## Chapter 3

## Linear Programming



## Linear Programming: What is it?

- Tool for optimal allocation of scarce resources, among a number of competing activities.
- Mathematical field of study concerned with such allocation questions, part of operations research.

Example: Small brewery produces ale and beer.

- Production limited by resources (raw materials) that are in short supply: corn, hops, barley malt.
- Recipes for ale and beer require different proportions of resources.

| Beverage | Corn | Hops | Malt | Profit (\$) |
| :---: | :---: | :---: | :---: | :---: |
| Ale | 5 | 4 | 35 | 13 |
| Beer | 15 | 4 | 20 | 23 |
| Quantity | 480 | 160 | 1190 |  |

## How can the brewer maximize profits?

- Devote all resources to ale: 34 barrels of ale (all malt used up, long before supplies of hops and corn are exhausted): $A=34 \Rightarrow \$ 442$.
- Devote all resources to beer: 32 barrels of beer (no more corn left): $B=32 \Rightarrow \$ 736$.
- 7.5 barrels of ale, 29.5 barrels of beer $\Rightarrow \$ 776$.
- 12 barrels of ale, 28 barrels of beer (all corn and hops used) $\Rightarrow \$ 800$.

$$
\begin{aligned}
& \text { Ale Beer } \\
\text { maximize } & 13 A+23 B \\
\text { s.t. } & 5 A+15 B \leq 480 \\
& 4 A+4 B \leq 160 \\
& 35 A+20 B \leq 1190
\end{aligned}
$$

$$
A, \quad B \geq 0 \quad \text { (physical constraints) }
$$

## Brewery Problem: Feasible Region



## Brewery Problem: Objective Function



## Brewery Problem: Geometry

Regardless of objective function coefficients, an optimal solution occurs at an extreme point.


## Standard Form LP

- Input: real numbers $c_{j}, b_{i}, a_{i j}$.
- Output: real numbers $x_{j}$.
- $n=\#$ nonnegative variables, $m=\#$ constraints.
- Maximize linear objective function subject to linear equalities and physical constraints.

$$
\begin{array}{rr}
\max \sum_{j=1}^{n} c_{j} x_{j} & \max \quad \boldsymbol{c}^{t} \boldsymbol{x} \\
\text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j}=b_{i}, 1 \leq i \leq m & \text { s.t. } A \boldsymbol{x}=\boldsymbol{b} \\
x_{j} \geq 0,1 \leq j \leq n & \boldsymbol{x} \geq \mathbf{0}
\end{array}
$$

Linear: Ressources needed and profit proportional to production. Programming: Planning (not computer programming).

## Brewery Problem: Converting to Standard Form

## Original input:

$$
\begin{aligned}
\max \quad 13 A+23 B & \\
\text { s.t. } \quad 5 A+15 B & \leq 480 \\
4 A+4 B & \leq 160 \\
35 A+20 B & \leq 1190 \\
A, B & \geq 0
\end{aligned}
$$

Standard form:

- Add slack variable for each inequality.
- Now a 5-dimensional problem.
$\max 13 A+23 B$

$$
\text { s.t. } 5 A+15 B+S_{C}=480
$$

$$
4 A+4 B+S_{H}=160
$$

$$
35 A+20 B+\quad S_{M}=1190
$$

$$
A, B, S_{C}, S_{H}, S_{M} \geq 0
$$

## Geometry

- Inequalities: halfplanes (2D), hyperplanes.
- Bounded feasible region: convex polygon (2D), (convex) polytope.

Convex: if $a$ and $b$ are feasible solutions, then so is $(a+b) / 2$.
Extreme point: feasible solution $x$ that can't be written as $(a+b) / 2$ for any two distinct feasible solutions $a$ and $b$.


Not convex


## Geometry

Extreme point property. If there exists an optimal solution, then there exists one that is an extreme point. Only need to consider finitely many possible solutions.

Challenge. Number of extreme points can be exponential! Consider $n$-dimensional hypercube: $2 n$ equations, $2^{n}$ vertices.

Greed. Local optima are global optima. Extreme point is optimal if no neighboring extreme point is better.


## Simplex Algorithm (George Dantzig, 1947)

- Developed shortly after WWII in response to logistical problems.
- Generic algorithm, never decreases objective function.
- Start at some extreme point.
- Pivot from one extreme point to a neighboring one.
- Repeat until optimal.

How to implement?
Linear algebra.


## Simplex Algorithm: Basis

Basis: Subset of $m$ of the $n^{\prime}=n+m$ variables ( $n$ original $+m$ slack). Basic feasible solution (BFS):
Set all $n^{\prime}-m$ nonbasic variables to 0 , solve for remaining $m$ variables.

- Solve $m$ equations in $m$ unknowns.
- If unique and feasible solution $\Rightarrow B F S$.
- BFS corresponds to extreme point! Simplex only considers BFS.



## Simplex Algorithm: Pivot 1

$$
\begin{aligned}
& \underline{\max \quad \text { obj }=13 A+23 B} \\
& \text { s.t. } 5 A+15 B+S_{C}=480 \\
& 4 A+4 B+S_{H}=160 \\
& 35 A+20 B+\quad S_{M}=1190 \\
& A, B, S_{C}, S_{H}, S_{M} \geq 0 \\
& \text { Basis }=\left\{S_{C}, S_{H}, S_{M}\right\} \\
& A=B=0 \\
& \text { obj }=0 \\
& S_{C}=480 \\
& S_{H}=160 \\
& S_{M}=1190
\end{aligned}
$$

Which variable should enter next?

- Unit increase in $B \rightsquigarrow \mathrm{obj}+\$ 23$.
- Letting $A$ enter is also OK.


## Simplex Algorithm: Selecting the Pivot Row

If $B$ is increased, the first slack variable that becomes zero is $S_{C}$ at $S_{C}=480-15 B=0 \quad \Leftrightarrow \quad B=480 / 15=32 \rightsquigarrow S_{C}$ has to leave. What if $S_{H}$ leaves (at $B=160 / 4=40$ )? Basis $\left(B, S_{C}, S_{M}\right)$ outside the feasible region! Same problem if $S_{M}$ leaves at $B=1190 / 20=59.5$.
$\rightsquigarrow$ Minimum ratio rule: $\min \{480 / 15,160 / 4,1190 / 20\}$


## Simplex Algorithm: Pivot 1

| obj | $=$ | 0 | + | 13 | $A$ | + | 23 | $B$ |
| :---: | :--- | ---: | :---: | ---: | :--- | :--- | ---: | :--- |
| $S_{C}$ | $=$ | 480 | - | 5 | $A$ | - | 15 | $B$ |
| $S_{H}$ | $=$ | 160 | - | 4 | $A$ | - | 4 | $B$ |
| $S_{M}$ | $=$ | 1190 | - | 35 | $A$ | - | 20 | $B$ |

$B$ enters, $S_{C}$ leaves $\rightsquigarrow$ solve pivot row $S_{C}=480-5 A-15 B$ for $B$ :
Substitute $B=\frac{1}{15}\left(480-5 A-S_{C}\right)$

| obj | $=$ | 736 | + | $16 / 3$ | $A$ | + | $-23 / 15$ | $S_{C}$ |
| :---: | :---: | ---: | :---: | ---: | :--- | :--- | ---: | ---: |
| $B$ | $=$ | 32 | - | $1 / 3$ | $A$ | - | $1 / 15$ | $S_{C}$ |
| $S_{H}$ | $=$ | 32 | - | $8 / 3$ | $A$ | - | $-4 / 15$ | $S_{C}$ |
| $S_{M}$ | $=$ | 550 | - | $85 / 3$ | $A$ | - | $-4 / 3$ | $S_{C}$ |

Feasibility is preserved! (green highlights)

## LP and Gauss-Jordan

$$
\left[\begin{array}{ccccc}
13 & 23 & 0 & 0 & 0 \\
5 & 15 & 1 & 0 & 0 \\
4 & 4 & 0 & 1 & 0 \\
35 & 20 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
A \\
B \\
S_{C} \\
S_{H} \\
S_{M}
\end{array}\right]=\left[\begin{array}{c}
\mathbf{o j b} \\
480 \\
160 \\
1190
\end{array}\right] \underset{\text { augmented }}{\Rightarrow}\left[\begin{array}{cccccc}
A & B & S_{C} & S_{H} & S_{M} & \\
13 & 23 & 0 & 0 & 0 & \mathbf{o b j} \\
5 & 15 & 1 & 0 & 0 & 480 \\
4 & 4 & 0 & 1 & 0 & 160 \\
35 & 20 & 0 & 0 & 1 & 1190
\end{array}\right]
$$

- Locate pivot element and save it: piv $=15$
- Replace each row, except the pivot row, by that linear combination of itself and the pivot row which makes its pivot-column entry zero:
$\left[\begin{array}{cccccc}A & B & S_{C} & S_{H} & S_{M} & \\ \hline 16 / 3 & \mathbf{0} & -23 / 15 & 0 & 0 & \mathbf{o b j}-480 \cdot 23 / 15 \\ 5 & 15 & 1 & 0 & 0 & 480 \\ 8 / 3 & \mathbf{0} & 4 / 15 & 1 & 0 & 32 \\ 85 / 3 & \mathbf{0} & 4 / 3 & 0 & 1 & 550\end{array}\right]$
- Divide pivot row by piv: $1 / 3 \cdot A+B+1 / 15 \cdot S_{C}+0+0=32$


## LP and Gauss-Jordan

- New basis $\left(B, S_{H}, S_{M}\right)$ :
$\left[\begin{array}{cccccc}A & B & S_{C} & S_{H} & S_{M} & \\ \hline 16 / 3 & 0 & -23 / 15 & 0 & 0 & \mathbf{o b j}-736 \\ 1 / 3 & 1 & 1 / 15 & 0 & 0 & 32 \\ 8 / 3 & 0 & 4 / 15 & 1 & 0 & 32 \\ 85 / 3 & 0 & 4 / 3 & 0 & 1 & 550\end{array}\right]$
- Corresponding tableau:

| obj | $=$ | 736 | + | $16 / 3$ | $A$ | + | $-23 / 15$ | $S_{C}$ |
| :---: | :---: | ---: | ---: | ---: | :---: | :---: | ---: | ---: |
| $B$ | $=$ | 32 | - | $1 / 3$ | $A$ | - | $1 / 15$ | $S_{C}$ |
| $S_{H}$ | $=$ | 32 | - | $8 / 3$ | $A$ | - | $-4 / 15$ | $S_{C}$ |
| $S_{M}$ | $=$ | 550 | - | $85 / 3$ | $A$ | - | $-4 / 3$ | $S_{C}$ |

## Simplex Algorithm: Pivot 2

| obj | $=$ | 736 | + | $16 / 3$ | $A$ | + | $-23 / 15$ | $S_{C}$ |
| :---: | :---: | ---: | :---: | ---: | :---: | :---: | ---: | :---: |
| $B$ | $=$ | 32 | - | $1 / 3$ | $A$ | - | $1 / 15$ | $S_{C}$ |
| $S_{H}$ | $=$ | 32 | - | $8 / 3$ | $A$ | - | $-4 / 15$ | $S_{C}$ |
| $S_{M}$ | $=$ | 550 | - | $85 / 3$ | $A$ | - | $-4 / 3$ | $S_{C}$ |

Next pivot: $A$ enters (only one magenta highlight left), $S_{H}$ leaves $\rightsquigarrow \min (32 \cdot 3,32 \cdot 3 / 8,330 \cdot 3 / 85)$ :
Substitute $A=\frac{3}{8}\left(32+\frac{4}{15} S_{C}-S_{H}\right)$

| obj | $=$ | 800 | + | -1 | $S_{C}$ | + | -2 | $S_{H}$ |
| :---: | :---: | ---: | :---: | ---: | :---: | :---: | ---: | ---: |
| $B$ | $=$ | 28 | - | $1 / 10$ | $S_{C}$ | - | $-1 / 8$ | $S_{H}$ |
| $A$ | $=$ | 12 | - | $-1 / 10$ | $S_{C}$ | - | $3 / 8$ | $S_{H}$ |
| $S_{M}$ | $=$ | 210 | - | $3 / 2$ | $S_{C}$ | - | $-85 / 8$ | $S_{H}$ |

Feasibility is preserved!

## Simplex Algorithm: Optimality

| obj | $=$ | 800 | + | -1 | $S_{C}$ | + | -2 | $S_{H}$ |
| :---: | :---: | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $B$ | $=$ | 28 | - | $1 / 10$ | $S_{C}$ | - | $-1 / 8$ | $S_{H}$ |
| $A$ | $=$ | 12 | - | $-1 / 10$ | $S_{C}$ | - | $3 / 8$ | $S_{H}$ |
| $S_{M}$ | $=$ | 210 | - | $3 / 2$ | $S_{C}$ | - | $-85 / 8$ | $S_{H}$ |

When to stop pivoting? all coefficients in top row $\leq 0$.

## Why is resulting solution optimal?

- Any feasible solution satisfies system of equations in tableaux. in particular: obj $=800-S_{C}-2 S_{H}$
- Thus, optimal objective value obj $\leq 800$ since $S_{C}, S_{H} \geq 0$.
- Current BFS has value $800 \Rightarrow$ optimal (no further magenta highlights).
- At optimum: 28 (barrels of) Beer, 12 Ale, 210 units of Malt are left.


## Simplex Algorithm: Problems and properties

Degeneracy. Pivot gives new basis, but same objective function value.
Cycling. A cycle is a sequence of degenerate pivots that returns to the first tableau in the sequence.

There exist pivoting rules for which no cycling is possible, for instance Bland's least index rule:
"choose leftmost column with positive cost +min . ratio rule"
Remarkable property. In practice, the simplex algorithm typically terminates after at most $2(m+n)$ pivots.

- Most pivot rules known to be exponential in the worst-case.
- No polynomial pivot rule known $\rightsquigarrow$ still an open question.

Empirical Performance of the Simplex Method


Figure 4.1 in Robert J. Vanderbei: Linear Programming, Springer. https://doi.org/10.1007/978-3-030-39415-8

## Efficiency

Upper bound on the number of iterations is simply the number of basic feasible solutions, of which there can be at most

$$
\binom{n+m}{m}
$$

For fixed $n+m$, this expression is maximized when $m=n$.
And how big is it? Exponentially big! (simplified) Stirling's approximation: $\log n!\approx n \log n-n$

$$
\log \binom{2 n}{n}=\log \frac{(2 n)!}{(n!)^{2}}=\log (2 n)!-2 \log n!\approx 2 n \log 2 n-2 n \log n=2 n \log 2=2 n
$$

For LPs, there exist Interior-Point algorithms with guaranteed polynomial runtime (Karmarkar, '84). Researchers spent years trying to prove that the simplex worst-case complexity was polynomial...

## Efficiency

...but the ' 72 Klee-Minty counter-example killed such hopes!
For most pivot rules there has been a KM-type counter-example.


No pivot rule guaranteed to yield worst-case polynomial time yet. Yet practical performance definitely competitive (much better than most Interior Point methods!)

## Efficiency: Different analysis concepts

- Let $x$ be a problem instance, $T(x)$ the finishing time of Simplex alg. Think of "problem instance" as the matrix $A$ in a LP problem. Worst Case analysis: $\max _{x} T(x)$.
- Given random problems, what are the average finishing times?
$\rightsquigarrow$ Average Case analysis: $E_{r \sim P(r)} T(r)$.
Topic of intense study in 70' and 80's.
Results: polynomal average case complexity.
- Given a problem that is randomly perturbed, what is the finishing time when averaged over all perturbations?
$\rightsquigarrow$ Smoothed analysis: $\max _{x} E_{r \sim P(r)} T(x+\epsilon r)$.
- Interpolate between Worst Case and Average Case
- Consider neighborhood of every input instance
- If low, have to be unlucky to find bad input instance.


## Efficiency: good news

Spielman-Teng '01: Coefficients of $A$ perturbed by Gaussian noise with variance $\sigma^{2}$. Average complexity of solving such LP is at most a polynomial of $n, m, \sigma^{2}$ for every $A$.

You need to be very unlucky to find a bad LP input instance!

## Smoothed Analysis of Algorithms: Why the Simplex Algorithm Usually Takes Polynomial Time

Daniel A. Spielman ${ }^{*}$
Department of Mathematics
M.I.T.

Cambridge, MA 02139
spielman@mit.edu

Shang-Hua Teng ${ }^{\dagger}$
Akamai Technologies Inc. and
Department of Computer Science
University of Illinois at Urbana-Champaign
steng@cs.uiuc.edu

## Further Questions

- Unboundedness: how can we check if optimal objective value is finite?
- Initialization/infeasibility: what to do if initial basis consisting of slack variables only is not feasible?
$\rightsquigarrow$ Phase-I / Phase-II Simplex Method

- LP Duality: is there even more information in the final tableau?


## Initialization

Recall our brewery problem: (Slack variables denoted by $w_{i}$ ):

| maximize | $13 x_{1}$ | + | $23 x_{2}$ |  |  |  |
| :--- | ---: | :--- | ---: | :--- | :--- | :--- |
| subject to | $5 x_{1}$ | + | $15 x_{2}$ | $+w_{1}$ | $=$ | 480 |
|  | $4 x_{1}$ | + | $4 x_{2}$ | $+w_{2}$ | $=$ | 160 |
|  | $35 x_{1}$ | + | $20 x_{2}$ | $+w_{3}$ | $=$ | 1190 |
|  |  |  | $x_{1}, x_{2}$, | $w_{1}, w_{2}, w_{3}$ | $\geq$ | 0 |


| obj | $=$ | 0 | + | 13 | $x_{1}$ | + | 23 | $x_{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $w_{1}$ | $=$ | 480 | - | 5 | $x_{1}$ | - | 15 | $x_{2}$ |
| $w_{2}$ | $=$ | 160 | - | 4 | $x_{1}$ | - | 4 | $x_{2}$ |
| $w_{3}$ | $=$ | 1190 | - | 35 | $x_{1}$ | - | 20 | $x_{2}$ |

We were lucky...
...positive values in constant column show that the initial basis consisting of slack variables is feasible ( $\Leftrightarrow$ for $x_{1}=x_{2}=0$, all three slack variables are $\geq 0$ ).
$x_{2}$ enters, $w_{1}$ leaves $\rightsquigarrow \min (480 / 15,160 / 4,1190 / 20)$.

## The Brewery problem again

| obj | $=$ | 736 | + | $16 / 3$ | $x_{1}$ | + | $-23 / 15$ | $w_{1}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | $=$ | 32 | - | $1 / 3$ | $x_{1}$ | - | $1 / 15$ | $w_{1}$ |
| $w_{2}$ | $=$ | 32 | - | $8 / 3$ | $x_{1}$ | - | $-4 / 15$ | $w_{1}$ |
| $w_{3}$ | $=$ | 550 | - | $85 / 3$ | $x_{1}$ | - | $-4 / 3$ | $w_{1}$ |

Feasibility is preserved!
$x_{1}$ enters, $w_{2}$ leaves $\rightsquigarrow \min (32 \cdot 3,32 \cdot 3 / 8,330 \cdot 3 / 85)$.

| obj | $=$ | 800 | + | -1 | $w_{1}$ | + | -2 | $w_{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $x_{2}$ | $=$ | 28 | - | $1 / 10$ | $w_{1}$ | - | $-1 / 8$ | $w_{2}$ |
| $x_{1}$ | $=$ | 12 | - | $-1 / 10$ | $w_{1}$ | - | $3 / 8$ | $w_{2}$ |
| $w_{3}$ | $=$ | 210 | - | $3 / 2$ | $w_{1}$ | - | $-85 / 8$ | $w_{2}$ |

Feasibility is preserved!
Optimal! (no further magenta highlights in obj-row)

## Initialization cont'd

$$
\begin{array}{lrlll}
\operatorname{maximize} & -3 x_{1} & + & 4 x_{2} & \\
\text { subject to } & -4 x_{1} & - & 2 x_{2} & \leq \\
& -2 x_{1} & & & -8 \\
& 3 x_{1} & + & 2 x_{2} & \leq \\
& -2 \\
& -x_{1} & + & 3 x_{2} & \leq \\
& & - & 3 x_{2} & \leq \\
& & & -2 \\
& & & x_{1}, x_{2} & \geq
\end{array}
$$



| $\mathrm{obj}_{2}$ | $=$ | 0 | + | -3 | $x_{1}$ | + | 4 | $x_{2}$ |
| :---: | :---: | ---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $w_{1}$ | $=$ | -8 | - | -4 | $x_{1}$ | - | -2 | $x_{2}$ |
| $w_{2}$ | $=$ | -2 | - | -2 | $x_{1}$ | - | 0 | $x_{2}$ |
| $w_{3}$ | $=$ | 10 | - | 3 | $x_{1}$ | - | 2 | $x_{2}$ |
| $w_{4}$ | $=$ | 1 | - | -1 | $x_{1}$ | - | 3 | $x_{2}$ |
| $w_{5}$ | $=$ | -2 | - | 0 | $x_{1}$ | - | -3 | $x_{2}$ |

Initial basis is not feasible! $\rightsquigarrow$ Phase-I Problem

## Phase-I Problem

Idea: Modify problem by subtracting a new variable, $x_{0}$, from each constraint and replace objective function with $-x_{0}$.

| maximize | $-x_{0}$ |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| subject to | $-x_{0}$ | - | $4 x_{1}$ | - | $2 x_{2}$ | $\leq$ | -8 |
|  | $-x_{0}$ | - | $2 x_{1}$ |  |  | $\leq$ | -2 |
|  | $-x_{0}$ | + | $3 x_{1}$ | + | $2 x_{2}$ | $\leq$ | 10 |
|  | $-x_{0}$ | - | $x_{1}$ | + | $3 x_{2}$ | $\leq$ | 1 |
|  | $-x_{0}$ |  |  | - | $3 x_{2}$ | $\leq$ | -2 |
|  |  |  |  |  | $x_{0}, x_{1}, x_{2}$ | $\geq$ | 0 |

- Can always be made feasible: pick $x_{0}$ large, set $x_{1}=0$ and $x_{2}=0$.
- If optimal solution has $\mathbf{o b} \mathbf{j}_{1}=0$, then the original problem is feasible! Note that obj ${ }_{1}=0$ means that the "correction term" $x_{0}=0$, so the current point $\left(x_{1}, x_{2}\right)$ must lie within the feasible region.
- Final phase-I basis can be used as initial phase-II basis (ignoring $x_{0}$ thereafter).
- If optimal solution has $\mathbf{o b j} \mathbf{j}_{1}<0$, then original problem is infeasible!


## Initialization: First Pivot

| obj $_{2}$ | $=$ | 0 | + | 0 | $x_{0}$ | + | -3 | $x_{1}$ | + | 4 | $x_{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| obj $_{1}$ | $=$ | 0 | + | -1 | $x_{0}$ | + | 0 | $x_{1}$ | + | 0 | $x_{2}$ |
| $w_{1}$ | $=$ | -8 | - | -1 | $x_{0}$ | - | -4 | $x_{1}$ | - | -2 | $x_{2}$ |
| $w_{2}$ | $=$ | -2 | - | -1 | $x_{0}$ | - | -2 | $x_{1}$ | - | 0 | $x_{2}$ |
| $w_{3}$ | $=$ | 10 | - | -1 | $x_{0}$ | - | 3 | $x_{1}$ | - | 2 | $x_{2}$ |
| $w_{4}$ | $=$ | 1 | - | -1 | $x_{0}$ | - | -1 | $x_{1}$ | - | 3 | $x_{2}$ |
| $w_{5}$ | $=$ | -2 | - | -1 | $x_{0}$ | - | 0 | $x_{1}$ | - | -3 | $x_{2}$ |

- Current basis is infeasible even for Phase-I.
- One pivot needed to get feasible.
- Entering variable is $x_{0}$ (there is no other choice, and we already know that the problem can be made feasible for large enough $x_{0} \ldots$ ).
- Leaving variable is the one whose current value is most negative, i.e. the most violated constraint (here: $w_{1}$ ). This guarantees that after the first pivot all constraints are fulfilled.


## Initialization: Second Pivot

| $\mathrm{obj}_{2}$ | $=$ | 0 | + | 0 | $w_{1}$ | + | -3 | $x_{1}$ | + | 4 | $x_{2}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{obj}_{1}$ | $=$ | -8 | + | -1 | $w_{1}$ | + | 4 | $x_{1}$ | + | 2 | $x_{2}$ |
| $x_{0}$ | $=$ | 8 | - | -1 | $w_{1}$ | - | 4 | $x_{1}$ | - | 2 | $x_{2}$ |
| $w_{2}$ | $=$ | 6 | - | -1 | $w_{1}$ | - | 2 | $x_{1}$ | - | 2 | $x_{2}$ |
| $w_{3}$ | $=$ | 18 | - | -1 | $w_{1}$ | - | 7 | $x_{1}$ | - | 4 | $x_{2}$ |
| $w_{4}$ | $=$ | 9 | - | -1 | $w_{1}$ | - | 3 | $x_{1}$ | - | 5 | $x_{2}$ |
| $w_{5}$ | $=$ | 6 | - | -1 | $w_{1}$ | - | 4 | $x_{1}$ | - | -1 | $x_{2}$ |

- Feasible!
- Focus on the yellow highlights.
- Let $x_{1}$ enter.
- Then $w_{5}$ must leave.
- After second pivot...


## Initialization: Third Pivot

| $\mathrm{obj}_{2}$ | $=$ | -4.5 | + | -0.75 | $w_{1}$ | + | 0.75 | $w_{5}$ | + | 3.25 | $x_{2}$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{obj}_{1}$ | $=$ | -2 | + | 0 | $w_{1}$ | + | -1 | $w_{5}$ | + | 3 | $x_{2}$ |
| $x_{0}$ | $=$ | 2 | - | 0 | $w_{1}$ | - | -1 | $w_{5}$ | - | 3 | $x_{2}$ |
| $w_{2}$ | $=$ | 3 | - | -0.5 | $w_{1}$ | - | -0.5 | $w_{5}$ | - | 2.5 | $x_{2}$ |
| $w_{3}$ | $=$ | 7.5 | - | 0.75 | $w_{1}$ | - | -1.75 | $w_{5}$ | - | 5.75 | $x_{2}$ |
| $w_{4}$ | $=$ | 4.5 | - | -0.25 | $w_{1}$ | - | -0.75 | $w_{5}$ | - | 5.75 | $x_{2}$ |
| $x_{1}$ | $=$ | 1.5 | - | -0.25 | $w_{1}$ | - | 0.25 | $w_{5}$ | - | -0.25 | $x_{2}$ |

- $x_{2}$ must enter
- Then $x_{0}$ must leave.
- After third pivot...


## End of Phase-I, Begin of Phase-II

| $\mathrm{obj}_{2}$ | $=$ | $-\frac{7}{3}$ | + | $-\frac{3}{4}$ | $w_{1}$ | + | $\frac{11}{6}$ | $w_{5}$ | + | 0 | $x_{0}$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | :---: | :---: |
| $\mathrm{obj}_{1}$ | $=$ | 0 | + | 0 | $w_{1}$ | + | 0 | $w_{5}$ | + | 0 | $x_{0}$ |
| $x_{2}$ | $=$ | $\frac{2}{3}$ | - | 0 | $w_{1}$ | - | $-\frac{1}{3}$ | $w_{5}$ | - | 0 | $x_{0}$ |
| $w_{2}$ | $=$ | $\frac{4}{3}$ | - | $-\frac{1}{2}$ | $w_{1}$ | - | $\frac{1}{3}$ | $w_{5}$ | - | 0 | $x_{0}$ |
| $w_{3}$ | $=$ | $\frac{11}{3}$ | - | $\frac{3}{4}$ | $w_{1}$ | - | $\frac{1}{6}$ | $w_{5}$ | - | 0 | $x_{0}$ |
| $w_{4}$ | $=$ | $\frac{2}{3}$ | - | $-\frac{1}{4}$ | $w_{1}$ | - | $\frac{7}{6}$ | $w_{5}$ | - | 0 | $x_{0}$ |
| $x_{1}$ | $=$ | $\frac{5}{3}$ | - | $-\frac{1}{4}$ | $w_{1}$ | - | $\frac{1}{6}$ | $w_{5}$ | - | 0 | $x_{0}$ |

- Optimal for Phase-I (no yellow highlights).
- $\mathrm{obj}_{1}=0$, therefore original problem is feasible.
- For Phase-II: Ignore column with $x_{0}$ and Phase-I objective row.
- $w_{5}$ must enter. $w_{4}$ must leave...

Phase-II: Optimal Solution


## Unboundedness

Consider the following tableau:

| obj | $=$ | 0 | + | 2 | $x_{1}$ | + | -1 | $x_{2}$ | + | 1 | $x_{3}$ |
| ---: | :--- | ---: | :--- | ---: | :--- | :--- | ---: | ---: | ---: | ---: | ---: |
| $w_{1}$ | $=$ | 4 | - | -5 | $x_{1}$ | - | 3 | $x_{2}$ | - | -1 | $x_{3}$ |
| $w_{2}$ | $=$ | 10 | - | -1 | $x_{1}$ | - | -5 | $x_{2}$ | - | 2 | $x_{3}$ |
| $w_{3}$ | $=$ | 7 | - | 0 | $x_{1}$ | - | -4 | $x_{2}$ | - | 3 | $x_{3}$ |
| $w_{4}$ | $=$ | 6 | - | -2 | $x_{1}$ | - | -2 | $x_{2}$ | - | 4 | $x_{3}$ |
| $w_{5}$ | $=$ | 6 | - | -3 | $x_{1}$ | - | 0 | $x_{2}$ | - | -3 | $x_{3}$ |

- Could increase either $x_{1}$ or $x_{3}$ to increase obj.
- Consider increasing $x_{1}$.
- Which basic variable decreases to zero first?
- Answer: none of them, $x_{1}$ can grow without bound, and obj along with it.
- This is how we detect unboundedness with the simplex method.


## The Two Phase Simplex Algorithm

Phase I: Formulate and solve the auxiliary problem.
Two outcomes are possible:

- The optimal value of $x_{0}$ in the auxiliary problem is positive. In this case the original problem is infeasible.
- The optimal value is zero and an initial feasible tableau for the original problem is obtained.

Phase II: If the original problem is feasible, apply the simplex algorithm to the initial feasible tableau obtained from Phase I above.
Again, two outcomes are possible:

- The LP is unbounded.
- An optimal basic feasible solution is obtained.


## The Fundamental Theorem of linear Programming

Theorem: Every LP has the following three properties:

- If it has no optimal solution, then it is either infeasible or unbounded.
- If it has a feasible solution, then it has a basic feasible solution.
- If it is bounded, then it has an optimal basic feasible solution.

Proof: Phase I algorithm either proves that the problem is infeasible or produces a basic feasible solution. Phase II algorithm either discovers that the problem is unbounded or finds a basic optimal solution. Assumption: no cycling occurs, guaranteed by several pivot rules.

## Bland's rule:

Entering: choose the lowest-numbered nonbasic column with a positive coefficient.
Leaving: in case of ties in the ratio test, choose the leaving basic variable with the smallest index.

## Primal problem: Ressource allocation

Brewer's problem: find optimal mix to maximize profits.
$\max 13 A+23 B$

$$
\begin{aligned}
\text { s.t. } 5 A+15 B & \leq 480 \\
4 A+4 B & \leq 160 \\
35 A+20 B & \leq 1190, \quad A, B \geq 0
\end{aligned}
$$

$$
\begin{aligned}
A^{*} & =12 \\
B^{*} & =28 \\
\text { OPT } & =800
\end{aligned}
$$

General form: Find optimal allocation of $m$ raw materials to $n$ production processes. This is the primal $\mathcal{P}$ : Given real numbers

- $a_{i j}=$ units of raw material $i$ needed to produce one unit of product $j$,
- $b_{i}=$ ressource constraints for raw material $i, i=1, \ldots, m$,
- $c_{j}=$ profit per unit of product $j, j=1, \ldots, n$,

| maximize $_{\boldsymbol{x}}$ | $\sum_{j=1}^{n} c_{j} x_{j}$ |  |
| :--- | :--- | :--- |
| subject to | $\sum_{j=1}^{n} a_{i j} x_{j} \leq b_{i}, \quad i=1, \ldots, m$ |  |
|  | $x_{j}$ | $\geq 0, \quad j=1, \ldots, n$ | $\boldsymbol{c}^{t} \boldsymbol{x} \quad l$| $A \boldsymbol{x}$ | $\leq \boldsymbol{b}$ |
| ---: | :--- |
| $\boldsymbol{x}$ | $\geq \mathbf{0}$ |

## The dual: Brewery example

- 5 corn +4 hops +35 malt needed to brew one barrel of Ale (which would lead to profit of 13\$). If we produce one unit less of Ale, we free up $\{5 / 4 / 35\}$ units of $\{$ corn/hops/malt $\}$.
- Selling for $C, H, M$ dollars/unit yields $5 C+4 H+35 M$ dollars.
- Only interested if this exceeds lost profit of $13 \$$ : $5 C+4 H+35 M \geq 13$. Similar for Beer: $15 C+4 H+20 M \geq 23$.
Consider a buyer offering to purchase our entire inventory. Subject to above constraints, buyer wants to minimize cost. This is the dual $\mathcal{D}$ :
Buyer's problem: Buy resources from brewer at minimum cost.
$(\mathcal{D}) \quad \min \quad 480 C+160 H+1190 M$

$$
\text { s.t. } \begin{aligned}
5 C+4 H+35 M & \geq 13 \\
15 C+4 H+20 M & \geq 23 \\
C, H, M & \geq 0
\end{aligned}
$$

$$
\begin{aligned}
C^{*} & =1 \\
H^{*} & =2 \\
M^{*} & =0 \\
\text { OPT } & =800
\end{aligned}
$$

## LP Duality

Every Problem $\mathcal{P}$ : Given real numbers $a_{i j}, b_{i}, c_{j}$,

| $\operatorname{maximize}_{\boldsymbol{x}}$ | $\sum_{j=1}^{n} c_{j} x_{j}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| subject to | $\sum_{j=1}^{n} a_{i j} x_{j}$ | $\leq b_{i}, \quad i=1, \ldots, m$ |  |
|  | $x_{j}$ | $\geq 0, \quad j=1, \ldots, n$ |  |
| $\boldsymbol{c}^{t} \boldsymbol{x}$ |  |  |  |
| $A \boldsymbol{x}$ | $\leq \boldsymbol{b}$ |  |  |
| $\boldsymbol{x}$ | $\geq \mathbf{0}$ |  |  |

Has a dual $\mathcal{D}$ : Given real numbers $a_{i j}, b_{i}, c_{j}$,

| $\operatorname{minimize}_{\boldsymbol{y}}$ | $\sum_{i=1}^{m} b_{i} y_{i}$ |  |  |
| :--- | :--- | :--- | :--- | :--- |
| subject to | $\sum_{i=1}^{m} y_{i} a_{i j}$ | $\geq c_{j}, \quad j=1, \ldots, n$ |  |
|  | $y_{i}$ | $\geq 0, \quad i=1, \ldots, m$ |  |$\|$| $\boldsymbol{b}^{t} \boldsymbol{y}$ |  |
| ---: | :--- |
| $A^{t} \boldsymbol{y}$ | $\geq \boldsymbol{c}$ |
| $\boldsymbol{y}$ | $\geq \mathbf{0}$ |

Duality Theorem ( Dantzig-von Neumann 1947, Gale-Kuhn-Tucker 1951). If $(\mathcal{P})$ and $(\mathcal{D})$ have feasible solutions, then $\max =\mathrm{min}$.

## LP Duality: Economic Interpretation

## Marginal (or Shadow-) prices:

Q. How much should brewer be willing to pay for additional supplies of scarce resources?

A. | obj | $=$ | 800 | + | -1 | $S_{C}$ | + | -2 | $S_{H}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\rightsquigarrow$ Per unit changes in profit for changes in resources:
$\rightsquigarrow$ corn $\$ 1$, hops $\$ 2$, malt $\$ 0$ ( 210 pounds of excess malt not utilized)
Q. New product "light beer" is proposed. It requires 2 corn, 5 hops, 24 malt. How much profit must be obtained from light beer to justify diverting resources from production of beer and ale?
A. Breakeven: $2(\$ 1)+5(\$ 2)+24(0 \$)=\$ 12 /$ barrel.

How can we compute the shadow prices?
Simplex solves primal and dual simultaneously.
Top row of final simplex tableaux provides optimal dual solution!

## Dual of Dual

## Primal problem:

| $\operatorname{maximize}$ | $\boldsymbol{c}^{t} \boldsymbol{x}$ |
| :--- | :--- |
| subject to | $A \boldsymbol{x} \leq \boldsymbol{b}$ |
|  | $x_{j} \geq 0, \quad j=1, \ldots, n$ |

Note: A problem is defined by its data (notation used for the variables is arbitrary).

## Dual in usual LP form:

$$
\begin{array}{ll}
\operatorname{maximize} & \left(-\boldsymbol{b}^{t}\right) \boldsymbol{y} \\
\text { subject to } & \left(-A^{t}\right) \boldsymbol{y} \\
& \leq \\
& y_{i} \\
& \geq \quad 0, \quad \text { Dual is negative transpose of primal. } \\
&
\end{array}
$$

Theorem: Dual of dual is primal. Proof:

$\begin{array}{ll}\text { maximize } & \boldsymbol{c}^{t} \boldsymbol{x} \\ \text { subject to } & A \boldsymbol{x} \leq \boldsymbol{b}\end{array}$

## Weak Duality Theorem

If $\boldsymbol{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)^{t}$ is feasible for the primal and $\boldsymbol{y}=\left(y_{1}, y_{2}, \ldots, y_{m}\right)^{t}$ is feasible for the dual, then $\boldsymbol{c}^{t} \boldsymbol{x} \leq \boldsymbol{b}^{t} \boldsymbol{y}$

Proof: $\boldsymbol{c}^{t} \boldsymbol{x} \leq \boldsymbol{y}^{t} A \boldsymbol{x} \leq \boldsymbol{y}^{t} \boldsymbol{b}$.
An important question: Is there a gap between the largest primal value and the smallest dual value?


Answer is provided by the Strong Duality Theorem: If $(\mathcal{P})$ and $(\mathcal{D})$ have feasible solutions, then $\max _{\mathcal{P}}=\min _{\mathcal{D}}$.

## Simplex Method and Duality

A primal problem:

| obj | $=$ | 0 | + | -3 | $x_{1}$ | + | 2 | $x_{2}$ | + | 1 | $x_{3}$ |
| :---: | :---: | :---: | :---: | ---: | :--- | :--- | ---: | ---: | ---: | ---: | :--- |
| $w_{1}$ | $=$ | 0 | - | 0 | $x_{1}$ | - | -1 | $x_{2}$ | - | 2 | $x_{3}$ |
| $w_{2}$ | $=$ | 3 | - | 3 | $x_{1}$ | - | 4 | $x_{2}$ | - | 1 | $x_{3}$ |

Its dual:
Notes:

| obj | $=$ | 0 | + | 0 | $y_{1}$ | + | -3 | $y_{2}$ |
| :---: | :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $z_{1}$ | $=$ | 3 | - | 0 | $y_{1}$ | - | -3 | $y_{2}$ |
| $z_{2}$ | $=$ | -2 | - | 1 | $y_{1}$ | - | -4 | $y_{2}$ |
| $z_{3}$ | $=$ | -1 | - | -2 | $y_{1}$ | - | -1 | $y_{2}$ |

- Dual is negative transpose of primal.
- Primal is feasible, dual is not.

Use primal to choose pivot: $\quad x_{2}$ enters, $w_{2}$ leaves.
Make analogous pivot in dual: $z_{2}$ leaves, $y_{2}$ enters.

## Second Iteration

After First Pivot:

| obj | $=$ | $3 / 2$ | + | $-3 / 2$ | $x_{1}$ | + | $-1 / 2$ | $w_{2}$ | + | $1 / 2$ | $x_{3}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | :---: | :---: | :---: | :---: |
| $w_{1}$ | $=$ | $3 / 4$ | - | $-3 / 4$ | $x_{1}$ | - | $1 / 4$ | $w_{2}$ | - | $9 / 4$ | $x_{3}$ |
| $x_{2}$ | $=$ | $3 / 4$ | - | $-3 / 4$ | $x_{1}$ | - | $1 / 4$ | $w_{2}$ | - | $1 / 4$ | $x_{3}$ |

Primal (feasible)

| obj | $=$ | $-3 / 2$ | + | $-3 / 4$ | $y_{1}$ | + | $-3 / 4$ | $z_{2}$ |
| ---: | :--- | ---: | :--- | ---: | ---: | ---: | ---: | ---: |
| $z_{1}$ | $=$ | $3 / 2$ | - | $3 / 4$ | $y_{1}$ | - | $3 / 4$ | $z_{2}$ |
| $y_{2}$ | $=$ | $1 / 2$ | - | $-1 / 4$ | $y_{1}$ | - | $-1 / 4$ | $z_{2}$ |
| $z_{3}$ | $=$ | $-1 / 2$ | - | $-9 / 4$ | $y_{1}$ | - | $-1 / 4$ | $y_{2}$ |

Dual (still not feasible)

Note: negative transpose property intact.
Again, use primal to pick pivot: $x_{3}$ enters, $w_{1}$ leaves.
Make analogous pivot in dual: $z_{3}$ leaves, $y_{1}$ enters.

## After Second Iteration

| obj | $=$ | $5 / 3$ | + | $-4 / 3$ | $x_{1}$ | + | $-5 / 9$ | $w_{2}$ | + | $-2 / 9$ | $w_{1}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | ---: | ---: | ---: | ---: | ---: |
| $x_{3}$ | $=$ | $1 / 3$ | - | $-1 / 3$ | $x_{1}$ | - | $1 / 9$ | $w_{2}$ | - | $4 / 9$ | $w_{1}$ |
| $x_{2}$ | $=$ | $2 / 3$ | - | $-2 / 3$ | $x_{1}$ | - | $2 / 9$ | $w_{2}$ | - | $-1 / 9$ | $w_{1}$ |
| Primal |  |  |  |  |  |  |  |  |  |  |  |
| is optimal |  |  |  |  |  |  |  |  |  |  |  |


| obj | $=$ | $-5 / 3$ | + | $-1 / 3$ | $z_{3}$ | + | $-2 / 3$ | $z_{2}$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $z_{1}$ | $=$ | $4 / 3$ | - | $1 / 3$ | $z_{3}$ | - | $2 / 3$ | $z_{2}$ |
| $y_{2}$ | $=$ | $5 / 9$ | - | $-1 / 9$ | $z_{3}$ | - | $-2 / 9$ | $z_{2}$ |
| $y_{1}$ | $=$ | $2 / 9$ | - | $-4 / 9$ | $z_{3}$ | - | $1 / 9$ | $y_{2}$ |

Dual: negative transpose property remains intact, is optimal.

Conclusion: Simplex method applied to primal problem (two phases, if necessary), solves both the primal and the dual.

This is the essence of the strong duality theorem:
If the primal problem has an optimal solution, $\boldsymbol{x}^{*}=\left(x_{1}^{*}, x_{2}^{*}, \ldots, x_{n}^{*}\right)^{t}$, then the dual also has an optimal solution, $\boldsymbol{y}^{*}=\left(y_{1}^{*}, y_{2}^{*}, \ldots, y_{m}^{*}\right)^{t}$, and $\boldsymbol{c}^{t} \boldsymbol{x}^{*}=\boldsymbol{b}^{t} \boldsymbol{y}^{*}$.

## Recall: Linear curve fitting

- Notation: $n$ objects at locations $\boldsymbol{x}_{i} \in \mathbb{R}^{p}$. Every object has measurement $y_{i} \in \mathbb{R}$.
- Approximate "regression targets" $y$ as a parametrized function of $\boldsymbol{x}$.
- Consider a 1-dim problem initially.
- Start with $n$ data points $\left(x_{i}, y_{i}\right), i=1, \ldots, n$.

- Choose $d$ basis functions $g_{0}(x), g_{1}(x), \ldots$.
- Fitting to a line uses two basis functions $g_{0}(x)=1$ and $g_{1}(x)=x$. In most cases $n \gg d$.
- Fit function $=$ linear combination of basis functions:
$f(x ; \boldsymbol{w})=\sum_{j} w_{j} g_{j}(x)=w_{0}+w_{1} x$.
- $f\left(x_{i}\right)=y_{i}$ exactly is (usually) not possible, so approximate $f\left(x_{i}\right) \approx y_{i}$
- $n$ residuals are defined by $r_{i}=y_{i}-f\left(x_{i}\right)=y_{i}-\left(w_{0}+w_{1} x_{i}\right)$.


## Recall: Basis functions

$X$ has as many columns as there are basis functions. Examples:

- High-dimensional linear functions
$\boldsymbol{x} \in \mathbb{R}^{p}, g_{0}(\boldsymbol{x})=1$ and $g_{1}(\boldsymbol{x})=x_{1}, g_{2}(\boldsymbol{x})=x_{2}, \ldots, g_{p}(\boldsymbol{x})=x_{p}$.

$$
\begin{aligned}
X_{i \bullet} & =\boldsymbol{g}^{t}\left(\boldsymbol{x}_{i}\right)=\left(1,-\boldsymbol{x}_{i}^{t}-\right), \quad(i \text {-th row of } X) \\
f(\boldsymbol{x} ; \boldsymbol{w}) & =\boldsymbol{w}^{t} \boldsymbol{g}=w_{0}+w_{1} x_{1}+\cdots+w_{p} x_{p}
\end{aligned}
$$

- Document analysis: Assume a fixed collection of words:

$$
\begin{aligned}
\boldsymbol{x} & =\text { text document } \\
g_{0}(\boldsymbol{x}) & =1 \\
g_{i}(\boldsymbol{x}) & =\# \text { (occurences of } i \text {-th word in document }) \\
f(\boldsymbol{x} ; \boldsymbol{w}) & =\boldsymbol{w}^{t} \boldsymbol{g}=w_{0}+\sum_{i \in \text { words }} w_{i} g_{i}(\boldsymbol{x}) .
\end{aligned}
$$

## Least absolute deviations regression

Least squares regression: $\hat{\boldsymbol{w}}=\arg \min _{\boldsymbol{w}}\|\boldsymbol{r}\|_{2}^{2}$
LAD-regression is less sensitive to outliers than least squares regression is. It is defined by minimizing the $\ell_{1}$-norm of the residual vector.
$\hat{\boldsymbol{w}}=\arg \min _{\boldsymbol{w}}\|\boldsymbol{r}\|_{1}=\arg \min _{\boldsymbol{w}}\|\boldsymbol{y}-X \boldsymbol{w}\|_{1}=\arg \min _{\boldsymbol{w}} \sum_{i=1}^{n}\left|y_{i}-\sum_{j=1}^{d} x_{i j} w_{j}\right|$.
Unlike for least squares regression, there is no explicit formula for the solution. However, the problem can be reformulated as:

$$
\operatorname{minimize} \quad \sum_{i} t_{i}
$$

$$
\text { s.t. } \quad t_{i}-\left|y_{i}-\sum_{j} x_{i j} w_{j}\right|=0, i=1, \ldots, n,
$$

which already looks similar to a LP...

## Least absolute deviations regression



Rousseeuw \& Leroy (1987) give data on annual numbers of Belgian telephone calls. Their investigations showed that for 1964-69 the total length of calls (in minutes) had been recorded rather than the number. Red: least-squares, blue: least absolute deviations.

## Least absolute deviations regression

This is equivalent to the following problem:
minimize

$$
\sum_{i} t_{i}
$$

$$
\begin{aligned}
& \text { s.t. } \quad t_{i}=y_{i}-\sum_{j} x_{i j} w_{j}, \quad \text { if } \quad y_{i}-\sum_{j} x_{i j} w_{j} \geq 0 . \\
& -t_{i}=y_{i}-\sum_{j} x_{i j} w_{j}, \quad \text { else. }
\end{aligned}
$$

Note that in the first case, we can relax the constraint to $t_{i} \geq y_{i}-\sum_{j} x_{i j} w_{j}$, since we minimize over the $t_{i}$ anyway. Similarly, in the second case: $-t_{i} \leq y_{i}-\sum_{j} x_{i j} w_{j}$. Both cases can be combined into range constraints:

$$
-t_{i} \leq y_{i}-\sum_{j} x_{i j} w_{j} \leq t_{i}, i=1, \ldots, n
$$

## Least absolute deviations regression

Finally, LAD-regression is equivalent to the following LP problem:

$$
\begin{aligned}
\operatorname{minimize} & \sum_{i} t_{i} \\
\text { s.t. } & -t_{i} \leq y_{i}-\sum_{j} x_{i j} w_{j} \leq t_{i}, i=1, \ldots, n
\end{aligned}
$$

Range constraints can be transformed to standard notation by replication:

$$
\begin{aligned}
-\sum_{j} x_{i j} w_{j}-t_{i} & \leq-y_{i}, i=1, \ldots, n \\
\sum_{j} x_{i j} w_{j}-t_{i} & \leq y_{i}, i=1, \ldots, n
\end{aligned}
$$

$\Rightarrow$ Use Simplex algorithm on joint variable set $\{\boldsymbol{w}, \boldsymbol{t}\}$ to find optimal $\hat{\boldsymbol{w}}$ :

$$
\max \left(\mathbf{0}^{t},-\mathbf{1}^{t}\right)\binom{\boldsymbol{w}}{\boldsymbol{t}} \quad \text { s.t. } \quad-X \boldsymbol{w}-\boldsymbol{t} \leq-\boldsymbol{y}, X \boldsymbol{w}-\boldsymbol{t} \leq \boldsymbol{y}
$$

