when its light (this is unusual for a sensory system). The Bipolar Cells connect
to several rods and cones (but never both together) and perform a simple operation:

— On-Bipolar cells, fire when it is bright
— Off-Bipolar cells, do not fire when it is bright

The next stage, the Ganglion Cells build the first receptive fields combining various bipolar cells. In
a nutshell, they perform edge detection with a center and a surround area.

— On-Center ganglion fires, if center is bright and surrounding is dark
— Off-Center ganglion fires, if center is dark and surrounding is bright

Several additional cell types (horizontal cells, amacrine cells) act as inhibitors to accentuate
contrast. This increased contrast can also lead to falsely under-/oversaturating dark/light
boundaries. Lateral inhibition provides negative feedback to neighbor cells to further strengthen the
contrast between strong and weak signals. This can lead to so-called after-images.

To Optic Nerve

Rod (monochromatic vision)
o A

i L] | T ﬁ’FF
i T (on) — 1
0 LIGHT ON &/ LIGHT ON

* H‘ O; . OFF : If both areas of a cell's receptive field are illuminated
O. E_e'ispt“’e B A1 IR together, there is little reaction from the cell.
1el
: LIGHT ON

The most effective way of maximizing the fir_ing qf an \
on-center or off-center cell is to completely illuminate Different Ganglion Cells at

either the “on area” or the “off area” of its receptive . - )
field. work for their receptive field

Ganglion Cell

Bipolar Cell Cone (color vision)

Bipolar cells can connect to
many Ganglion Cells
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« The Lateral Geniculate Nucleus (LGN) performs similar Visual fild of left eye Visual fied of right eye
receptive field functions as the ganglion cells but with
massive feedback from the cortex. We first observe a split of o ’ e mage n e
the two visual fields (visual left is processed by the right side '
of the brain, visual right is processed by the left side). oAehroine.
Secondly, the information of both eyes is combined. The first Optic nerve
two layers focus on rods and the detection of movements oo g
and contrast. The next 4 layers process information from =
cones to perceive color and form (finer details).

 The Primary Visual Cortex (V1) performs detection of O /-
edges, orientation, some of them variant to position, others e Ml oo
invariant to position. Neurons in the visual cortex fire when | i
the defined patterns occur within their receptive fields. In the
lower levels, the patterns are simpler; in higher levels, more
complex patterns are used (e.g., to detect a face). The

stream of information flows along two paths to higher levels.
Primary ‘vrsual

— The Ventral Stream (ventral=underside, belly) specializes o of o vt '
on form recognition and object representation. It is o) v
connected with the long-term memory.

— The Dorsal Stream (dorsal=topside, back) focuses on
motion and object locations, and coordinates eyes, heads,
and arms (e.g., reaching for an object)

« Cortical magnification denotes the fact that the majority of
neurons act on the information in the center of vision
(creating a much denser, magnified view of the center)

Nasal
halves
of
retinas

Temporal half
J of nght retina

SUBDIVISIONS OF
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« The visual perception system is optimized for natural image recognition. Artificial illusions
demonstrate very nicely how the brain processes the perceived environment in many ways:

Shake your head
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4.3 Image Normalization

* Inimage processing, an image is usually described as a discrete function mapping a 2-dimensional

coordinate to an intensity value (gray images) or a color value. We will use the function i(x, y) and
i(x,y) to denote such images:

grayscale images: i(x,v):N? - [0,1]
r(x,y)
g . . . N2 3 g(x, y)
color images: i(x,y):N* - [0,1] b(x.y)
a(x,y)
color channels (red) r(x,v):N? - [0,1]
color channels (green)  g(x,y):N? - [0,

1]
color channels (blue) b(x,vy):N? - [0,1]
a-channel (transparency) a(x,y): N2 - [0,1]

with 1<x<N/1<y<M

— Itis custom to start with the upper left pixel (x = 1,y = 1) and to end with the lower right pixel

(x = N,y = M). x denotes the row in the image (vertical axis), while y denotes the column in the
image (horizontal axis).

— Quantization is often applied to avoid fixed point numbers in the image representation.
Quantification is an approximation of the fixed point number as follows:

True Color (32-bit): f(x,y):N? - [0,255] approximating f(x,y) = L&) @
i,1,9 b a

255

Deep Color (64-bit): f(x,y):N? - [65535] approximating f(x,y) = ];:(;);:5)

— Other quantization with indexed colors exist but can be mapped to one of the above.
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* Depending on the data collection, we need to perform a number of image processing steps to
normalize the data sets and to achieve the best results when comparing features afterwards. Some
of the processing steps ensure robustness against noise, rotation, color saturation, or brightness
which are essential for the algorithms to work.

— Rotation — if we need rotation invariant features (texture, shape) but do not have enough
information to normalize direction, we can rotate the image in defined steps of degrees, extract
features, keep all features for the image, but use them as individual representation (no
combination of the features). A typical approach is by 90 degrees (which makes it simple). In
object recognition (faces), more intermediate angles are possible (e.g., 15 degrees)

— Histogram normalization — here, histogram means the distribution of brightness across the
image. In poor sensing condition, the range of values can be very narrow, making it difficult to
distinguish differences. Histogram equalization is the extreme case, where
the range of values is forced to a uniform distribution. The picture on the right | T e’
shows very nicely the increased contrast and ey
the sharper contours of objects. With the T
original picture, edge detection may not lead
to the expected results. Similar approaches are
histogram shifts (lighter, darker), histogram
spreading, or gamma correction.

— Grayscale transformation — The original color &
Image is transformed to a grayscale image. k
Depending on the source color model, different
formulae define how to calculate the gray value.
Often applied before texture and shape analysis §
as color information is not needed.
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— Scaling — Up- or down-sampling of the image to fit within a defined range of acceptable sizes.
For instance, a neural network might expect the input to fit into the input matrix. A shape or
texture feature is sensitive to different scaling and may yield different results. The usual methods
are bilinear or bicubic interpolation to avoid the creation of artefacts that could negatively impact
the algorithms (in combination with Gaussian filters when down-sampling). If the algorithm is
complex and expensive, down sampling is often applied to reduce the efforts. In such cases, the
results are computed for the down-sampled image only, and then mapped back to the original
Image (see k-means clustering later on for image segmentation).

— Affine Transformation — The generalization of translation, rotation and scaling. The original
coordinates (x, y) are mapped to a new pair (x’,y") as follows:

xl
yl
1

With this matrix representation, we can simplify the concatenation of various operators to obtain
a single matrix again. To improve results, bilinear or bicubic interpolation is needed to estimate
pixel values in the new matrix. Note: the affine transformation above does not necessarily map to
a discrete and positive coordinate systems, and some areas in the new image space may have
unknown values (think about a rotation by 45 degrees mapped to minimum bounding box).

— Noise Reduction / Sensor Adjustments — Sensors, transcoding and digitization can add noise
(think of white and black pixels across the image) that can significantly impact the feature
extraction process. Common methods are mean filter or Gaussian filters as described next. Other
adjustments may include color corrections, distortions, moiré patterns or compression artifacts.

X

y
1

11 12 Q13
a1 QAzp Q3
0 0 1
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— Convolution is a mathematical operation that combines two functions to produce a new function.
It is similar to the cross-correlation but considers values “backwards” and integrates them. The
discrete two-dimensional form is given as (*x denotes the convolution operation)

(f * 9l y] = 2 Efx nlly = m] - gln][m]

Nn=—oc0 m=—0oo

* In image processing, g is called the Kernel and is typically a very small two-dimensional
quadratic (and often symmetric) function with range [—K, K] X [—K, K] with small values K =
1,2,3,4, ... Applied to an image channel f(x,y) we obtain

(f * 9lxy) = Z fo—ny ml - g[n]fm]

n=—K m=-K

« As a visualization, assume we calculate the convolution of a 3x3 image with a 3x3 kernel for
the center point of the image (x = y = 2). For example:

a b c| 1 2 3
d e f]*[él 5 6])[2,2]=(i-1)+(h-2)+(g-3)+(f-4)+(e-5)+(d-6)+(c-7)+(b-8)+(a-9)
g h i 7 8 9

Note that the Kernel is actually flipped horizontally and vertically and then dot-wise multiplied
with each image element. If the Kernel is symmetric, we can just apply the dot-wise
multiplication to compute the convolution. Further note, that the Kernel is moved with its center
across the image to compute a new value for that current pixel. If the Kernel overlaps the
Image, we use 0-padding for pixels beyond the boundary to keep image dimensions.
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« Kernel Examples: (taken from Wikipedia for illustration purposes). When defining a Kernel, it is
important to normalize the output by the sum of all Kernel values, otherwise channel values
may exceed the defined boundaries ([0,1] or, if quantized, [0,255]).

image Result

0 0 O
|dentity 0 1 0
0 0 O
-1 -1 -1
Edge Detection -1 8 -1
-1 -1 -1
O -1 0
Sharpen -1 5 -1
O -1 0
11 1 1
Box Blur 5 1 1 1
1 1 1

N

Here, we need to divide by the
sum of the Kernel values. In all
other examples, that sum is 1.
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4.4 Image Segmentation

» Feature design may include the capturing of location information (much like we did with position
information in text retrieval). Segmentation define areas of interest within the image for which the
features are computed. To obtain overall features for the image, three different ways are possible:

Segmentation
(any method)

a) Feature Sets — for each segment an
individual feature is stored. If one or
more feature match with the query, the
image (with the segment) is returned.

b) Feature Concatenation — the features for

Feature Set

Feature
Extraction

M

22

) (7
Sthe o o
ethod b)

Feature

Concatenation

Statistical
Summary

each segment are combined to form an overall feature for the image. This approach is only
meaningful for pre-defined segmentations but not for object related segmentation with varying

number of segments.

c) Statistical Summary — the features are summarized with statistical operators like mean,
variance, co-variance, or distribution functions. The statistical parameters describe the image.

If the segmentation only yields one segment (global features), all methods become identical.
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* We can segment images with three approaches (actually the first one does nothing)

— Global features require the entire image as input. No segmentation occurs. This approach is
often the standard in absence of a clear segmentation task. We will see later that with temporal
media like audio and video, global features are very rare but quite common for still images.

— Static Segmentation uses a pre-defined scheme to extract areas of interest from the image.
There are two reasons for such a segmentation

« Add coarse location information to the features. Typically,
an image consists of a central area (the object) and four
corner areas (as shown on the right). But any type of
regular and potentially overlapping division is possible. Often,
this method is combined with the concatenation of features
to encode left/right, up/down, or center within the feature.

* Process parts of the query image to detect similar features.
We use a sliding window that moves from upper left to lower
right in defined steps. For each position, features are extracted
and used to find matches. For example, when detection faces
the sliding window technique allows to find many faces together
with their location from a given input picture (see next chapter).

— Object Segmentation extracts areas with embedded objects in
the picture (so-called blobs). These blobs are either analyzed
individually or as a part of the image. Often, feature sets are used
to enable individual retrieval of the blobs. We will study such an
approach in the next chapter (k-means clustering).
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« Example: 9-dimensional color feature with 5 static segments
— Segmentation creates 5 areas for each of which a 9-dimensional feature is extracted

SN T D |

— —
— concatenate
—

—im I,

A 4

»
>

— The feature for the image has 45-dimensions and encode localized color information. To be
similar with the above picture, the colors not only have to occur in a similar way but they also
have to be in the same area. On the other side, we loose some invariances, like rotation. An
upside-down version of the picture does not match with itself. On the other side, a blue lake does
not match with the blue sky, a white background (snow) does not match with the white dress
(center), and an object on the left does not match with the same object on the right.

— We will see, that a single feature is often not sufficient to find similar pictures. Rather, we need to
construct several (very similar) features to encode the different choices for variance and
invariance. Segmentation, obviously, can both eliminate location information (for instance feature
sets), enforce location (feature concatenation), or is liberal about the position (statistical summary
and feature set).
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4.5 Color Information

« We split the third step, feature extraction, into color, texture and shape information. We start with
color in this subsection.

» Color perception is an approximation of the eye to describe the distribution of energy along the
wavelength of electromagnetic signals. “Approximation” because the distribution cannot be
described accurately with only 3 values, hence most information is lost. It is possible two construct
two different spectra which are perceived exactly the same.

—

UV | Violet | Blue | Green | | Orange | Red DarkRed | IR Given the emitted or reflected spectrum of

! ! ! ! ! ! ! light of an observed point f(1), we perceive 3
Spectrum of (4) values for each cone type (and rod). To
iz [t @l compute the intensity, we apply the sensitivity
observed .

point filter of the cones (e.g., ¢,.4(4)) to the
observed spectrum (multiplication) and

integrate the result over all wavelengths. For
instance, for red this is:

100 -

30 |

&0

Relative Response

40 t

20

(ee]
red = [ @) - reaDth
350 400 450 500 550 600 650 F00 750 0
Wavelength {nm)

* On the other side, this approximation allows us to artificially re-create the perception with using only
3 additive components emitting wavelengths that match the sensitivity of the red, green, and blue
cones. These 3 components form the basis of the RGB family which is optimized for human
perception but may not work for the eyes of animals (different sensitivity ranges; for birds with
tetrachromatic perception, the UV range is missing).
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+ Before we can extract features, we need to find a good representation for color that matches human
perception. Consider the four colors below in the sSRGB space. Between two neighboring boxes, the
color distance is 100 units (only one channel changes). Even though the distance is the same, we
perceive the color changes differently. The change from green to yellow (15t and 2"9) is significant,
while the change from red to pink (3 to 4%") is smaller. The reason is the non-linear interpretation of
SRGB space as we process the light emission from the monitor (or from the reflection of the paper).

(155,200,100) (255,200,100) (255,100,100) (255,0,100)

100 unit change 100 unit change 100 unit change

» There are five major color systems (we only look at the first three models subsequently)

— CIE - created by the International Commission on lllumination (CIE) to define a relation between
the physical signal and the perception of a (standard) human observer

— RGB - the dominant system since the definition of SRGB by HP and Microsoft in 1996

— HSL/HSV — which translates the cartesian RGB coordinates to cylindrical coordinates for hue and
saturation, and uses luminance/brightness as third component

— YUV —used in NTSC and PAL signals and basis of many image and compression algorithms
such as JPEG and MPEG (using YCbCr) [not discussed subsequently]

— CMYK — used in printing to subtract color from an initially white canvas. The ink absorbs light and
a combination of different inks produces the desired color [not discussed subsequently]

Multimedia Retrieval — 2020 4.5 Color Information Page 4-31




« The CIE defined a series of color spaces to better describe perceived colors of human vision. The
mathematical relationships are essential for advanced color management.

— The CIE XYZ space was defined in 1931 as an attempt to describe human perceived colors. In
their experiments, they noted that observers perceive green as brighter than red and blue colors
with the same intensity (physical power). In addition, in low-brightness situations (e.g., at night)
the rods dominate with a monochromatic view but at much finer resolution of brightness changes.

» The definition of X, Y and Z does not follow the typical approach of additive or subtractive
primary colors. Instead, Y describes the luminance while X and Z describe chromaticity
regardless of brightness. Y follows the sensitivity for the M-cones (green), Z the one of the S-
cones (blue), and X is a mix of cone responses.

 To compute X, Y, and Z from spectral data, a standard

(colorimetric) observer was defined based on extensive +0 — (A
experiments. This represents an average human’s 15 _ ﬁfﬁ'
chromatic response within a 2 degree arc inside the

fovea (central vision; cones mostly reside inside this 1.0

area). The color matching functions x(1), y(1) and
z(A) describe the spectral weighting for the observed
spectral radiance or reflection f(4). We obtain the
values for X, Y, and Z as follows (note that the spectrum 400 00 mm 70
is reduced to the range 380nm to 780nm):

780 780 780
X = f £ - x()dA Y = j £ - y(D)dA Z = j £ - 2(A)dA
380 380 380
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— The three cone types of human vision require 3 components to describe the full color gamut. The
concept of color can be divided into different aspects:

 Brightness — visual perception of the radiating or reflected light and dependent on the
luminance of the observed object. It is, however, not proportional to the luminance itself,
instead it is an interpretation subjective to the observer.

« Chromaticity — objective specification of the color in absence of luminance. It consists of two
independent components, hue and saturation. Chromaticity diagrams depict the visible or
reproducible range of colors. The standard chart is depicted on the right side.

* Hue — describes the degree a color matches the perception of
red, green, blue, and yellow. The hue values are on the boundary
of the chromaticity diagram and is usually measured as a degree
from the neutral white point (e.g., D65). Red corresponds to 0,
yellow to 60, green to 120, and blue to 240.

 Saturation / Chroma / Colorfulness — measure how much the ;
light is distributed across the visual spectrum. Pure or saturated '
colors focus around a single wavelength at high intensity. To
desaturate a color in a subtractive system (watercolor), one can “I
add white, black, gray, or the hue’s complement. In the L ,
chromaticity diagram, saturation is the relative distance to the R R VR
white point. Relative means in terms of the maximum distance ‘

in that direction. Note that green is much farther away from white than red and blue.

— The CIE then defined a series of color models to better capture the above components of color
perception. We consider in the following the CIE xyY, Lab, and LCH model.

0.9,
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— The CIE xyY space, defined in 1931, was the first attempt to isolate chromaticity from luminance.
The Y value of CIE XYZ was created in such a way that it represents perceived luminance of the
standard observer. The x, y and z components are derived through a normalization

X Y Z

= — = — = ——— /] — —
XYY +2Z YT X+Y+2Z TX+v+2Z xTY

The derived color space consists of x, y, and Y. The x, y values define the chromaticity diagram
as shown in the lower right part of the page (color in absence of luminance). CIE xyY is widely
used to specify color. It encompasses all visible colors of the standard observer. Note that the
pictures of the chromaticity diagram here is depicted in the SRGB space an hence does not show
the full gamut of the space. Given the x, y and Y values, the back transformation is as follows:

Y Y Chromaticity diagram of CIE xyY
color space. Note that this
X=—x Z=— (1 - X — y) 0.9 representation is in SRGB and the
y y ] 520 colors outside the sSRGB triangle are
not displayed properly.

The outer curve of the chromaticity diagram, the so called 0]
spectral locus, show wavelengths in nanometer. The CIE xyY ol
space describes color as perceived by the standard observer. 5007
It is not a description of the color of an object as the perceived
color of the object depends on the lightning and can change

depending on the color temperature of the light source. In 0.31
dim lightning, the human eye looses the chromaticity aspect 02}
and is reduced to a monochromatic perception. ‘

0.0 0.1 02 03 04 05 06 07 08
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— CIE xyY spans the entire color gamut that is visible for a human eye, but it is not perceptually
uniform: the perceived difference between two colors with a given distance apart greatly depends
on the location in the color space. The CIE L*a*b* color space is a mathematical approach to
define a perceptually uniform color space. It exceeds the gamut of other color spaces and is
device independent. Hence, it is frequently used to map color from one space to another.

« The L component denotes lightness. It depends on the luminance Y but adjusted to perception
to create a uniform scale (1 unit difference is perceived as the same lightness change). It
typically ranges between 0 and 100, with L = 0 representing black, and L = 100 being white.

« The a* component represents the red/green opponents. Negative values correspond to green,
while positive values correspond to red. The values often range from -128 to 127. a* =0
denotes a neutral gray.

« The b* component represents the blue/yellow opponents. Negative values correspond to blue,
while positive values correspond to yellow. The values often range from -128 to 127. b* = 0
denotes a neutral gray.

The transformation from X, Y, Z components under illuminant D65 and 0 <Y < 255 is:

. Y 613
L=116'fY_ —16 Vt ift><—>
" ft) = 29
x v 841-t 4 h _
a* = 500 - <f <_> —f (_)) 108 + 29 otherwise
Xn Yo
. X Z X, = 242.364495 Z, =277.67358
n n Y, = 255.0
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— The CIE LCH differs from CIE L*a*b* by the use of cylindrical coordinates. L. = L* remains, but a*
and b* are replaced by the chroma C (saturation, colorfulness) and hue H. Based on the
definition of the a*- and b*-axis, the center is at the defined white point (e.g., D65). The hue H is
then the angle from the a*-axis (counterclockwise). The chroma C is the distance from the center.

— ]* _ — * * —— :i arctan(a*, b*) is the arc tangent of b*/a*
L - L C - \/(a*)Z + (b*)Z H - arCtan(a ) b ) taking the quadrant of (a*,b") into account

» This is not the same as the better known HSL/HSV color models (also use cylindrical
coordinates). These models are a polar coordinate transformation of the RGB color space,
while CIE LCH is a polar coordinate transformation of CIE L*a*b*.

» CIE LCH is still perceptually uniform. However, H is a discontinuous function as the angle
abruptly changes from 2mr to 0. This can cause some issues if the angles are not correctly
“subtracted” from each other.

— The CIE has defined further models like the CIE L*u*v*, CIE RGB, and the CIE UVW which we
omit here.
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« The RGB color space is the standard model in computing since HP and Microsoft cooperatively
defined sRGB as an additive color model for monitors, printers and the Internet. It has been
standardized as IEC 61966-2-1:1999 and is the “default” color model (if the model is not defined).

— SRGB uses the ITU-R BT.709 (or Rec. 709) primaries to define the color gamut (space of
possible colors). The advantage, and mostly the reason for its success, was the direct transfer to

a typical CRT monitor at that time. The primaries are: 09— T o ot
IEEIIEIM " marycolors
0.6400 0.3000 0.1500 0.3127
y 0.3300 0.6000 0.0600 0.3290
Y 0.2126 0.7152 0.0722 1.0000

— For non-negative values, SRGB colors are bound to the
triangle depicted in the right-hand figure. Note that the color
gamut is not covering all chromaticities, especially a large
fraction of the green/blue range is missing.

— The sRGB scales are non-linear (approximately a gamma of

2.2). To convert from linear RGB to sRGB, the specification 0g- 01 S
provides functions to map channel values. Let c.z;5 denote x
a channel value (red, green, blue) in the sSRGB space, and c;;,.4 denote a value in linear RGB.

Both with ranges between 0 and 1 (for quantized value, divide/multiply by 2Pt — 1)

05 06 07 08

CsRGB :
12.92 - Clinear if Clineqr < 0.0031308 12.92 if csrgp < 0.04045
CsrGB = : : Clinear =\ /¢ + 0.055\%*
1.055 - szz:ear 0.05 otherwise ( sRGli i ) otherwise
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— The conversion from CIE XYZ to linear RGB is as follows:

Tinear 3.240479 —1.537150 —0.498535][X X 0.412453 0.357580 0.180423]["tinear
Yilinear | = [—0.969256  1.875992 0.041556 [|Y Y| =10.212671 0.715160 0.072169| |Yiinear
biinear 0.055648 —0.204043 1.057311 1LZ Z 0.019334 0.119193 0.950227] [biinear

* Note that the transformation above is a mapping between linear RGB and XYZ. To obtain
SRGB values, a further transformation is needed (see previous page).

« Also note that the RGB space is not covering the entire XYZ space and the visible colors of
human perception. If the mapping leads to values outside of [0,1], the value is mapped to the
closest limit (0 for negative values, and 1 for values > 1).

— RGB values are often quantized to integer ranges. The mapping is simply a multiplication and
division by 2Pt — 1. For true color (32-bit), the multiplier is 255, for  ,,
deep color (64-bit), the multiplier is 65536. In some cases, HIDTY (rec709)

) i i bits 08 540 UHDTV (rec2020) —
quantization is based on 2°'*> reference colors (color palette). y

A color is then represented by its nearest neighbor in the palette. '

— Next to the sRGB and linear RGB model, various alternatives were foz

0.5

520

defined. In essence, it is simple to construct an RGB space by y

defining the primaries and the white point. Alternative RGB model i
extend the original, rather constrained sRGB to a wider range of 03
color gamut. For instance, Rec. 2020 for ultra-high-definition -

television (UHDTYV). It has a much broader color gamut than HDTV
which is based on Rec. 709. Some RGB models even excess the

chromaticity chart to cover more of the green/blue area. 00 01 02 03 04 05 06 07 08
UHDTYV vs HDTV Color Gamuts
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» Artists often start with a relatively bright color and than add a) white to “tint” the color, or b) black to

“shade” the color, or ¢) white and black (gray) to tone the color. To enable such techniques in

computer graphics, HSL and HSV color models are alternative representations of the RGB space
designed to simplify color making. Both use hue (H) and chroma (S) to define chromaticity. The HSL
uses lightness (L) and places fully saturated colors at L = 1/2. It allows both tinting (L — 1) and
shading (L — 0) without change of saturation. HSV uses value (V) and places fully saturated colors

at V = 1. It allows shading (V — 0) without changing saturation, but tinting adjusts saturation.

(0
G-—-B

z
B-R .,
z

R—-G
.\ C

HI

A

+ 4

H = 60°-

V=M

Susv = {

<|ao

ifC=0

——mod6 ifM =R
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if M =B
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ifV =0
otherwise

M = max(R, G, B) / o
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1
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1—|2L—1| otherwise
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* Color Histogram: histograms are a simple way to describe the distribution of colors using a set of
reference colors. The fixed reference colors are the “vocabulary” of the collection. The color of each
pixel is mapped to the nearest reference color, then we count how often the reference colors occur
in the image. To make the feature scale invariant, the counts are normalized by the total number of
pixels. The result can also be interpreted as the probability that a reference color occurs.

— Selection of reference colors

« The most simple way is to quantize the R, G, B values in the linear
RGB space as on the right hand side. With 2 bits, for example, we
obtain 4 uniform ranges along each channel, and a total of 64
reference colors ¢; with 1 < i < 64. We can use any number of
uniform ranges (e.g., 5) to obtain the desired number of colors.

« To improve perceptual matching of color, it is better to use a non-
uniform distribution. For instance, in the HSV color space, we can

divide the color hexagon into areas of perceived similar colors like 220
on the right side. The V-dimension may have more bins to account \
for the increased brightness sensitivities. With 7 chromaticity values 1550
and 9 bins along the V-dimension, we obtain 63 reference colors c;. ;32
« If the color space itself is uniform, like in L*a*b*, then we can use 330°

uniform ranges. The L*-axis should have more ranges than the a*- and
b*-axis to account for brightness sensitivity.

* We can measure the distance d; ; between reference color ¢; and ¢; to denote similarities
between colors. In cartesian coordinates, this is the Euclidean distance between the centers of
the areas representing the colors. In cylindrical coordinates, like the HSV example above, we
obtain angle differences as min(|la — S|, 2m — |a — B]) and apply a Manhattan distance. In all
cases, value ranges have to be normalized before distance calculations (e.g., to range [0,1])
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— Comparison of histogram (distance measure)

* Let h; and g; denote the normalized histograms of two images ordered by the N reference
colors c; with 0 < h;, g; < 1. Note that even though we use a 3-dimensional color space for
guantization, the histograms are one-dimensional (through enumeration of reference colors).
We also have the distances d; ; = d;; between two reference colors ¢; and ¢;.

« A first naive approach is to compute a Manhattan (or Euclidean) distance between histograms

N N
5Manhattan(h: g) = Z|hi - gil 6Euclidean(hr g) = z(hi - .gi)z
i=1 i=1

This distance formulae work quite well, however, they do not take similarity between reference
colors into account. A small shift in lightning or color representation can yield large distances.

« To account for cross-correlation between reference colors, we need to use a quadratic distance
measure and use a matrix A which is based on the distance between reference colors:

. _ ,] Distance normalized by
Squadratic(h; g) = (h - g)TA(h - g) A: ai,j =1- max dkl maximum distance for all

A pairs of reference colors
)

« If the user provides a sketch as the query, or the user selects a number of colors that should be
present in the picture, histogram intersections (equals to a partial match query) are better
suited. Let g; # 0 denote the user selected colors and g; = 0 the colors without user input.

N min(h;, g;)
5intersection(h’g) - ;nlln(”ll |«lg|)l
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— Variants:

« A simpler variant is the use of luminance or brightness histograms. The chromaticity aspects
are not taken into account. As a first step, brightness or luminance is calculated, for instance,
with L* from CIE L*a*b*. The luminance value is quantized using N uniform ranges. The rest is
identical to the approaches above (including quadratic distances to account for similarities
between brightness/luminance values). The resulting features describe brightness of the image
and is often used for shot detection in videos (different lightning denotes shot boundary)

« Equally, we can only quantize the chromaticity aspects and disregard brightness/luminance.
Candidate color spaces are CIE L*a*b, CIE LCH, HSL, or HSV. The resulting features
describes color distribution and is invariant to lightning (as long as the lightning does not
significantly impact the perception of chromaticity).

— Discussion:

» Histograms are very simple and yield already good results. They are robust against translation,
rotation, noise, and scale; in some cases, also against lightning differences.

» The lack of spatial relation between colors may lead to unexpected results. A blue lake (bottom
of the picture) will match with a blue sky (top of the picture) and a blue car (middle of the
picture). It is simple to construct two images with the same histogram but different content.

« The histogram intersection method is useful to guide a retrieval system to the desired color of
(main) objects. The user can pick a color and the search is extended with a histogram sub-
guery using the intersection method.

» Color histograms tend to have a very high-dimensionality. 64 dimensions is often a minimum
for good retrieval, but more than 1000 dimensions can result. Search in such spaces is costly
and inefficient. Dimensionality reduction may help to deal with both correlation of reference
colors and the reduction of dimensions (see principal component analysis, PCA).
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« Color Moments: statistical moments are another way to describe the distribution of colors in the
selected color space. We can select any of the color spaces discussed before, but again, to
calculate distances and similarities, the perceptual uniform spaces are better suited. We often use
L*a*b* as the basis color model (over LCH to avoid the more complicated angular differences)

— Single channel moments compute statistical parameters for one channel only (L* , a*, b*). Let c
denote a color channel, N denote the number of rows in the image, and M the number of

columns, then the first four moments are given as:

1 1
Ue =m2 c(x,y) Ve =WZ(C(%)’) — Ue)?
x’y x'y
3 4
o -1 z(dx,y) —uc> P - L Z(c(x,y)—uc>
€= - = Y — =
N-M i Ve N-M — N

Mean u. and variance v, describe the peak position and width of the peak in the distribution. The
skewness s, describes whether peak is wider to the left or to the right. And Kurtosis k. denotes
the presence of outliers (far away from mean). With three channels, we obtain 12 feature values
in this way.

— We can add additional covariance values between pairs of channels. Let ¢; be a first channel,
and c, be a second channel. With three channels, we obtain 3 additional covariance value from

the possible pairs of channels:

1
COV¢, ¢, = WZ(Q(% y) — .Ucl) : (Cz (x,y) — McZ)
X,y
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— When calculating the moments, it is possible to transform the formulas such that only one pass is
necessary to compute all the values (c denotes a color channel):

1
Acn = mz cCx,y)"
X,y

b; = ﬁ; (Ci(x' y) - Cj(x; Y))

Ue = Acq

3
Acz — 3Acz - Acy + 2a¢,

3/2
UC

Covci,Cj = bi,j - uuCl' ’ uqu

2 4
Aca — 4‘ac,3 *Ac + 6ac,z *Acq — 3ac,l

ve

Using the CIE L*a*b* color space, we obtain 12 moments and 3 covariances, a total of 15 feature
values. We can combine the values into a vector m (in a defined order) and compare to feature
vectors m; and m; of two images using either Euclidean or Manhattan distance:

15

Omanhattan (mi; mj) = Z |mi,k - mj,kl

k=1

15

5Euclidean (mir mj) = Z (mi,k - rnj,k)2
k=1
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— Variants: like with histograms, we can construct moments for brightness/luminance only. Co-
variance becomes obsolete and we obtain 4 brightness/luminance moments. We can further
construct moments only for the chromaticity aspect, disregarding brightness/luminance. In this
case we have 8 moments and one covariance value, resulting in a 9 dimensional feature.

— Discussion:

» The value ranges of moments vary significantly. Before we can apply a distance measure, we
need to scale the values into the same range (e.g., [0,1]). Due to the differences in the distance
measure, it is sufficient to just scale the values either by max — min of each component, or the
standard deviation of the values along this dimension (not to be confused with the variance
color moments; the standard deviation is taken from the actual values along each moment).
We can obtain this scaling factors from a large enough sample set and use them as constant
factors when extracting the features.

« Color moments, like histograms, are robust against translation, rotation, noise, and scale; in
some cases, also against lightning differences. The lack of spatial relation between colors may
lead to unexpected results (like with histograms).

* In contrast to histograms, the color moments are independent from each other and we do not
need a cross-correlation matrix for a quadratic distance function. The resulting vectors are also
much shorter (15 if all moments are taken) than the histograms (up to 1000 bins possible). The
compact representation leads to obvious performance gains but no loss in retrieval quality.
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4.6 Texture Information

» Texture describe the structure of a surface or part of the image and provides us with information
about the spatial arrangement of colors, changes in this arrangement, and the direction and
frequency of these changes. We can analyze texture in three ways:

— Structural approach: Find sets of primitive so-called texels that are composed to regular and
er the examples below:

This approach is limited to artificially generated images and does not work for natural images.
The inverse problem of creating texture on the surface of objects is well supported by today’s
graphic processors (see texels, and Voronoi tessellation).

— Statistical approach: Measure the arrangements in the neighborhood of pixels, quantify them,
and create statistical summaries (histograms, moments). We will look at edge detection and
optimized filters to get texture features.

— Fourier approach: Transform the image into the frequency space via Fourier transformation and
extract information about the support for so-called Gabor filters in the frequency space.

« Often, we study texture only in grayscale images. For that purpose, we can compute the Y or L*
components in the CIE color models. Recall, that the original picture first needs to be transformed to
linear RGB before computing the transformation to CIE XYZ and CIE L*a*b* (see sSRGB - linear
RGB). In the following, we assume monochromatic images with only a brightness/luminance
channel. Advanced methods may also consider chromaticity information for textures.
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Discontinuity of surface

Edge magnitude and direction (structural approach) orientation (its normal

— Edges in images are caused by several factor as shown on —
the picture on the right hand side. The detection of edges is
the search for gradients with high energy (abrupt change of
neighboring pixels). The standard approach is to apply a P el
Sobel operator (convolution) on a smoothed (Gaussian) i e o)
version of the image, and to determine g, and g,, values

for a pixel. The kernel matrices are given as:

1[+1 0 -1 1[+1 +2 +1
Gx = § +2 0 -2 Gy = g 0 0 0 Discontinuity of
illumination (e.g., a
+ 1 0 -1 -1 -2 -1 shadow castt by(angobject)

We can omit the factor 1/8 but then the gradient values are 8 times larger (not a problem for the
method shown here). The operators yield a g, and g, for each pixel. We can now compute the

gradient magnitude g,,4(x,y) and the direction of the gradient gg4;-(x, y) as follows:

Imag(xX,y) = \] gx(x, )% + gy (x,)? Jair (X, ) Wx(% ), 9y (6 )

arctan(x, y) is the arc tangent of y/x taking
the quadrant of (x,y) into account

— With the above transformation, we obtain 2 values for each pixel in the image. The first value
describes how large the change is (energy), the second value represents the direction of change
(from darker to lighter). A value of g4, = 0 is a vertical edge (change direction is normal to the
edge) and the lighter pixel is on the right hand side.
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— We now can create simple texture based features.

- Edgeness of image: Proportion of image with g,,,,4(x,y) = 7 for a given threshold 7. This
expresses how many edges we can expect on the picture with high enough energy. Continuous
areas of them image with, for example, the sky or a lake will result in low values, while several
objects or city images with lead to higher values.

) 1 z 1 if gmeg(x,y) 27
edgeness N'Mxy 0 otherwise

« Gradient Histograms: same approach as with color histogram. We now have to values per
pixels and quantify the direction and the magnitude. The distance between reference gradients
Is calculated similar as for the HSV color model. Recall that differences in direction are
calculated as min(|a — £]|,2m — |a — B]). We need to normalize energy and direction ranges to
compute the distance d; ; between two reference gradients. This allows us to compute the
matrix A for the quadratic distance measure. Given to histograms h and g, and assuming N
reference gradients, we obtain distances as follows:

=1

N N
Sntannattan(ts @) = ) Ihi = gil Seuctiaean(h, 9) = | Y (hi = g,)?
[ = i=1

di,j / Distance normalized by

maximum distance for all

rrlialx dk,l pairs of reference gradients

Squadratic(h: g) = (h— g)TA(h -9) A: a;j = 1-

As with color histograms, the same issues with high dimensionality occurs.
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« Gradient Moments: as before, we compute moments for the magnitude and the direction, and a
covariance value for magnitude and direction. Let ¢ denote either magnitude or direction:

1 1
Ue = WZ gc(x,y) Ve = WZ(gc(x, y) — Ue)?
x,y x'y
4
Lot Z (gc(x,y) —uc)3 . 1 z (gc(x,y) —uc>
c— C = nr.
N-M i N N-M — Ve

1
COVmag,dir = (gmag (x,y) — .umag) — (Gair(x,y) — Uagir)
N-M
X,y

This results in 9 feature values describing the distribution of gradients.

« Laws’ Texture Energy (structural approach)

— Laws texture masks compute 9 values for a pixel in the image to capture various aspects of
texture features. The masks are based on 4 prototype vectors:

= [1 4- 6 4- 1] % Level: (Gaussian) center-weighted local average |
vES =S [—1 —2 O 2 1] % Edge: (gradient) responds to step edges |
[— 1 0 2 0 - 1] % Spot: (Laplace of Gaussian) detects a spot |

URs = [1 -4 6 —4 1] % Ripple: (Gabor) detects ripples |
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— From these base vectors, we can compute 16 matrices by multiplication of pairs of prototype
vectors. For the instance E5L5, for instance, we obtain the Kernel matrix Ggs; s as follows:

—17 —1 -4 —6 -4 -1
-2 -2 -8 -12 -8 -1
Gpsis =VesVs=|0[[1 4 6 4 1]1=[0 0 0 0 O
2 2 8 12 8 2
[ 1. 1 4 6 4 1

Since E5L5 and L5E5 measure a similar aspects, we collapse them into a single Kernel and use
the average of both matrices. With such reductions, we obtain 9 Kernel matrices:

2 ’ 2 ’ 2 ’ 2 ’ 2 ' 2
U {Gssss, Grsrs, GEsEs)

G = {GESLS + Grses Grsps + Grsps Gesss + Gssps Gssps + Grsss Gesgs + Grsgs Gssrs + Gpsss }

— With these 9 Kernel matrices, we apply a convolution to obtain 9 texture energy values e;(x,y)
per pixel (with 1 < i < 9). From here, we can apply the same approaches as before:

« Histograms: although feasible, we are faced here with 9 values per pixel. If we quantize them
with 4 ranges, we obtain 4° = 262,144 reference energies. This clearly exceeds our
expectations of a computationally meaningful feature, especially, if we consider the necessity of
a quadratic function. Using only 2 ranges yields 2° = 512 reference energies. Acceptable, but
the quantification error is significant.

 Moments: for each energy value, we can calculate 4 moments, and co-variance values for the
36 possible pairs. This yields a 72 dimensional feature vector. If the dimensionality is too high,
we can reduce the number of moments (only first 2 or 3) or omit the co-variances.
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« Gabor Moments (Fourier approach)

— The 2D Fourier transformation maps a (grayscale) image into its frequency space. More formally,
it creates a real and imaginary matrix. For the visualizations, we can compute the log of the sum
of squared components (the log-function helps for visualization of the large differences in
energy). The 2D Fast Fourier Transformation is an accelerated version of the algorithm reducing
computational efforts significantly. However, it is only applicable to image sizes of 2¢ x 2?. The
picture bellow depicts the transformation:

real

component
\ log of
absolute ;/Io_g\ energy of
\ value "\ frequencies
imaginary

component

FFT

image

— To display the frequencies such that low frequencies are in the middle and high frequencies in
the outer areas, we need to map the quadrants of the matrix as per below:

1|2 4 |3
=

3|4 211
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— Examples for the frequency map: The pictures below show the grayscale original images,
and the log-scaled frequency map; the brighter a pixel, the more energy for the corresponding
frequency. Low frequencies are in the center, high frequencies in the out areas. The direction
from the center to the frequency denotes the normal of an edge in the image for that frequency.

Mast of the sail creates a high
contrast to the white of the wave.

FFT FFT FFT

This spike corresponds to the
edge of the mast of the sail. The
spike is orthogonal to the mast.
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— In the Fourier space, we apply a bank of so-called Gabor filters that select different ranges of
frequencies and directions. The Gabor filter is multiplied with the Fourier transformation of the
Image (a complex matrix), and the result is mapped back via inverse Fourier transformation (here
the fast implementation iFFT) to the image space. The filtered image now provides information
about the support for the selected frequencies and directions in the original image space. Using
banks with 5 orientations and 3 scales, we have 15 Gabor filters and obtain 15 different filtered
images. We extract statistical moments for each of these filters to obtain a wide range of texture
descriptors. The following pages show the filter banks and its application in the Fourier space.

image

FFT

/
N\

real
component

imaginary
component

Gabor

Filter

iFFT

filtered
image
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— The Gabor filter is defined as a Gaussian kernel multiplied by a complex sinusoid. In
Neurophysiological experiments, it was shown that the Gabor filters, with the right parameters,
behave similar to the receptive fields in the primary visual cortex. Its definition is as follows

fz +.}/23—]2

gl,@,(p,a,y(x; y) = e 207

. el277+9)

—~—~

Gaussian kernel with standard deviation
o and the spatial aspect ration y

Complex sinusoid with phase ¢ and wavelength
A. 1/2is the frequency of the sinusoid.

X =xcosf +ysinf

y =—xsinf +ycos6

Before application to the Gaussian and sinusoid, the coordinates are rotated by 6. With this
definition and varying the parameters, it is possible to construct various filters that are sensitive to
frequencies and direction. Mapping the Filter bank into the Fourier space leads to the following

layout:

Spatial space

Fourier space

A Gabor filter at 26 and
high frequency (= 14)

\ . -t
i/
Center of

Fourier space
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« Example (1)

FFT

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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« Example (2)

FFT

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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« Example (3)

Gabor-Filter

resulting image

orientation 2
scale 3

orientation 2
scale 2

orientation 2
scale 1

orientation 4
scale 1
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— There are two approaches to compute Gabor filtered images:

* Fourier space: compute the Gabor filters in the Fourier space and apply them to the Fourier
transformed image. To enable the use of FFT, the size of the image is scaled to the next higher
2% x 2P dimension with one of the following methods

— Stretching: stretch the image to match the new size. This changes proportions and thus
frequencies and directions in the image.

— Filling: copy the image 1:1 and fill the remaining area with a neutral color.
— Tiling: create a 2-by-2 tile of the same image and crop to the new size.

— Mirroring: create a 2-by-2 tile, but mirror the image at the middle axis. This reduce hard
edges that otherwise become visible as spikes. But it adds wrong directions.

§

(=)

Original Stretching Filling Tiling Mirroring

A further alternative: we use the next smaller 2¢ x 2? dimension and apply the method 4 times
for the 2% x 22 areas in each corner. At the end, we average all feature values across all areas.

W
% ; Texture
> C — Feature for
% ' Image
A
@D @ e
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« Image/spatial space: compute a Gabor filter bank and apply it to the image through
convolution. Since the Gabor filter is complex, we take absolute values of the resulting complex
numbers to map back to real numbers. Most image processing libraries (OpenCV, scikit-image)
provide implementations for Gabor kernels.

— Once we have the filtered images (like shown in the right hand columns on the pages before with
the image examples), we can summarize the results with the usual approaches of histograms or
moments. We typically select 3-7 directions (0 < 6 < m) and 2-5 scales (or frequencies; 1/4
usually measured in pixels and ranging from 0.05 to 0.5). With a large number of filters, the
moments are again a better choice to reduce the number of dimensions and avoid the complexity
of quadratic distance functions.

« With moments, we simply treat the absolute values in the filtered image as the raw data points
and compute mean, variance, skewness, and Kurtosis on these values. To further reduce the

number of dimensions, it is possible to select only the first 2 or 3 moments. Let f;(x, y) be the
filtered (complex) image representation after applying the i-th Gabor filter. We obtain:

1 - 1 -
Wi = WZM(%)’H v = WZ(M(’CJ’)l - /‘i)z
X,y X,y
_ 1 N (el - m) 1 (Few] - m'
e IR

The overall feature is simply the concatenation of all moments across all filters.
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4.7 Shape Information

» In this section, we consider three approaches to define shape features.

— ldentify key shape related features in the entire image. There are no segments or objects taken
into account, i.e., the features are global for the image.

— Given a segmentation of the image into objects/blobs, describe the shape of this region to
retrieve similar shape from the database. This also works for 2D/3D objects.

— Identify key points of interest in the picture and describe these points to identify similar objects.
This method is used for stitching of panorama images, object recognition, and motion detection.

» Global Features: very similar to the texture features, but we are more interested in the contours
and direction of these contours than the rest of the image. The basic idea is to apply an edge
detector to obtain the outlines of the principle shapes of the image. The Canny edge detector is a
solid reference detector with 5 phases (the first two steps are the same as before with texture):

1. Apply Gaussian filter to smooth the image and to remove noise or compression artifacts

2. Compute gradients with their magnitude and direction (as seen before, Sobel operators)

3. Eliminate values that are not a local maximum in the positive/negative direction of the gradient
4

Ildentify strong edges (magnitude above high threshold) and weak edges (magnitude between
low and high threshold) and eliminate values below low threshold.

5. Track edges and eliminate isolated weak edges. Keep only weak edges if in their immediate
proximity, there is a strong edge.
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— With the edges, we now can summarize the directions of these edges (the magnitudes have
been eliminated in the process) with histograms. The examples on the right side are from an

early prototype by Vailaya (1996), Michigan State University.
Steps of 10 degrees

* The histograms are normalized by the
number of edge pixels and sum up to 1.
M’hwmﬂmﬂml
()

The step size was 10 degrees hence
36 bins for the histograms.

« Comparison between histograms is
based on the usual distance function.
Again, a quadratic distance function is
recommended to account for the similarity
between angles

With appropriate normalization of the
image, we can achieve lightning invariance.
However, it is not rotational invariant.

» To obtain rotational invariance, we need to
determine the principle direction and rotate
the image such that the principle direction
points, for example, upwards. The principle
direction is the weighted sum of the original
gradients, with the magnitude as weights.

(h)

(i)
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— The Angular Radial Partitioning by Chalechale (2003) follows a similar approach to detect
edges but uses a different approach to create histograms. The method has 5 steps

1.

2.
3.
4

o

The method is depicted on the right
side with an example from the paper.

Convert the images to grayscale, e.g., by mapping pixels to the L*-channel
Normalize size of images to obtain comparable numbers
Apply Canny edge detector to find strong edges in the image

Partition the resulting edge-map into M x N radial angular partitions. M is the number of
radial sectors, N the number of slices

Count the number of edge pixels in each partition to obtain a raw histogram

Apply a Fourier transform to the histogram and use absolute values (energy) to obtain the
final feature vector

The feature is robust against
translation and scale due to initial
normalization process. It is robust
to small rotational changes as only
few pixels will change the partition.

The feature is robust against
discrete rotations of the angle of the
slice due to the Fourier transformation.

The feature is robust against
omissions of smaller details and noise
during edge detection.
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— The Histogram of oriented gradients dates back to 1986 but regained interest with the work of
Dalal and Triggs in 2005 to detect pedestrians. The methods has since been extended and is
often used as input into neural networks.

» Step 1: compute gradients, for instance, with Sobel operators on a grayscale version of the
Image. In contrast to other approaches, HOG uses unsigned gradients, i.e., the direction lies in
the range of O to . Values between m and 2rr are rotated by . Some HOG implementation let
users choose between unsigned and signed gradients, but Dalal and Triggs found that this
worked best for pedestrian detection

« Step 2: As shown in the picture below, the image is divided into cells each with 8x8 pixels. For
each of the cell, HOG computes a 9-bin histogram (9 was found to be optimal for their use
case) over the gradient directions of the 64 pixels and weighted by their gradient magnitudes.

« Step 3: gradient magnitudes are variant to illumination and hence require normalization before
we can compare histograms with each. Rather than normalizing the 9-bin histograms at each
cell, HOG combines 4 neighboring cells
and normalizes the concatenated histograms
(now 36 bins) soitsumsupto 1l. The 4
neighboring cells (2x2 cells, each with 8x8 pixels)
are moved along the image in steps of 8 pixels.
Each block yields a normalized histogram of 36
bins. These blocks are partially overlapping.

« Step 4: combine histograms to global features or
keep a “bag” of local features for search.

« Optional: The HOG features can be used as
input into machine learning algorithm. Dalal and
Triggs used an SVM to detect pedestrians.

2 3 4 4 3 4 2 2
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« Descriptions of blobs/regions/objects: given a set of segments, blobs or objects, we can describe
the regions based on a set of simple spatial metrics. Due to different resolutions and the absence of
a standard size of a pixel (unless provided by the image format), spatial metrics are often in relation
to the entire image. For example:

Area: percentage of pixels within the segment (over the entire image)
Centroid: average of all x-values and of all y-values in the region (in absence of mass values)

Axis of Least Inertia: this is the axis which allows the rotation of the object with least energy. It is
given by the line that minimizes the squared distances to the boundary of the region. This can be
used to normalize regions into a primary direction

Eccentricity: given a bounding box in the principle direction, the ratio of length to width of the box
denotes the eccentricity

Circularity Ratio: how closely the shape resembles a circle. There are different definitions, for
instance, the ratio of the area of the smallest circle containing the region to the area of the region

...and many more

An alternative approach is to normalize the position of the region (principle direction points upwards)
and to measure the overlap with a predefined grid to compute histograms. The histogram values are
the relative area covered by the grid. There are different ways to define the grid, for instance:

The grid is always such that it contains

the region and is a small as possible.
With the circular structures, the center
Is the center of gravity, and the radius is
the largest distance of a point to the
center of gravity.
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— Ludwig-Maximilians University Munich (Berchtold, 1997) studied methods to compare and
index 2D and 3D objects. But the methods are similarly applicable to recognized segments in an
image. The example on the right side shows 2 complex molecule structure normalized in
direction. The partitioning methods extract 4 different histograms, each with 120-122 bins. This is
the description of the structure
and can be used in combination
with a distance measure to find
similar objects in the database

* To make the feature scale
invariant, the histogram bins
are normalized to sum up to 1.

« Some of the features are
rotation invariant (like the first
partitioning). With the initial
normalization to a principle
direction, rotation invariance
is given for all partitioning
scheme.

« The feature is translation
invariant due to the use of
the center of gravity.

600

120 shells
400

200 -

1500

20 shells, 6 sectors
1000

500 I

; i1

| 6 shells, 20 sectors
0 JI-LLI-LI_LI-L_U_I_LLLU '
1000

| 122 sectors
500 | | ‘
0
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Key Points of Interests: There are many approaches but we consider here only the Scale
Invariant Feature Transform (SIFT). Due to the complexity of the approach, we summarize the
main steps to identify key points of interest and consider how to describe these points to find
matches. SIFT extracts features in a very robust way, so that they match again even after significant
viewpoint changes. SIFT is used for object recognition, image stitching, motion tracking, and many
other use cases, The images below depict the same mountain from slightly different perspective.
SIFT is able to match the two highlighted key points despite rotation and scale differences.

— The algorithms works roughly in 4 steps
1. Identify scale-space extrema using band-pass filters (difference of Gaussians, DOG)
2. Keypoint localization with scale; these are the resulting points of interest
3. Orientation assignment (primary direction of the region around a keypoint for normalization)
4. Keypoint descriptors that can be used for similarity search
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— Step 1: We create a pyramid of images using
Gaussian filters at different standard deviations o and
scales. SIFT calls the different scales “octaves” as
shown on the right side. Each octave is down sampled
to a % of the previous octave. For each octave, the
Image is progressively blurred (Gaussian filters with
increasing o).
 In each octave, neighboring images are subtracted

to create the difference of Gaussians (DOG) which
act like edge detectors for a defined frequency band

« The DOG image pyramid contains potential edges
and point of interests. They are the local minima
and maxima in the DOG.

- -
octave)

Scale <—Second octave
(first

octave)

First octave
< (didn’t fit)

Difference of

Gaussian Gaussian (DOG)
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— Step 2: We detect the local minima and maxima in the DOG pyramid
with a one pixel neighborhood. As shown in the picture on the right,
where “x” marks the current pixel, we have 8 neighbors in the same
plane and 9 neighbors from each the plane above and below. If the pixel
IS @ maxima or minima in this neighborhood, mark it as such. Otherwise
dismiss the pixel.

 Starting with 5 Gaussian blurred images in each octave, we created
4 DOG images which now create 2 extrema images at each octave.

» To thin out the number of keypoints, we dismiss all pixels whose value
in the DOG is smaller than a threshold (these are points in the “flat”). We further dismiss all
edges by considering their gradients. An edge has big gradient orthogonal to the edge, and a
small gradient along the edge. But we are interested in corner points with two big gradients.

« The output of step 2 is a set of keypoints with location and scale.

— Step 3: To construct a rotation invariant feature, we need to calculate a major orientation for the
keypoint. SIFT accumulates a local histogram of gradient directions from the neighborhood of the
keypoint. The area of the neighborhood window is proportional to the scale. A gradient direction
is added to the histogram with its magnitude as the weight. Finally, the histogram bin with the
highest value corresponds to the dominant direction (if there are ties, use all directions).

« SIFT uses the dominant direction to normalize feature gathering as shown in the next step. If
several directions are found, it constructs features for all directions. The normalization allows
us to compare keypoints found from different viewpoints with a simple metric.

« The dominant direction of the keypoint is not necessarily its gradient direction.

Multimedia Retrieval — 2020 4.7 Shape Information Page 4-68




— Step 4: Using the keypoint as the center, SIFT lies a 4x4 grid in the dominant direction over the
iImage with the size of the grid being dependent on the scale of the keypoint. For each grid cell, a
finer 4x4 mesh defines its neighborhood and a histogram with 8 directions captures the directions
within the cell. For each point in this finer mesh, we calculate the gradient orientation and the
magnitude. We use the magnitude and a Gaussian weight (based on the distance to the
keypoint) to add the direction to the histogram. For each cell of the bigger 4x4 grid we obtain a
histogram with 8 values, resulting in a total of 128 feature values.

— The SIFT features are invariant to scale, translation and rotation by construction. It follows the
idea of the receptive fields in the primary visual cortex to capture local features based on
directions. The features are very distinct for the objects and even small objects can yield many
descriptors. Although rather complex in construction, features can be obtained close to real-time.
SIFT features are widely used for object recognition, motion detection, image alignment and
stitching. OpenCV has a SIFT implementation, scikit-image supports similar approaches (daisy,
harris). As with HOG, SIFT descriptors can be used as input for machine learning.

U => Feature vector (128)
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4.8 Blob Recognition (unsupervised clustering)

* With unsupervised learning tasks, the machine learning algorithm observes data set without targets
and infers a function that captures the inherent structure and/or distribution of the data. In a
clustering scenario, that function is a set of clusters and the ability to assign new data items to one
(or several) of the clusters. In this chapter, we study the k-means clustering and the Expectation
Maximization over a Gaussian mixture to infer a mapping of features to clusters. In the context of
multimedia data, typical applications are:

— Feature quantization, i.e., reducing a multivariate feature to a small number of discrete values.
The quantized value serve as an approximated or smoothed version of the original ones much
like histograms approximates the distribution of data values

— Cluster analysis, i.e., the validation of the cluster hypothesis and the extraction of clusters to infer
labels for the clusters.

— Image segmentation, i.e., the extraction of different areas in an image that “belong” to each
other. In a first step, clustering reduces the number of features through quantization. In a second
step, morphological operators build coherent regions for segmentation.

« As we do not know the number of clusters that are present in the data (we have no labels!), we need
to guide clustering algorithms in the selection of the optimal number K of clusters. Again, poor
choice for the number of clusters can lead to underfitting (extreme case is K = 1) and overfitting
(extreme case is K = N with N being the number of training items). As we have no targets, we
cannot use a validation set to measure accuracy of prediction. Instead, we utilize a target function
for the compactness of the clusters and the separation between clusters and must prevent, at the
same time, an excessive number of clusters.

» We conclude this section with an example from image segmentation and a very early application
called Blobworld.
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* k-means cl
processing.

ustering goes back to the 1960s as an approach to quantify vectors for signal
It subsequently became very popular in data mining for cluster analysis. k-means

clusters the data set into k clusters in such a way that each data point belongs to the cluster with the
nearest centroid (or prototype of the cluster). The centroids are the mean position over all points in

the cluster.

The centroids divide the space into Voronoi diagrams defining the cluster shapes.

— Although the computation of the optimal K centroids is a NP-hard problem, there are very
efficient heuristics that lead to a (local) optimum. We will first describe the classical approach
using Lloyd’s algorithm and then re-interpret the approach with Expectation Maximization.

the number of data items with the d-dimensional representations x4, ..., x5. We then

— Let N be

want to partition the data items into K sets § = {S;, ...,

squares

(WCSS, also called the variance) become minimal, i.e.:

argmlnz Z llx — pll3 —argmlnzlSkI o

=1 x€Sk

Sk} such that the within-cluster sum of

with u, denoting the mean of items in S, and o being the variance of items in S,. With Lloyd’s
algorithm, we obtain a local optimum with a simple iterative algorithm:

1.
2.

4.

Select an initial set of centroids u( ). ,né) (see later how to select)

Assign each data point x to the set S if it is closest to gy, i.e., |2 = 22| < ||x - || vir <1<k

(if several centroids are closest, pick one randomly)
Calculate the new centroids for the next iteration (t + 1):

u+D 1 z X
k7 e®
st

®
XES,
Repeat steps 2 and 3 until algorithm has converged
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— Initial choice of centroids

« Random points: pick K random items from the data set. This leads to a spread of centroids
across the data space.

« Random partition: assign each data item to a random cluster (1 to K) and compute centroids
over these random clusters. These centroids tend to be closer together near the center of the
data set.

* k-means++: the first centroid is chosen randomly from the data set. Each subsequent centroid
(up to K) is chosen from the remaining items with probabilities proportional to the their squared
distance to closest centroid. Although more expensive, it leads to much smaller final errors and
faster convergence during the iterative part.

Expectation Maximization (EM) (and interpretation of k-means algorithm)

— Expectation maximization is an iterative method to estimate parameters in a statistical model
than cannot be solved in closed form. It assumes that the observations (here: the training set) are
obtained from probability distribution, typically a mixture of several distributions with a soft
assignment. In k-means, we used a hard assignment, that is, every data point is assigned to
exactly one cluster. In EM, soft assignment denotes that cluster assignment of a point follows a
conditional distribution. Finally, the objective is to find the soft assignment and the parameters of
the distributions (e.qg., with Gaussian, these are the means and variances) that best explain the
observations (maximum likelihood).

— Solving above objective function in closed form is not always possible. The EM algorithm consists
of two steps: in the expectation step, the distribution parameters are constant and we compute
the best soft assignment. In the maximization step, we keep the soft assignment constant and
choose the parameters that maximize the objective function. With each step, the objective
function increases and eventually converges, but not necessarily to a global maximum.

Multimedia Retrieval — 2020

Page 4-72



— Let us start with a simple one dimensional example with a
mixture of two (K = 2) Gaussian distributions V' (p, 7). The
picture on the right shows the two Gaussian distributions and
their mixture. With an infinite number of Gaussians, a mixture
can model any distribution. Each Gaussian represent a sub-
population (cluster) of the data items that follow its
distribution. In addition, a prior P(C,) defines how likely data
items come from k-the cluster with ), P(Cy) = 1.

— Now, assume we make the observations T = {xq, ..., xy}.
Further assume, we know that all x € §; stem from the blue
cluster C;, and all x € S, = T \ §; stem from the red cluster
C,. We then can easily compute the parameters and the
priors of the distributions using the (biased) estimators:

1y = erSkx o2 = ZxESk(x — lig)? P(C) = @
k Skl k Skl k N

— On the other side, assume we know the parameters y,, o7 of
the distributions and the priors P(C;), can we estimate the
probability P(Cy|x;) that a point x; is part of cluster C;,?

P(x;|Cy) - P(Cx)  P(xi|Cy) - P(Cy)

—aG1

o—© € 60 0 o—

P(Cylx;) = =
l P(x;) Yk P(xi|Ci) - P(Cy)
: 2 1 (xi—pr)?
with  P(x;|Cy) = f(xi} Hie Uk) =T Xp|\T— =2
2o’ 20, /) | Le"eeee0se0ve o o ee o |
k
Multimedia Retrieval — 2020 4.8 Blob Recognition (unsupervised clustering) Page 4-73




— Given the probabilities P(Ci|x;) that x; belongs to cluster C;, we
no longer have a hard assignment as above with T =S, U §S,,
and §; NS, = @, but utilize soft assignments. In other words,
we are not entirely sure from which sub-population the points
come from but have a fairly good understanding how likely they
stem from each cluster. To estimate the parameters and the
priors, we need to take the soft assignments into account:

AR AN _

S P(Celx) - x L NP(Celx) - (x — )’ S P(Celx)
e = =5 b (Calx) I WTGAPS PG) ==y

— Now we can summarize the EM algorithm: to this end, we introduce the responsibility y;;, =
P(Cy|x;) denoting the soft assignment of data item x; to cluster C,, and the weights w;, = P(Cy)
representing the prior of cluster C;. The algorithm runs as follows:

1. Selectinitial values for u,((o),a,f( > and W(O) forl<k<K

2. E-step: evaluate new responsibilities y; k) for1 <i < N and1 < k < K using current parameters
t t ®)
©_ M f(xl' weok”)
ik t
Zk Wk f (xll ﬂ}(gt)'o-lg( ))

t+1 . ey epess
3. M-step: evaluate new parameters ", 62" and w™" for 1 < k < K using current responsibilities
®) t t+1
(E+1) _ ZiVix " Xi CEI v - ( —u’ )) (t+1) _ i Vil
w
Z yl(t) K Z y(t) ) N

4. Repeat E-step and M-step until the parameters stop changing

Multimedia Retrieval — 2020 Page 4-74




— Once convergence of EM is reached after ¥ iterations, we can (hard) assign a data item x; to its
most likely cluster C+ by solving the following equation:

P(x;|Cy) - P(C
K = argmar P Gy = argas =1 02 = angas (1”07 )

— We can generalize this approach to d-dimensional spaces with d = M being the number of
features. We create a mixture of K multi-variate (or multi-dimensional) Gaussian distribution
N (pk, Zx) with u, = E[x € T, ] denoting the centroid of items of cluster Cy, and £ = Eyer, [(x —

) (x — w)T] the covariance matrix of items in cluster C.

1. Selectinitial values for ”(0) ZZ( ) and wko) forl<k<K

2. E-step: evaluate new responsibilities y; k) for1 <i < N and1 < k < K using current parameters
© _ Wl((t) f(x“ u]((f)]zZ(t))
W W -f(xu ll,(f),zz(t))

(t+1) 2:2(t+1)

3. M-step: evaluate new parameters pu, and W,Et+1) for 1 < k < K using current responsibilities

® (t+1) (t+1)
ﬂ(t+1) — Zlylk i 5 (E+1) _ Zlylk ( ~ M ) ( ~ M ) WD i Vz(t)
k ¥ G E k ®) Wi N
Yik XYk

4. Repeat E-step and M-step until the parameters stop changing

— Again, we obtain a hard assignment for a data item x; to its most likely cluster C,~ as follows:

1 1
k* = argmax (wk ) - f (xl, u(’?) 22(19))) fx; me, 22) = m - exp <—§(xi — )" (% — Mk)>
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— Where does the name Expectation Maximization come from? Let X = {x;} be the set of data
items and Y = {wq, uq, 04, ..., Wy, g, 0x } be the set of unknown parameters of the mixture of K
Gaussian distributions. In addition, we have the latent unobserved data items Z = {Vi,k} denoting
the soft memberships of x; to cluster C;,. Given, X we want to find the parameters Y that
maximize the probability that the data items in X are observations from the mixture using these
parameters. This is called the maximum likelihood estimate (MLE):

Y* = argmaxp(X|Y) = jp(X,ZW) dZ
Y
Z

In other words, if Y is known, how likely is it that data items in X follow the mixture of the K
Gaussian distributions. Adding the soft memberships Z, p(X|Y) is given by the marginal
probability of p(X, Z|Y) over all possible sets of Z. This equation, however, is often not solvable in
closed forms. Instead, an iterative method is used, that improves log p(X]|Y) with each iteration.

EM uses a so-called Q-function that indirectly improves log p(X|Y) given current estimates Y®:

Q(Y|Y®) =E log p(X, Z|Y)]

Z|X,Y(t) [

The right hand side is the expectation function over log p(X, Z|Y) given the conditional distribution
of Z given X and the current estimates Y. Now, the E-step generates this expectation function
by computing the probabilities P(Cy|x;) for Z (soft assignment) given X and the current estimates
Y® and uses Bayes’ rule as we have done above. Then, given Z, the M-step maximizes the Q-
function over all possible Y to obtain a new estimate Y+, With log-probabilities and Gaussian
distributions, we can cancel log and exp in the equation, and solutions are found by solving for
the maximum (partial derivative is zero). We omit proof for solutions and convergence.

Additional information — not part of the exams
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— Let us reconsider the k-means algorithm as an EM problem. We can re-write the objective
function (within-cluster sum of squares, WCSS) as follows:

N Kk
] = Zyi,k”xi — i ll3
17=1

Yir are the hard assignments of x; to Cy, i.e., for each 1 < i < N exactly one y;, = 1 and all
others are 0. We can transform k-means to an EM algorithm over a mixture of K Gaussian
distributions with hard assignments as follows:

1. Selectinitial values for u,(co). Keep X =1 and w;, = 1/k constant

2. E-step: evaluate new responsibilities yi(,? for1 <i < N and1 <k < K using current parameters
o |1 ifk= al‘g?linllxi — i3

Vik = _
0 otherwise

3. M-step: evaluate new parameters u,(f“) for 1 < k < K using current responsibilities
(®)
(t+1) _ LiVig "X
koo T ©
ZiVi,k

4. Repeat E-step and M-step until the parameters stop changing

Additional information — not part of the exams
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For both k-means and EM, we need to control then number K of clusters. If the number is too small,
the error value is high and the algorithms suffer from underfitting. If we select a large K, we can
reduce the error but at risk of overfitting. Let S, be the set of data items x that are assigned to
cluster C;. To control K, we determine the sum of squared errors SSE over all clusters:

K K

SSE(k—means) = Z z llx — w1 SSE(EM) = z Z (x — ) TE (e — )

k=1 x€Sg k=1 x€Sy

If we plot this SSE as a function of K, we obtain a graph like on the right side below. As we increase
the number K, the SSE decreases. However, we cannot simply solve for K that minimizes the SSE
function as K = N would have an SSE = 0 but clearly overfits the data. Rather, we look for the so-
called elbow point as highlighted in the figure where the SSE-functions “abruptly” levels out as is
decreasing much slower than before the elbow. We can obtain an optimal K in two ways:

a) Vary K from 2 to an upper bound (here 20) and determine the point that lies farthest away
from the line between the start and the end of the curve.

Sum of Squared Errors(SSE)

b) Start with K = 2 and determine the distance to the point
(2,0). While increasing K observe the distance. Stop if
the distance starts growing.

60

=
o

Method b) has the advantage of iterating less over K. For both
variants to work, we need to normalize the two dimensions, for
instance with a min/max scaling, to obtain a meaningful result. | elbow point
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« Example: Image Segmentation (Blobworld)

— Blobworld was a project at the University of Berkeley and published first in 1999. It was using
segmentation to divide an image into distinct regions and used descriptors on these regions to
retrieve objects embedded in images. The right hand side shows an example of the
segmentation

a) The original image contains too many edges and
corners yielding a large number of potential regions

b) A rough Gaussian filter smooths the image and
eliminates finer structures

c) Color is transformed into the L*a*b* space. For
each pixel, Blobworld extract additional texture
features describing the polarity (clear direction
of edges in a neighborhood), edgeness, and
texture contrast. The feature vector consists vo
of the pixel position (x, y), the 3 color and the |
3 texture values at that position.

d) Apply the EM algorithm on a Gaussian mixt " ——
model over the 8 feature values. This is k| .
computed for 2, 3, 4, and 5 clusters. ¥ N B L 2 G

e) To steer the number of clusters, a special |.. W W | eV RN o
objective function based on the Minimum (e) final segmentation (f) Blobworld

(a) original image {b) smoothed image

Description Length (MDL) was applied. J
f) Blobworld hard assigns pixels to a cluster and -8 A :
selects a unique color for each cluster. —
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4.9 Simple Neural Network Classifier

 Artificial neural networks are machine learning models that are inspired by how the brain works. Indeed,
brain research has frequently led to new approaches like the use of connections between neurons of
different layers rather than adjacent ones (multi-layer approach). Neural network, on the other hand, are
often employed to model the brain and its learning algorithms.

» The first wave of neural network research started in the late 1950s and was focusing on a single
perceptron (in hardware). It was possible to use multiple perceptrons in parallel, but they were only
connected to input and output states. The problem of perceptrons was articulated in its famous inability to
learn a simple XOR function. Even though it was shown that a two-layer network could indeed encode an
XOR function, the limitations were obvious and a first Al winter began.

» The second wave started with research in the 1960s with the introduction of hidden layers. Several
researchers were developing similar ideas but the credits usually go the Rumelhart, Hinton, and Williams
and their 1986 paper on backpropagation which describes the approach with such clarity that it is still the
basis for many descriptions in text books. The area revived quickly and lead to convolutional networks,
recurrent networks, belief networks with many of the concepts found today in deep learning. However, the
field suffered from calculation issues (vanishing and exploding gradients) and the computational limitations
in the 1980s and 1990s.

» At the beginning of the 2000s, almost no research was published or cited and funding was very sparse.
However, the Canadian government funded a small research team around Hinton that first rebranded the
field into “Deep Learning” and then published in 2006 a break-through paper with a fast learning algorithm
for deep belief nets. In parallel, compute power has significantly grown. Inspired by the Canadian research
team, the field arose again and soon it was found that GPUs were up to 100 times faster than CPUs. This
allowed the training of deep networks within hours and days rather than weeks and months. Google
started in 2011 its Google Brain research project to connect thousand of CPUs for a network with 1 billion
weights. Since then, research has generated an enormous amount of improvements and efficient learning
frameworks leading to an overwhelming success story of Al with many applications.
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source: https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at- source: https://www.nvidia.com/en-us/data-center/dgx-server/
A

googles-first-tensor-processing-unit-tpu
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* Big computation, local optima and overfitting * Kernel function: Human Intervention

« Weights are not Learned

source: ttps://beamandrew.qgithub.io/deeplearning/2017/02/23/deep_learning_101_partl.html
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« We first consider the original perceptron idea: in principle, it is a binary classifier mapping a real-
valued input vector x € RX to a binary output value f(x):

1 ifwx+b>0
X) =
f@) {0 otherwise

where w € RX are the weights and b is the bias. From this definition we derive that the perceptron is
splitting the space with a hyperplane given by w”x + b. In a more general setup, L perceptrons with
weights w; and bias b; are connected to the K input value i;, and produce L binary output values o;.
We can visualize this general setup as follows:

Wi K
X —> - —> 0; «— U z: .
h bl Vi<I<L: Ol:f< lk°Wk+b>
k=1
Xo —> i, b, — 02 <« i

with the binary step function

XK —> iy b,— oL «— I f(2) = 1 z>0
sample input weights bias output target ~ |0 otherwise
The learning algorithm is then as follows: (demo: https://www.cs.utexas.edu/~teammco/misc/perceptron/)

1. Initialize the weights W,Ef;) and the biases b£°) with small random values. Seta learningrate 0 < a <1
2. For each example x € T, apply it to the perceptron, i.e., leti = x
- Calculate that actual output: o; = f(Xk_; ix - wi1 + by)

« Update the weights: w&“) = W,E,tl) +a(t,— o) ix; (i-e., only adjust if target=output)
» Update the bias: bl(t“) = bl(t) + a(t; — o) (i.e., only adjust if target=output)

Convergence is only reached if the data set is linearly separable. Otherwise, the algorithm may falil
completely. A number of variants address this later issue.
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« Intuitively, the perceptron learning algorithm only adjust weights (and bias) if the target differs from
the output. If the output is O but the target is 1, then weights and bias are incremented, otherwise
they are decremented (assuming x; = 0). We also note that the algorithm does not aim to optimize
any objective function but merely is a heuristic approach to learn the weights. If data is separable, it
converges to binary partition of the space with a hyperplane (one of many that partition the space).

* In contrast, the support vector machine (SVM) computes an optimal solution for the hyperplane
that separates the sets and maximizes the margin (the distance of marginal points to the
hyperplane). SVM even works if the data is not separable; it then finds a solution that minimizes the
partitioning error. We are not considering here how SVMs are computed.

Perceptron SVM

(]
‘ (
possible

solutions exactly one

optimal solution

* In any case, a binary classifier can be used to learn multiclass outputs as well. The “one-vs-all”
approach learns a binary classifier for each of the L classes to separate a class C; from the rest. In
other words, we use L perceptrons and the binary target vector t has t; = 1 and all other
components are 0. For prediction, the output with the highest value denotes the “winning” class.
Alternatively, the “one-vs-one” strategy uses L(L — 1)/2 perceptrons to separate two classes from
each other learning the perceptrons individually. For prediction, the output with the highest value
indicates the “winning” class.

Multimedia Retrieval — 2020 Page 4-83




* The linear classification approach of SVM seems rather limiting (like for perceptron). However, SVM
has the “kernel trick”: the idea is that data points are mapped to a higher dimensional space that
enables better separability of the data by a hyperspace. The mapping to this higher dimensional
space is typically non-linear. The “kernel-trick” now means that we do not explicitly compute the
mapping to the high-dimensional space, but rather only compute the inner product between data
points that is required for the SVM calculations. For instance, the kernel K(x,y) = (1 + x"y)? with
x,y € R? is an efficient way to compute the inner product of two mapped values ¢(x) and ¢(y) in a
6-dimensional space. With a Gaussian kernel K(x,y) = exp(—y||x — y||?) we obtain an infinite-
dimensional mapping function ¢.

* The “kernel trick” is often considered as a human intervention into the machine learning process.
SVM classification works very well and is efficient but we need to design an appropriate kernel
function for the problem at hand.
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* Multilayer networks introduce a number of changes to the original perceptron

several “hidden” layers between input and output

different activation functions to “fire” a neuron, and not necessarily only binary output
objective functions to define an optimal state for all network parameters

a new algorithm to learn the weights (the so-called backpropagation)

« Let us start with a simple two-layer network to understand the fundamentals with a concrete
example, and then we generalize the concepts to arbitrary shaped networks.

t1(x)

sample input hidden output error
Wy Ws ¢
i1 hy 0q 1
W We
x€eT ]
W3 Wy
. W, \%
%) * h, = 02 J2
by b, T

ta(x)
1 1

» The network consists of two input neurons iy, i,, two hidden neurons h4, h, and two output neurons
04, 0,. We have two (shared) biases, b, for the hidden neurons and b, for the output neurons. Note
that we modeled the bias as a weight from a neuron that always has the state 1. wy, ..., wg denote
the weights on the connections. Even though we have 6 neurons, the connections are only from one
layer to the next one and especially, there are no inter-layer connections or cycles. This is an
important topological constraint that will simplify our learning algorithm. Finally, we added nodes to
capture the training error: J; and J, measure the error between the first and the second target
component t, (x) and the computed output of the network. /] denotes the training error.
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* Feed-Forward: given a data sample x from the training set T, the network is computing the state of
each neuron using a simple model:

-

a Wi S=Zak-wk+b o(s)

X |9 — k U

1 b 1 J
y—<p(s)—1+e_s 1 1

\l/)vizlsghts summation  activation  output t " ¥ & 8

input

We use s to indicate the result of the summation, and we employ the logistic activation function ¢
also known as soft step. With this, we can determine every state of a neuron, given the input x € T:

il - x1 and iz - XZ 1
o(s) = -
1+eS

hy = ‘P(Shl) =@w;-x; +wy-x;+by) and h, = ‘P(Shz) = @(ws X1 +wy - x; + by)
01 :‘P(Sol) =@Ws - hy +wg-hy+by) =@ws-@wyx; +wy x5 +by) +we-@ws - x1 +wy-x, +by) + by)

02=<p(502)=g0(W7-h1+W8-h2+b2)=g0(w7-<p(wl-x1+w2'x2+b1)+wg-<p(w3-x1+w4-x2+b1)+b2)

The calculations are straightforward. The term feed-forward denotes that we “feed” the data sample
first into the input layer, and then forward the results from one layer to the next one. Each layer can
be computed concurrently.

Later on, we will see different activation functions and also different approaches to connectivity and
sharing of weights between subsequent layers. The principle model for neurons remain the same for
most deep networks. We will also encounter special dropout neurons, that set input elements to
zero with a certain probability to prevent overfitting of the network.
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* Error function: we want to measure how well the network is able to predict the targets for all given
data samples in the training set T. As a starting point, we use the mean square error (MSE):

1) = ITI21<x 0) = 7= > 6@ — (D)1

X€ET

where 08 denotes the parameters of the network. In our example: @ = (wy, ..., wg, b1, b,). Learning a
network means finding parameters 6* that minimizes the error function:

0" = argznax](@) = ZIIt(x) —o(x; 0)1I5

2. |']I‘|

— Due to the size of networks and the number of data items, it is generally not feasible to solve the
equation in closed form. Instead, we use the gradient descent method to find a (local) optimum
through an iterative approach. Let Vj(@) be the gradient of J(8) for the parameters 0 of the
network. The gradient descent method defines the learning strategy for the network:

1. Choose an initial random vector for 8°) and a learningrate 0 <7 < 1
2. Repeat until ||@¢+D — e(f)||z <e OF t>tmax

- Compute gradient: A®=7-vj(9®)

« Adjust parameters: 9+ = g1 _ A(®)

— Gradient descent is relatively slow close to the minimum and often “zigzags” for poorly
conditioned convex functions. In addition, for large-scale data sets and networks, gradient
descent requires enormous computational and storage requirements to determine the gradient
(which we can derive in closed form for the network as we will see later).
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— Instead of gradient descent, neural network algorithms use the stochastic gradient descent
(SGD) often in combination with a momentum method to prevent the afore mentioned zigzag
iIssue. SGD approximates the true gradient of /(@) with a single data sample (instead of over all
data samples). As we will see with backpropagation, this allows us to quickly update the weights
with minimal storage overhead. SGD still suffers from slow convergence especially towards the
end of the iterations. Momentum is one method to accelerate the descent. We keep the gradient
of the past iteration and re-apply some fraction y of it in the descent:

1. Choose an initial random vector for (%), a learning rate 0 < n < 1, and a momentum 0 <y < 1.
. 2
2. Repeatuntil [[6¢*D —9®|” <& or >ty

Randomly shuffle the training set T
ot+1) — g(®)
Foreachx € T
« Compute gradient: A=y -A+7-V](x; 0¢D)
« Adjust parameters; @U¢+D = gt+1) _ A
Increase y

The momentum y defines how long a previous gradient is still used. Generally, we start with
y = 0.5 and then increase it after the initial learning stabilizes to y = 0.9 or even higher.

— The above algorithm defines the overall learning strategy. Each batch (step 2) runs against the
entire training set and for each data samples, the weights and biases in the network are adjusted
for each data sample. What remains to do is to compute the gradient V/(x; @) for the current data
sample and the current set of parameters of the network.

1
J(x;0) = 5 llt(x) —o(x; 0)ll5 Vi(x; 0) =?
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Gradient computation: before we consider the backpropagation algorithm, let us re-consider our
example network from the beginning with two input nodes, two hidden nodes, and two output nodes.
For the stochastic gradient descent, we need to compute the gradient. Note that in our example, we
have 8 = (wy, ..., wg, by, by). The gradient is then given as the partial derivatives over J(x; 0):

) a d/ d]
Vi(x; 0) = <6W1 " owg’ 0b,’ 0b2>

1 1
J(x;0) = ]1(x;0) + J,(x;0) = 5 (t; —0)* + 5 (t; — 0,)?

with given targets t; and t, for data sample x, and o, and o, as given previously as a function of x
and the weights wy, ..., wg and the biases b, and b,.

— Let us start simple: consider we. It only occurs in o, but not in 0,. Thus the partial derivative is:

01 = <P(Sol) = @Ws -+ hy + wg - hy + by) 0y = (P(Soz) = @(wy; - hy + wg - hy +b;)

aj ad (1 , 1 ,\ 0 (1 5\ 00,
a—ws—a—ws<§°(t1—01) +§°(tz — 0z) )—a—ws<§'(t1 —01)° | = (t; —01) T

doy 0 0So4 050,
e = g (950)) = 9(50) - (1= 0(s0,)) - G- = 01 (1 =0 - 5

ds d

61:1; = aWS(WS'h1‘|‘W6'hz‘|'bz) = hy

all together: ;

aJ o) =1_=
a—vvs—(t1_01)'01(1—01)'h1 o =¢-(1-¢)

Additional information — not part of the exams
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d] d] 9]

— Similarly, we obtain the other partial derivatives and Altogether we have:

6W6’ 6W7’ 6 8 6 2
9] 9]
owe =(t;—01) 0,(1—09) -y owe = (t; —01) - 0,(1 —01) - h,
9] aj
Wy = (t; —03) - 0,(1 —0,) - hy owy = (t; —03) - 0,(1 —0;) - h,

0
ﬁ =(t; —01)-0;(1 —071) + (t; —03) - 0,(1 —03)

We already note the recurring patterns in the calculations: the derivatives on the error function
are multiplied by the derivative on the activation function and are multiplied by the derivative on
the summation. For the gradients, we require the results (=states) from the feed-forward step and
can the efficiently compute the gradients (see backpropagation).

— Now to the remaining partial derivatives (see next page how to derive for w;):

aaT]=h1'(1—h1)°x1'((t1_01)'01'(1—01)'W5+(t2_02)'02'(1_02)'W7)

2 py (A =hy) xp (6= 01) 01 - (1= 07) - ws + (t; — 05) - 05 - (1 = 03) - wy)

aWZ
0
avig hy - (1_h2)'x1'((t1_01)'01'(1_01)'W6+(t2_02)'02'(1_02)'W8)
0
ﬁzh2'(1_h2)'x2'((tl_01)'01'(1_01)'W6+(t2_02)'02'(1_02)'W8)

aa—b]1=h1-(1—h1)-((t1—01)-01.(1—01)-W5+(t2_02).02.(1_02),w7)+
hz-(l—hz)-((tl—ol)-ol.(1_01).W6+(tz_oz)_oz_(l_oz).WS)

Additional information — not part of the exams
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— Let us now consider w;: we note that w, only occurs in h; which in turn is part of both o, and o,.

0, = 90(501) = @(ws * hy + wg - hy + by) 0y = ‘P(Soz) = @(wy + hy + wg - hy + by)
hy = QD(Shl) =@(wy - x4 +wy - x; + by) h, = ‘P(Shz) = @(w3 X1 + Wy - x5 + by)
6] Jd (1 1 doq 00,
6W1 6_W1<_ (t; — 01)? +— (tz — 02) ) =(t; —o01) - _+ (t; —02) - a_Wl
&_i( (S ))_ (s ).(1_ (S )).as_o_o C(1—o0y)- 050, do, 0S,,
an - an @ 01 =@ 01 P 01 an 1 1 an a_VVl =0y (1 02) an
ds 0 dh
601=a (Ws - hy + wg * hy + by) = ws - 51 6502: Ohy
W1 W1 W1 ow; ow,
ahl 0Sp4 dsp,
e (‘P( hl)) = ¢(sn,) (1 — <P(5h1)) ow, hy-(1—hy)- W
aSh 0
aW;I: - an (Wl °x1 +W2 'xz +b1) =x1
all together:
a/
a—Wl=(t1_01)'01'(1—01)'W5‘h1'(1_h1)'x1+ @(s) = +1 -
=
(t—02) 0, (1 —02) wy-hy-(1—hy) x o =¢-(1-0¢)

Additional information — not part of the exams
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« Evidentially, it is possible to compute all partial derivatives for the gradient, but it seems tedious
work to do so (and error prone). Can we do it simpler? Yes, we can. Backpropagation is an
astonishingly simple scheme that computes the gradient starting at the error node and working back
towards the input nodes. It does not provide us with the closed forms of the derivatives, but it
computes the gradient avoiding multiple computations of the same sub-expressions.

— Let us look again at the chain rule from calculus:

F(x)=feog=f(g(x) F(x)=f'(g(x)-g'(x)
or in Leibniz notation with z = f(y) and y = g(x): % = Z—; . % =f'(y)-g'(x)

In graphical notation, we obtain the forward path to compute the composite function:

x y=gXx) z=f(y)
. . >

forward x > g >

Now to compute the derivative % for x we move backwards. We first compute f'(y) and then

multiply it with g’(x). To this end, we need to keep track of intermediate results and use them on
the back path to calculate the derivative:

x y=g) z=f)
forward x > g > f > z
x y

dz dz dy

_— . < " < " < 1

dx dy dx dz _dz 4 dz f } backward

Additional information — not part of the exams
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— Similarly, we can look at multivariable chain rules
F(x) = f(g(x), h(x)) F'(x) = f'(g(), h(x)) - g'(x) + f'(g(x), h(x)) - B’ (x)
or in Leibniz notation with z = f(y),y = g(x) andw = h(x)

dz dz dy+dz aw w) - 90O + Fw) - R ()
dx dy dx dw dx_f y,w) g )+ w g

In graphical notation, we obtain the forward path to compute the function:

y=9gXx)

z=f,w)

forward x

x g
z=f(y,w)
forward X > z
x h
yw
X
dz dz dz )
&y T g ay =T
dz _dz dy+dz dw 1
D dy dx dw dx + x f 1 backward
dz _ dz B n dz L
dx - d_’y (x) dy - f (y,W)

Additional information — not part of the exams
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Let us apply the chain rule to our neural network. Let start with the output neurons. To simplify the
structure, we introduce a node a, which always has the state 1, and the weight w, = b which
represents the bias. All formulas become a bit simpler. The visualization for the forward and

backward path are given below:

S =
ag = 1 Wi,1, Wo,1 = bl t (p( ) 1+e-S
!
. , ' =¢-(1—¢)
forward 5 = Z _— ~ 1 ,
@ X ) o, = @(sp) = E(tl —0p)
a > >0 > ) > —> J=)
1 1 1 1
1 1 1 1
L Lo Lt o v
1 1 1 1
1 1 1 1
v v v v
< 3 < @' < I’ < ] «— 1 backward
] l 6;=0,-(1—0)-(t; —0p) (tr—op) 1
aJ a]
Wk,l = a0 A=y Dy +1- IWes Wit = wi — Ay

— Every layer outputs the §-values that are propagated back to the inputs and are used to adjust
the parameters in every layer. Above, we used a separate bias b; for each node. If we would
share the bias across the layer like in the example, we need to simply sum up the deltas over the

nodes using the same bias, i.e.:

/ljvz:l___l___>zl1 &,
) aJ d]
1 b :Zk——l-—-> Ty k %ZZ Sk AbZV'Ab‘FU'% pnew = p — A,
\ 51( k
ZK__’;l___» ZIK

Additional information — not part of the exams
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— Hidden layers are calculated similarly, however, there are L incoming edges from the subsequent
layer during backpropagation. The visualization for the forward and backward path are as follows:

v 1
i o(s) = 1+es

p'=¢-1-9)

ap =1 Wi, Wo, 1 = by

v

M€ M ——

l

v

forward l
o S = Zkak * Wi, / o, = ¢(sp)

Ay

Q
=
S
S

T

S €------%
A
+ €¢---—---}---—---

backward

A

]
3
=
3
3
3

51=01'(1—Oz)'z Vl,m'5m
m

g
—— Mt -—---- M

aJ

aWk,l

&‘

new __
Wi =Wy — Ay

D=y By +n-

S
S
=
|
Q
&
g

— Let us sum up the backpropagation algorithm: during the stochastic gradient descent, we search
for the optimal parameters (weights, biases, etc.) of the network. To compute the gradient for
these parameters with respect to an error function J, we first use the network in forward mode to
predict the output with the current set of parameters. At the same time, we keep track of
intermediate values that are required on the backward path. We then compute the error with
regard to a single sample and propagate the partial derivatives backwards to the previous layers.
At each layer, we compute the A-values for the weights to obtain new estimates for them. Note
that the old weights are still required for the preceding layer to compute its partial derivative (see
figure above, the (+)-node requires weights v;, m from the subsequent layer).

Additional information — not part of the exams
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« Generic implementation of multilayer networks: let us model a dense multilayer network. We
assume N layers L; and we denote L, to be the input layer and L, to be the output layer. Each
layer has M; neurons with states o;, with 0 < i < N and 0 < k < M; whereby o;, = 1 (used for the
bias). Further we use weights w; ,,, with1 <i <N, 0 <k < M; and 1 <[ < M;_, to connect the [-th
node of Layer L;_; with the k-th node of Layer L;. In addition, we keep track of the increments A; . ;

J

Wlkl

for the computation of the gradlents

— Example with 3 layers:

00,1 011 021 031 J1
W1kl Wa k1 W3 k1 : )i

0Oo,m, 01,Mm, 02.M, 03, M, Im,

— Feed Forward is then given as:
1. Initialize o, ; = x; from the current data sample x € T c R0 with target t € R*~
2. For each layer L; with i iterating from 1 to N:
« Compute 0;, = @(X; W; - 0;—1,;) With a selected activation function ¢ forall 1 < k < M;
3. Compute J, = Er(onk; tx) With a selected error function E forall 1 < k < My
Compute training error J(x; 8) = Y. Jx = E(on x; tx) for current sample
So far we have used the logistic activation function ¢(s) =
(MSE) with J(6) = m Y erllt(x) — o(x; )13 such that Ek(oNk, ty) = —(tk — oy k) We will
see further activation functions and error (or loss) functions in the deep learning section.
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— Backpropagation is finally (e.g., with logistic activation function and mean square error):
1. Given target t and assume output o, from feed forward step; assume learning rate n and momentum y
Initialize A; . ;= 0
Compute 8y = (p’(oN,k) . E,’((ON,,(; tk) = Oyk* (1 — oN,k) . (tk — oN,k) foralll <k < My
For each layer L; with i iterating from N — 1 down to 1:
- Compute 8 = @' (0ix) - XiWiz11x - Sizrg forall 1 <k < M
« Compute A=V Ajxi+n-0i_1; 6 foralll <k <M
5. Update weights w; j; = W; 1 — Ak

> W N

Note: it is tempting to update the weights in the inner loop (step 4). However, we need the old
weights in the preceding layer (next iteration in step 4) to compute 6; .

« While multilayer networks are still used in later layers in deep learning scenarios, the original
approaches in 1980s and 1990s suffered from a number of issues (we will discuss them in the deep
learning section). Essentially, the main issues involved numerical problems while computing the
gradients (vanishing and exploding values) and the vast compute power necessary to learn
moderate to large network. The smaller networks, on the other hand, did not work too well on typical
classification scheme, and with SVM and kernel functions superior alternatives emerged.
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Example: Face Detection

— Rowley, Baluja, Kanade [1998], Carnegie Mellon University, defined an elaborated algorithm for
detecting faces at any scale and direction. To keep the neural network small, their approach was
to first learn only normalized faces, and to then apply an exhaustive search for faces on images.
The detection network is based on a 20x20 input network (preprocessed image window). In a first
layer, 3 types of receptive fields are created: a) four 10x10 areas, b) 16 5x5 areas, and c) six
overlapping 20x5 areas. Each area is fully connected to a hidden unit which is fully connected to
an output. An output of 1 denotes a face, and an output of -1 denotes no face.

— A second network (router network) was trained to estimate the direction of a face within a
window. The 20x20 input network (preprocessed image window) is fully connected to hidden
units which in turn are fully connected to 36 output values representing an angle of i - 36°. The
angle can be used in the predication phase to normalize the face before application of the
detection network.

Input Image Pyramid Extracted Window Histogram Derotated Corrected Histogram Receptive Flelds

(20 by 20 pixels) Equalized Window Lighting Equalized _ Hidiﬁﬂ Units
— =0
pE
so o Q g
Q
]
oo

T s OBE&-

IR =15T L
= Eﬂ\g%:/
Fae O

Hidden Angle
Input Units Output

Preprocessing Detection Network Architectuce
Router Network
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— Once trained, we can find faces in an image as follows: first, we build a pyramid of images by
subsampling to smaller and smaller sizes. This allows us to find faces of different sizes. Then, a
20x20 windows is sliding across the image and for each location, the network tests whether the
window contains a face. Due to the usage of normalized faces, the algorithm can return the
location and direction of faces as well as estimating the position of the eyes.

el BT
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4.10 Deep Learning

The second wave of neural network research died very quickly after discovering more structural
issues with how the learning algorithm works. Even though it was proven that neural networks can
learn any function, that theory often would not materialize in practice. Especially, it was observed
that adding additional hidden layers does not lead to better results, and bigger networks were
becoming increasingly instable to operate. The famous notion of vanishing and exploding
gradients and the competition of support vector machine (SVM) with elaborated kernels drove a
whole research field into a dead end. Only the Canadian government continued to fund neural
network research: Geoff Hinton and team published in 2006 a paper on deep belief network where
they showed how they could learn a network layer wise overcoming the issues of early
backpropagation learning. In parallel, the massive amount of labeled data sets (a prerequisite to
start learning) and the massive parallelism of GPUs greatly accelerated the success of what is know
simply called deep learning (although the concepts are much older).

Let us first consider the vanishing gradient problem. In the network of the previous section, we had a
input layer, a hidden layer, and an output layer and were optimizing the networks parameters by
minimizing a quadratic cost function. The backpropagation algorithm computes gradients and would
update a weight on the first layer with:

aj
a—Wl=(t1_01)'01'(1_01)'W5'h1'(1—h1)'x1+(t2_02)‘02‘(1—02)‘W7‘h1'(1—h1)‘x1
The gradient is the sum of two multiplications, each with factors of the form x - (1 — x) due to the

usage of the sigmoid activation function. Note that x stands for the outcome of a neuron after the

activation function, hence x = ¢(s) = 1+2—s' In addition, the multiplications include the weights of the

last layer. If we add more hidden layers to the network, more factors of the form x - (1 — x) and
more weights of later layers appear in the gradients of weights and bias of the first layer.
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— The derivative of the sigmoid function ¢(s) = 1+1e_5 is plotted (pr:;.(l_;)
on the right hand side. We note that the maximum value is 02
Y, and that values quickly drop on both sides. If we initialize
weights between 0 and 1, the gradient computation turns into
a series of multiplications of small values yielding very small
updates weights and biases even if they a significantly wrong. 3 ° 5
This requires a huge number of iterations to move weights and
biases towards their optimal values, hence, learning is very slow and expensive.
(t1_01)‘01'(1—01)'W5‘h1'(1—h1)'x1 < 1/16
\ Y ] \_'_l \ Y ]
<1/4 <1 <1/4

As a consequence, gradients are reduced to a fourth for each layer in the backpropagation
making it very slow to train networks with lots of layers (GoogLeNet used ~20 layers).

— On the other hand, if we scale the weights and input values beyond the typical [—1,1] range, the
gradients will explode as we a now multiply several numbers larger than 1. With only a few
layers, gradients become exponentially larger as we propagate back, and with that the weights
and biases grow in absolute values, resulting in potentially even larger gradients in the next
iteration. Several attempts for deeper networks failed due to instable gradient computations.

» Deep learning addressed these issues with backpropagation friendly activation functions (RelLu),
improved architecture (convolution, pooling, inception modules, residual networks), and improved
regularization techniques (dropout, RelLu, L1, L2). We consider some of these concepts
subsequently.
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« The rectified linear unit (ReLU) is a simple activation function replacing 7
the sigmoid function used previously. There are now many alternative g
activation functions, but the ReLU marked an important step towards

14

1 1 1 L
—10 -5 5 10

-

more stable gradient computations. It is defined as

@(s) = max(0,s)

The function is plotted on the right hand side. What is so special about this function? First, its is
closer to the way biological neurons works while the sigmoid function (and its counterpart the
hyperbolic tangent) were inspired by probability theory. Second, its gradient is either O or 1:

, _ )0, s<0
‘p(s)‘{L =0

Hence, the gradients of the activation function do not accelerate the vanishing and exploding effects
as described before. ReLU have become the standard activation function for deep learning despite
some of the challenges that come with them:

— The output is no longer in the range [0,1]. If we train classifiers, how can we map the output of
the last layer to class labels? The softmax function can be used to convert output values to class
probabilities. It is often used together with the cross-entropy loss function to simplify gradient
calculations as follows. Let o, be the k-th output value, and y; be the target label. Then:

efk

D = Zk = ](9) = — Z Vi * ]Og Pk J is defined as the cross-entropy
k

loss function. @ contains all
aJ C
Y = — that is
aOk Pie = Vi simple!

weights and biases.

parameters of the network, i.e.,
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— The derivative of the ReLU can become 0 which means thatback | 1w S
propagation stops at this unit and predecessors are not adjusted.
While some see this as a regularization of the network by thinning niroduce a sl slope
out the connections (much like neurons in the brain are also not o keep the Update ave
fully connected), others are concerned that an initial selection of
weights and biases may randomly close paths and the network
can only slowly recover from that (if at all). Instead, a common extension is the leaky ReLU
which is defined as (including its derivative):

e IR R

The advantage is that the derivative is never becoming O; it is small for negative values allowing
a network to recover a closed path

« To overcome the vanishing and exploding gradient, deep learning improved the architecture of the
network: instead of fully connected, cascading layers, deep networks uses convolution, pooling,
inception, residuals, and regularizations to structure the network. Convolution, for instance, uses a
few weights and biases that feed into several thousands output neurons. Hence, during
backpropagation, even though the gradients may have become small, thousands of updates are
summed up in one iteration. Regularizations, as another example, reduces the number of active
connections. Similar to convolutions, this reduces the number of (active) parameters in the network
making it more efficient to train and faster to learn. We look at these individual measure first in
isolation and then put all together for a truly deep learning network.
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® COﬂVOl Utlon input neurons

— So far, we considered layers that were fully connected with the
previous layer. Each connection had its own weight, and neurons
hat either their own bias or a shared bias.
Q000 hidden neuron

— In contrast, the visual perception of nature works with receptive e—
fields that extract features from a spatial neighborhood. The fields
work the same across the entire visual range. In the traditional
learning, hence, images were pre-processed using different
algorithms (Gaussian, Sobel, HOG). However, that also limited the ways a network can learn.

— Deep learning introduced a new layer, the convolutional layer. As depicted above, it connects
only a small spatial neighborhood (here 5x5 input neurons) to a hidden neuron. This occurs for all
locations in the matrix, creating an identically sized hidden layer (using padding at the
boundaries). The output of the neuron is given as:

0;;(x) = ¢ (b + z Wil * Xitk,j+1 )
Tl

An interesting aspect is that the weights w; ; and the bias b are shared across the neurons of the
new layer. In fact, the above formula correspond to the convolution approach we have seen in
the previous chapter (hence the name). Only, here we task the network to learn the best
convolution for the task at hand.

— In addition, we can define an arbitrary number of such filters within a single convolution layer.
The output at the hidden neuron is then not only a single value, but a N-dimensional vector which
can be used as the input for the next layer.
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— As the output of a convolution can be N-dimensional, so can the input be an M-dimensional
vector. In fact, when processing images, we typically start with three channels. These three
channels can then be mapped through convolution to an arbitrary number N of output features (N
Is often called the depth of the output). The more general convolution functions is hence a
mapping of an M-dimensional input vector x to an N-dimensional output vector o. For a pixel
location (i, j), we obtain:

0;jn(X) = ¢ (bn + z Wi 1, mn 'xi+k,j+l,m>

klm

For example, let us assume a 5x5 convolution on three (M = 3) input channels, and we want to
convolute to N = 20 output feature. The above formula contains shared biases b,, for each output
feature 1 < n < N, and shared weights wy ., , for each of the 5x5 positions of the window, for
each channel 1 < m < M and each output feature 1 < n < N. Hence, we have 20 biases and
5x5x3x20=1500 weights. The shared parameters are then used for all pixel locations in the
image. If we started with a 256x256 input image with 3 channels, the output of the convolution is
now a 256x256x20 arrays. Interestingly, we do not need to map the color spaces as the network
now can also learn the best linear combination of the channels.
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— The special case of a 1x1 convolution is often used to reduce the dimensionality of the input
values. Assume we want to learn a 5x5 convolution with 20 output features and we have 20 input
features: we would need to learn 5x5x20x20=10"000 weights and 20 biases (in total 10’020
parameters). A 1x1 convolution can reduce the number of parameters to learn as follows:

« We can first apply a 1x1 convolution to generate 3 output features (from the 20 input features).
We require 1x1x20x3=60 weights and 3 biases for this layer (63 parameters in total).

» We then feed the 3 features from the 1x1 convolution into a 5x5 convolution with 20 output
features. We require 5x5x3x20=1"500 weights and 20 biases (1’520 parameters in total)

» Overall, the new network structure has 1’583 parameters compared to the 10’020 with the
naive, straightforward mapping.

— An interesting aspect of convolution is that its complexity (number of parameters) is independent
of the input size of the network. However, computational complexity (forward and backward
steps) depend on the number of input values. For instance, an input sizing for 256x256 is 4 times
faster than for a 512x512 sizing. If images are the input, the typical approach is to scale them
down to a reasonable size that can be fed into the network. We will see later techniques to deal
with scale variance, e.g., recognizing objects at different scales.

— Strides: convolution uses a sliding window which is applied at each location to compute an
output value. In addition, it is also possible to define how far apart two subsequent windows must
lie. A stride of (2,2) means that only every other value in both dimensions is used as the starting
location of the window. Thus, only half as many rows and columns are created in the output.
Strides can be used to reduce the initial size of the network. A (2,2) stride will lead to 4 times less
output neurons. For images, this allows to scale down the size and compute features at various
scales.
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« Convolution layers are often followed by Pooling Layers. Pooling reduces the number of neurons
and thus simplify the overall information.
hidden neurons {output from feature map)

— A pooling layer is again a spatially organized structure. It max-pooling unita
summarizes the values of a window in the previous layer. For 28 ;
example consider the picture on the right hand side: a 2x2
max-pooling layer outputs the maximum value of the 2x2 window.

If we additionally use a stride of (2,2), this reduces the “feature
map” by 4 times. If the input consists of multiple channels, then
the pooling operator is applied at each channel individually. Here,
we do not apply an activation function:

Oi,j,n(x) = HZI%X Xi+k,j+ln

— Next to max pooling, other summarization functions are possible. Typical examples include
average pooling and L,-Norm pooling.

— In deep learning, for instance image object recognition, pooling layers are an important control
mechanism to reduce the spatial size of the representation and with that the number of
parameters in the network model. This not only greatly reduces the amount of computation but
also reduces the risk of overfitting. Recall that the best model is the simplest one among equally
good methods. Also note that pooling only reduce spatial dimensions if the stride is larger than 1.
It does, however, not reduce the number of features (depth). For that, a 1x1 convolution is
required as described before.
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* Regularization is an important element in deep learning to prevent overfitting to the training data.

— As we discussed earlier, overfitting occurs if the model has too many —
parameters and hence memorizes the data rather than generalizing  optima
rules from it. The picture on the right hand shows a simple example
of what overfitting means. While the models on the right side may use
dozens of parameters, a deep neural network can have several
millions of parameters. Hence, how do we prevent the network
from simply memorizing the input to target mapping, and how can underitdiag
we detect an overfitting problem.

— Overfitting is the lack of generalization and will become evident if we apply a trained to new data
items that were not used during training. The validation set can be used to detect overfitting.
Overfitting can be recognized as follows:

« Almost perfect accuracy for the training set at the end of the learning
« Significant lower accuracy for the validation set at the end of the learning
« The gap between training accuracy and validation accuracy is growing over the learning time

A Overfitting A Regularization
100% - |- 100% - f oo
training set training set

validation set
gap is growing over time; ¢
significant difference

validation set

accuracy
accuracy

still a gap but validation accuracy much
closer following progress of training set

[ [

epochs / iterations epochs / iterations
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— We have several options for regularization

« Adjust the network structure and reduce the number of parameters—not really an option
given that we want to learn complex tasks. The success of small networks was rather limited.

« Expand the training set—not always feasible, but we can modify and alter the existing data
set. For instance, small rotations, varying brightness, adding noise, Gaussian filters, etc. With a
few such modifications, we can create 10 to 100 times more training data without any
additional labelling costs.

« Adjust the cost function to prefer simpler models. A simple method is to add a penalty to the
cost functions for the use of large weights. Smaller weights (preferably 0) reduce the
complexity of the model. This way we can balance overfitting to the training with a penalty for
more complex models. Our cost function looks now as follows (L2 regularization):

— A 2
Jreg(®) =J(8) + 5 > W
With |T| being the number of training samples and A > 0 the regularization parameter. Note
that we only add penalties for the weights but not for the biases. With this, we have a new
update for w; during back propagation. Let A; be the update for w; without regularization, then:

(t+1) _ nA\ . ®
Wi+ —<1_m>'wit _Ai

Regularization adds a weight decay factor (1 - %I) for each weight, making them gradually
smaller unless the gradient compensates enough to increase weights in the learning step. This

was shown to greatly reduce the risk of overfitting.
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« The Dropout technique heuristically adjust the network structure during the learning phase. At
any point in time during the learning phase, only parts of the network are active (with a random
selection of nodes). This selection can change over time:

— At each training step, nodes are dropped out with a probability of 1 — p. Over the learning
time, different sets of active nodes learn the training example

— Feed forward: if a node is dropped out, its output value is set to 0. We keep weights and
biases as the node may become active in a subsequent training step

— Back propagation: if a node is dropped out, it does no longer propagate changes. The
weights of connection to/from such a node do not receive an update.

— The final model for prediction uses all nodes but compensates their weights with (1 — p).

We can interpret the dropout technique as learning many different networks at the same time.
Finally, we combine all the individual networks into a single, bigger network. This helped with
overfitting as each individual subset of the network has adapted differently to the training set.
By “averaging” the networks for prediction, the impact of overfitting in one such sub-network is
evened out the other sub-networks (which may have overfitted other aspects of the training set)

a) Standard Neural Net (b) After applying dropout.
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« Putting all together

— Let us start with a simpler example: the MNIST input layer  i0den 1aver 1 hidden layer 2 hidden layer 3
database (see next page) consists of 28x28
images depicting hand written digits (0, 1, 2, ..., 9)

— The conventional approach with neural network
used fully connected hidden layers like in the
picture on the top right. Its performance was ok
but methods like SVM and k-NN classification
proved to be better.

— The deep learning approach: use of convolution
and pooling greatly improved performance. The
picture on the bottom right show a possible
architecture. The first 5x5 convolution produces
20 features with a ReLU activation (here, no
padding is applied hence the size of the network
reduces to 24x24). A subsequent 2x2 max-pooling
layer reduces the spatial dimension to 12x12 (with roscas g Hopor ‘ gl
20 features). These 12x12x20=2880 elements are | A w5 0
fully connected to 100 neurons. Finally, a softmax ‘ -
layer reduces the 100 neurons to 10 classes. The i ﬁp = 9 ¢
output neuron with the highest value denotes the | I e i

class for prediction.

deep
learning
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* The original black and white images from NIST
were size normalized to fit in a 20x20 pixel box
while preserving their aspect ratio. The
resulting images contain grey levels as a result
of anti-aliasing. The images were centered in a
28x28 image by computing the center of mass
of the pixels and moving the 20x20 image.

« The data set consists of 60’000 training items
and 10’000 test items The algorithms must
learn a prediction method to map an image to
one of the 10 classes 0, 1, 2, ..., 9. The error
rate is computed against the test data.

» The best method currently (a convolutional
network) has an error rate of 0.23% It is
noteworthy to comment that some of the
wrongly labelled images are also a challenge
for humans to read correctly.

» List of further datasets for machine learning

— https://en.wikipedia.org/wiki/List of dataset
s for machine learning research

HANDWRITING SAMPLE FORM

DATE CITY STATE ZIP
15-3-59 | lpuwew iy - gresz]

This sampie of handwriting 1 being collected for use i tesung computer recogmtion of hand printed numbers
and letters Please print the following characters in the boxes that appear bejow

01234587TKE 0123456789 0123456709
low3ysere9 | | 0r2395¢257 ) [ or23 5545 8)
7 701 752 %0759 960941
Lzr] [s7s2] [sors»] [geere” |
158 4586 32123 332656 82
[/59 [9s58¢) [32002] [ 272557 | [&2]
T4R1 50539 419218 67 904
[ ovgr| [ focz9] [ 4/92/9 | [67] [22¢]
81738 720658 75 390 5716
[6r73¢] [2o5esg | | |5%2] |szve ]

109334 50 625 4234 46002

/0933 1 F"_D-I |A7J’| [ vo7¢] | 46002]
gyxlakpdsbtzirumw(igqjenhocv :

| Yy xdaN A/ Sb/ 2/ iemiv F90 €N hod o I
ZXSBNGECMYWQTKFLL‘-OHPIR\'D.—'-A

| ZXSBLCEOHMYWRTKFLLOHPIEY pTA

Please print the following text in the box below:

We, the People of the United States, in order o form a more perfect Union, establish Justice, insure domestic
Tranquility, provide for the common Defense, promote the general Welfare, and secure the Blessings of Liberty 1
ourselves and our posterity, do ordain and establish this CONSTITUTION for the United States of America

we, 7he PecPtc oF the PUp teq STetes, /] onderse
forma mor<e perfect Dmion, establish Sustee,
msor e dome<tiC TranguliTy, Provide £of FThe.
common Tefens =< pwomb“f--e, *tr\‘: geneval U)Qlfa"t"\
and Seeyre An<e Bess mas of pber+y to our-
Selves and cov Dogtev\ Ty  do ordamn and
esTa 0ligh “rhng ConSTITLTION For rre

Onted S&Yates of A merica .
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* GoogleLeNet for image classification

— GoolgLeNet was the winner of the ILSVRC 2014 Classification Challenge The contest consisted
of 500k images with object labeling in 200 classes.

— A key ingredient of their network architecture included the use of inception modules which are
building blocks for the network as shown below:

« The inception module applies different operators on the output of a previous layer. In the
example below, 1x1, 3x3, 5x5 convolutions and a 3x3 max pooling are all applied in parallel.
Their output is then concatenated to produce the output features. The idea is that the network
should learn itself, which of the operator works best for certain scenarios.

« To control the complexity of the model, 1x1 convolutions (marked in yellow) are added to
reduce the number of features As previously discussed, this greatly helps to reduce the
computational complexity of a 3x3 or 5x5 convolution.

Filter
concatenation

) —

3x3 convolutions 5x5 convolutions 1x1 convolutions

1x1 convolutions [} ) )

ﬂtions 1x1 convolutions 3x3 max pooling

Previous layer
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» The full architecture of GoogleLeNet for
image classification

— Input: 224x224 RGB images

1x l l(S) 3x3+ l(S) 5x! 5 1(5) 1x: l 1(5)

(onmaz )
\I_/

|
|
|
|
|
|
|
|
|
|
|
|
convolution 7x712 112x112%x64 2.7K 34M i
max pool 3x3/2 56x56x64 = i
convolution ~ 3x3/1 56x56x192 112K 360M |
max pool 3x3/2 28x28x192 2 e |
inception (3a) 28x28x256 159K 128M 5 |
inception (3b) 28x28x480 380K 304M .
max pool 3x3/2 14x14%480 :
inception (4a) 14x14x512 364K 73M vy B B i
inception (4b) 14x14x512 437K 88M el e E
inception (4c) 14x14x512 463K 100M :
inception (4d) 14x14x528 580K 119M i
inception (4e) 14x14x832 840K 170M o
max pool 3x3/2 7x7%832 i A
inception (5a) 7x7%832 1072K 54M PRI
inception (5b) 7x7%x1024 1388K 71M
avg pool 7x7/1 1x1x1024
dropout -40% 1x1x1024
linear 1x1x1000 1000K M
softmax 1x1x1000
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e Tensorflow

Tensorflow was developed by the Google Brain team, initially for Google internal use only. But
meanwhile the framework is openly available under Apache 2.0 license and provides a simple to

use Python programming front end to its core.

The term tensor stands for an arbitrary dimensional array holding the data values (often float32).

Tensorflow has two elements
* Nodes are operators on input tensors and produce an output tensor
« Data edges combine nodes and connect outputs with inputs

The Python front-end provides a simple way of building these
graphs based on constants, variables and a rich set of defined
operators. In the context of deep learning, most known methods
have been implemented into tensorflow allowing for an efficient
way of learning and applying a network

Another aspect of tensorflow is the distributed execution of the graph
and the support for CUDA (GPU based operations) and parallel
execution of operations. The largest networks can span hundreds of
machines and can run against thousands of CUDA cores accelerating
computations of large graphs. All this is transparent to the end-user,
l.e., the user only must define the graph and tensorflow considers the
fastest way to compute the graph.

For more information see; www.tensorflow.orq

[ SGD Trainer
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* In this chapter, we only looked at deep learning for
spatial data sets (images, videos). But there is a
great number of further architecture extensions to
support, for instance, natural language processing,

memorization of facts and data, and so on.

» The Asimov Institute published in 2016 a map

outlining the neural network zoo

http://www.asimovinstitute.org/neural-network-zoo/

A mostly complete chart of

omm  Neural Networks ...

: Input Cell
A Noisy Input Cell
@ Hidden Celt
@ Probablistic Hidden Cell
. Spiking Hidden Cell
. Qutput Cell
. Match Input Qutput Cell
. Recurrent Cell
. Memary Cell
. Different Memary Cell
: Kernel

() Canvelution or Pool

1)
Perceptran (P) Feed Forward (FF)  Radial Basis Network (RBF) ‘."

ST
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©2016 Fjodor van Veen - asimovinstitute.org

TATAN

AR
.’ e <A
‘.ﬁ’:‘g"f:‘

Se Toe ioe 9%

f'.\\

Recurrent Neural Netwaork (RNN) Lang / Shart Term Memory (LSTM)  Gated Recurrent Unit (GRU)
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Auto Encoder (AE) Variational AE (VAE) Denaising AE (DAE) Sparse AE (SAE)
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e
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Y
v

Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM)  Restricted BM (RBM) Deep Belief Network (DBN)

Deep Canvolutional Network (DCN)

\><|><\><\><\

Generative Adversarial Netwaork (GAN)

Vaw W aW
ATATATATAS

AWAwAviviwy

Deep Residual Network (DRN)

oA

Deconvolutional Network (OM) Deep Convolutional Inverse Graphics Network (DCIGN)
o W -
\o-/-o\ >§ -/O-\O O-/O\- .
N -><--‘-.-O/ ~or
~aC A 5y
‘-,O/ —X\O/ \O/
Liquid State Machine (LSM)  Extreme Learning Machine (ELM]) Echo State Network (ESN)

X ¥

Kohonen Netwark (KN)  Support Vectar Machine (SYM)  Neural Turing Machine (NTM)

STt dxee woib %
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* Frameworks and Libraries

OpenCV (https://opencv.org) is an advanced computer vision library original written for C/C++.
But there are also bindings for Python, Java, and other languages.

scikit-image (http://scikit-image.orq) is an advanced computer vision library written in Python. It
provides all basic image manipulation operations as well as advanced feature extraction
algorithms (however, not SIFT but alternative approaches to SIFT)

Librosa (http://librosa.github.io/librosa/) is a Python library for advances audi and music analysis.
It provides base algorithms to create music retrieval systems.

* Interesting courses at other universities

Multimedia Content Analysis,National Chung Cheng University, Taiwan,
https://www.cs.ccu.edu.tw/~wtchu/courses/2014f MCA/lectures.html#00

Computer Vision, University of Washington, USA,
https://courses.cs.washington.edu/courses/cse455/

Computer Vision, Penn State University, USA, http://www.cse.psu.edu/~rtc12/CSE486/
Computer Vision, University of lllinois, USA, https://courses.engr.illinois.edu/cs543/sp2012/

Computational Photography, University of lllinois, USA,
https://courses.engr.illinois.edu/cs498dh/fa2011/
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* Machine Learning
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(CVPR), 2015.
Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.
M. Nielsen, Neural Networks and Deep Learning, free online book, Dec 2017.

|. Goodfellow, Deep Learning (Adaptive Computation and Machine Learning series), 2016.

online version available at: http://www.deeplearningbook.org
Tensorflow, Apache 2.0, https://www.tensorflow.org/
Scikit-learn, BSD, http://scikit-learn.org/

Online Neural Network: http://playground.tensorflow.org/
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