
Multimedia Retrieval – HS 2020

Task 1: Vector Space Retrieval (theoretical)

In the script, we have used the inner vector product and the cosine measure to

sort documents by their similarity to the query. In this task, we study the

“semantics” of these functions from a geometrical perspective. To simplify

matters, consider a query with only one term and two terms, and then generalize

to higher dimensions.

Exercise 2: Classical Text Retrieval Deadline: 23.10.2020

a) Consider first a query with two terms and define a similarity threshold 𝛼. For

both measures, identify the sub-space of documents that have a similarity

score beyond 𝛼. Describe the space in geometrical terms.

b) Based on the geometrical semantics from a), identify the documents that are

preferred by the measures. Construct an example document that “wins” the

search (has highest scores). Generalize to queries with more than two terms.

c) In web search, queries are often very short. What happens if you only select

one query term? Are the measures working in this extreme case?

We want to perform similarity search for texts (e.g., find pages that have stolen

my content). We can use the bag-of-words model and compare the two texts by

a Euclidean distance measure. Assume that 𝒒 denotes the term vector for the

Query 𝑄, and 𝒅 is the term vector of a document 𝐷. Then:

𝛿 𝑄, 𝐷 = ෍

𝑖

𝑞𝑖 − 𝑑𝑖
2

In contrast to the inner vector product and the cosine measure, small distances

are better (more relevant) than large distances (less relevant).

d) Similar to a), describe the sub space of documents that have at most a

distance of 𝛽 to the query 𝑄. What documents rank highest with this distance

measure? Does this work in our scenario (finding similar pages) and why?

Exercise-2-1

Multimedia Retrieval – HS 2020

Task 2: Probabilistic Retrieval (theoretical)

In this task, we study the binary independence retrieval (BIR) model and use

simple examples to run through the approach.

a) For a query 𝑄, the BIR method yields the following list of documents after the

initialization step:

In the table above, the row 𝑥1 and 𝑥2 contain the binary representation of the

20 retrieved documents. The last row denotes the relevance assessment of

the user for each document (R denotes relevant, N denotes non-relevant).

Compute the new 𝑐𝑗-values given the feedback and compute the ordering.

b) The BIR model makes three assumptions. We now test whether these

assumptions hold true. To this end, we compute the probability 𝑃(𝑅|𝒙) with

the example data from a) in two ways: 1) count how often a document with

representation 𝒙 is relevant/non-relevant and compute the probability. 2)

derive a formula for 𝑃(𝑅|𝒙) depending on 𝑟𝑗 and 𝑛𝑗 similarly to the script.

Start with the following statement

𝑠𝑖𝑚 𝑄, 𝐷𝑖 =
𝑃(𝑅|𝐷𝑖)

𝑃 𝑁𝑅 𝐷𝑖)
=

𝑃(𝑅|𝐷𝑖)

1 − 𝑃(𝑅|𝐷𝑖)
=

𝑃(𝑅|𝒙)

1 − 𝑃(𝑅|𝒙)
= ⋯

and solve for 𝑃(𝑅|𝒙). What do you observe? Which assumption fails?

c) Consider the documents below (c1-c5, m1-m4) and the query “human

computer interaction”. Conduct two iterations with the BIR model

(initialization step, one feedback step) and assume that documents c1-c5 are

relevant and m1-m4 are non-relevant. Does the feedback step help? What

can we do to significantly improve retrieval performance with the feedback?

rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

𝑥1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

𝑥2 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0

relevance R R R R N R R R R N N R R R N N N R N N

Exercise-2-2

Exercise 2: Classical Text Retrieval Deadline: 23.10.2020

c1 Human machine interface for Lab ABC computer applications

c2 A survey of user opinion of computer system response time

c3 The EPS user interface management system

c4 System and human system engineering testing of EPS

c5 Relation of user-perceived response time to error measurement

m1 The generation of random, binary, unordered trees

m2 The intersection graph of paths in trees

m3 Graph minors IV: Widths of trees and well-quasi-ordering

m4 Graph minors: A survey

Multimedia Retrieval – HS 2020

Task 3: Searching with Lucene (practical)

In this exercise, we use Lucene and its fuzzy retrieval model to search for music

files. The web site of the course contains a list of file names, but you can also

use your own music library.

Exercise 3: Classical Text Retrieval Deadline: 31.12.2020

Exercise-2-3

▪ Download Lucene from Apache. Choose the programming language that fits

you the best.

▪ Write a program to read the MP3 file names, create the index, and search for

the titles that match your query. You can also use RAMDirectory for a fast

implementation (but you need to build the index every time again)

▪ Extend the basic search with an implementation of the "Did you mean?"

function that Google provides. If the query contains spelling mistakes (or is

seldom), automatically search with the closest matches of the terms used.

▪ Hint: Consider using the SpellChecker of Lucene

