
Chapter 3
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Linear Programming: What is it?

• Tool for optimal allocation of scarce resources, among a number of

competing activities.

• Mathematical field of study concerned with such allocation questions,

part of operations research.

Example: Small brewery produces ale and beer.

• Production limited by resources (raw materials) that are in short supply:

corn, hops, barley malt.

• Recipes for ale and beer require different proportions of resources.

Beverage Corn Hops Malt Profit ($)

Ale 5 4 35 13

Beer 15 4 20 23

Quantity 480 160 1190

Robert Bland, Allocation of Resources by Linear Programming,Scientific American, Vol. 244, No. 6, June 1981
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How can the brewer maximize profits?

• Devote all resources to ale: 34 barrels of ale (all malt used up, long

before supplies of hops and corn are exhausted): A = 34 ⇒ $442.

• Devote all resources to beer: 32 barrels of beer (no more corn left):

B = 32 ⇒ $736.

• 7.5 barrels of ale, 29.5 barrels of beer ⇒ $776.

• 12 barrels of ale, 28 barrels of beer (all corn and hops used) ⇒ $800.

Ale Beer (products)

maximize 13A +23B (profit)

s.t. 5A +15B ≤ 480 (corn)

4A +4B ≤ 160 (hops)

35A +20B ≤ 1190 (malt)

A, B ≥ 0 (physical constraints)
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Brewery Problem: Feasible Region
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Brewery Problem: Objective Function
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Brewery Problem: Geometry

Regardless of objective function coefficients, an optimal solution occurs

at an extreme point.
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Standard Form LP

• Input: real numbers cj, bi, aij .

• Output: real numbers xj.

• n = # nonnegative variables, m = # constraints.

• Maximize linear objective function subject to linear equalities and

physical constraints.

max
∑n

j=1
cjxj

s.t.
∑n

j=1
aijxj = bi, 1 ≤ i ≤ m

xj ≥ 0, 1 ≤ j ≤ n

max ctx

s.t. Ax = b

x ≥ 0

Linear: Ressources needed and profit proportional to production.

Programming: Planning (not computer programming).
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Brewery Problem: Converting to Standard Form

Original input: max 13A+ 23B

s.t. 5A+ 15B ≤ 480

4A+ 4B ≤ 160

35A+ 20B ≤ 1190

A,B ≥ 0

Standard form:

• Add slack variable for

each inequality.

• Now a 5-dimensional

problem.

max 13A+ 23B

s.t. 5A+ 15B + SC = 480

4A+ 4B + SH = 160

35A+ 20B + SM = 1190

A,B, SC, SH, SM ≥ 0
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Geometry

• Inequalities: halfplanes (2D), hyperplanes.

• Bounded feasible region: convex polygon (2D), (convex) polytope.

Convex: if a and b are feasible solutions, then so is (a+ b)/2.

Extreme point: feasible solution x that can’t be written as (a+ b)/2 for

any two distinct feasible solutions a and b.

B
e
e
r

Ale

a

b

a

b

Convex Not convex

8



Geometry

Extreme point property. If there exists an optimal solution, then there

exists one that is an extreme point. Only need to consider finitely many

possible solutions.

Challenge. Number of extreme points can be exponential!

Consider n-dimensional hypercube: 2n equations, 2n vertices.

Greed. Local optima are global optima. Extreme point is optimal if no

neighboring extreme point is better.

Wikipedia, by user Sdo, published under the Creative-Commons license.
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Simplex Algorithm (George Dantzig, 1947)

• Developed shortly after WWII in response to logistical problems.

• Generic algorithm, never decreases objective function.

• Start at some extreme point.

• Pivot from one extreme point to a neighboring one.

• Repeat until optimal.

How to implement?
Linear algebra.
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Simplex Algorithm: Basis

Basis: Subset of m of the n′ = n+m variables (n original + m slack).

Basic feasible solution (BFS):
Set all n′ −m nonbasic variables to 0, solve for remaining m variables.

• Solve m equations in m unknowns.

• If unique and feasible solution ⇒ BFS.

• BFS corresponds to extreme point! Simplex only considers BFS.
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Simplex Algorithm: Pivot 1

max obj = 13A+ 23B

s.t. 5A+ 15B + SC = 480

4A+ 4B + SH = 160

35A+ 20B + SM = 1190

A,B, SC, SH, SM ≥ 0

obj = 0 + 13 A + 23 B

SC = 480 − 5 A − 15 B

SH = 160 − 4 A − 4 B

SM = 1190 − 35 A − 20 B

Which variable should enter next?

• Unit increase in B  obj + $23.

• Letting A enter is also OK.

Basis = {SC, SH, SM}
A = B = 0

obj = 0

SC = 480

SH = 160

SM = 1190
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Simplex Algorithm: Selecting the Pivot Row

If B is increased, the first slack variable that becomes zero is SC at

SC = 480− 15B = 0 ⇔ B = 480/15 = 32  SC has to leave.
What if SH leaves (at B = 160/4 = 40)? Basis (B,SC, SM) outside the

feasible region! Same problem if SM leaves at B = 1190/20 = 59.5.

 Minimum ratio rule: min { 480/15, 160/4, 1190/20 }
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Simplex Algorithm: Pivot 1

obj = 0 + 13 A + 23 B

SC = 480 − 5 A − 15 B

SH = 160 − 4 A − 4 B

SM = 1190 − 35 A − 20 B

B enters, SC leaves  solve pivot row SC = 480− 5A− 15B for B:

Substitute B = 1
15(480− 5A− SC)

obj = 736 + 16/3 A + −23/15 SC

B = 32 − 1/3 A − 1/15 SC

SH = 32 − 8/3 A − −4/15 SC

SM = 550 − 85/3 A − −4/3 SC

Feasibility is preserved! (green highlights)
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LP and Gauss-Jordan


13 23 0 0 0
5 15 1 0 0
4 4 0 1 0
35 20 0 0 1



A
B
SC

SH

SM

 =


ojb
480
160
1190

 ⇒
augmented


A B SC SH SM

13 23 0 0 0 obj
5 15 1 0 0 480
4 4 0 1 0 160
35 20 0 0 1 1190


• Locate pivot element and save it: piv = 15

• Replace each row, except the pivot row, by that linear combination of itself and the
pivot row which makes its pivot-column entry zero:

A B SC SH SM

16/3 0 −23/15 0 0 obj− 480 · 23/15
5 15 1 0 0 480

8/3 0 4/15 1 0 32
85/3 0 4/3 0 1 550


• Divide pivot row by piv: 1/3 ·A+B + 1/15 · SC + 0 + 0 = 32
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LP and Gauss-Jordan

• New basis (B,SH, SM):
A B SC SH SM

16/3 0 −23/15 0 0 obj− 736
1/3 1 1/15 0 0 32
8/3 0 4/15 1 0 32
85/3 0 4/3 0 1 550


• Corresponding tableau:

obj = 736 + 16/3 A + −23/15 SC

B = 32 − 1/3 A − 1/15 SC

SH = 32 − 8/3 A − −4/15 SC

SM = 550 − 85/3 A − −4/3 SC
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Simplex Algorithm: Pivot 2

obj = 736 + 16/3 A + −23/15 SC

B = 32 − 1/3 A − 1/15 SC

SH = 32 − 8/3 A − −4/15 SC

SM = 550 − 85/3 A − −4/3 SC

Next pivot: A enters (only one magenta highlight left),

SH leaves  min(32 · 3, 32 · 3/8, 330 · 3/85):
Substitute A = 3

8(32 +
4
15SC − SH)

obj = 800 + −1 SC + −2 SH

B = 28 − 1/10 SC − −1/8 SH

A = 12 − −1/10 SC − 3/8 SH

SM = 210 − 3/2 SC − −85/8 SH

Feasibility is preserved!
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Simplex Algorithm: Optimality

obj = 800 + −1 SC + −2 SH

B = 28 − 1/10 SC − −1/8 SH

A = 12 − −1/10 SC − 3/8 SH

SM = 210 − 3/2 SC − −85/8 SH

When to stop pivoting? all coefficients in top row ≤ 0.

Why is resulting solution optimal?

• Any feasible solution satisfies system of equations in tableaux.

in particular: obj = 800− SC − 2SH

• Thus, optimal objective value obj ≤ 800 since SC, SH ≥ 0.

• Current BFS has value 800⇒ optimal (no further magenta highlights).

• At optimum: 28 (barrels of) Beer, 12 Ale, 210 units of Malt are left.
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Simplex Algorithm: Problems and properties

Degeneracy. Pivot gives new basis, but same objective function value.

Cycling. A cycle is a sequence of degenerate pivots that returns to the

first tableau in the sequence.

There exist pivoting rules for which no cycling is possible,

for instance Bland’s least index rule:
“choose leftmost column with positive cost + min. ratio rule”

Remarkable property. In practice, the simplex algorithm typically

terminates after at most 2(m+ n) pivots.

• Most pivot rules known to be exponential in the worst-case.

• No polynomial pivot rule known  still an open question.
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Figure 4.1 in Robert J. Vanderbei: Linear Programming, Springer. https://doi.org/10.1007/978-3-030-39415-8
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Efficiency

Upper bound on the number of iterations is simply the number of basic

feasible solutions, of which there can be at most(
n+m

m

)
For fixed n+m, this expression is maximized when m = n.

And how big is it? Exponentially big!
(simplified) Stirling’s approximation: log n! ≈ n log n− n

log

(
2n

n

)
= log

(2n)!

(n!)2
= log(2n)!− 2 log n! ≈ 2n log 2n− 2n log n = 2n log 2 = 2n

For LPs, there exist Interior-Point algorithms with guaranteed

polynomial runtime (Karmarkar, ’84). Researchers spent years trying to

prove that the simplex worst-case complexity was polynomial...
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Efficiency

...but the ’72 Klee-Minty counter-example killed such hopes!

For most pivot rules there has been a KM-type counter-example.

No pivot rule guaranteed to yield worst-case polynomial time yet.
Yet practical performance definitely competitive (much better than most

Interior Point methods!)
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Efficiency: Different analysis concepts

• Let x be a problem instance, T (x) the finishing time of Simplex alg.

Think of “problem instance” as the matrix A in a LP problem.

Worst Case analysis: maxxT (x).

• Given random problems, what are the average finishing times?

 Average Case analysis: Er∼P (r)T (r).

Topic of intense study in 70’ and 80’s.

Results: polynomal average case complexity.

• Given a problem that is randomly perturbed, what is

the finishing time when averaged over all perturbations?

 Smoothed analysis: maxxEr∼P (r)T (x+ εr).

• Interpolate between Worst Case and Average Case

• Consider neighborhood of every input instance

• If low, have to be unlucky to find bad input instance.
23



Efficiency: good news

Spielman-Teng ’01: Coefficients of A perturbed by Gaussian noise with

variance σ2. Average complexity of solving such LP is at most a

polynomial of n,m, σ2 for every A.

You need to be very unlucky to find a bad LP input instance!
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Further Questions

• Unboundedness: how can we check if optimal objective value is finite?

• Initialization/infeasibility: what to do if initial basis consisting of

slack variables only is not feasible?

 Phase-I / Phase-II Simplex Method

• LP Duality: is there even more information in the final tableau?
25



Initialization

Recall our brewery problem: (Slack variables denoted by wi):

maximize 13x1 + 23x2
subject to 5x1 + 15x2 +w1 = 480

4x1 + 4x2 +w2 = 160
35x1 + 20x2 +w3 = 1190

x1, x2, w1, w2, w3 ≥ 0

obj = 0 + 13 x1 + 23 x2

w1 = 480 − 5 x1 − 15 x2
w2 = 160 − 4 x1 − 4 x2
w3 = 1190 − 35 x1 − 20 x2

We were lucky...
...positive values in constant column show that the initial basis consisting of slack
variables is feasible (⇔ for x1 = x2 = 0, all three slack variables are ≥ 0).

x2 enters, w1 leaves  min(480/15, 160/4, 1190/20).
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The Brewery problem again

obj = 736 + 16/3 x1 + −23/15 w1

x2 = 32 − 1/3 x1 − 1/15 w1

w2 = 32 − 8/3 x1 − −4/15 w1

w3 = 550 − 85/3 x1 − −4/3 w1

Feasibility is preserved!
x1 enters, w2 leaves  min(32 · 3, 32 · 3/8, 330 · 3/85).

obj = 800 + −1 w1 + −2 w2

x2 = 28 − 1/10 w1 − −1/8 w2

x1 = 12 − −1/10 w1 − 3/8 w2

w3 = 210 − 3/2 w1 − −85/8 w2

Feasibility is preserved!
Optimal! (no further magenta highlights in obj-row)
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Initialization cont’d

maximize −3x1 + 4x2
subject to −4x1 − 2x2 ≤ −8

−2x1 ≤ −2
3x1 + 2x2 ≤ 10
−x1 + 3x2 ≤ 1

− 3x2 ≤ −2
x1, x2 ≥ 0

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
2

−
1

0
1
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3
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x_1

x_
2

●

1:  x_2 >= −2x_1 + 4

2: x_1 >= 1
3

4
5: x_2 >= 2/3

4 x_2 − 3 x_1 = −9/7

obj2 = 0 + −3 x1 + 4 x2

w1 = −8 − −4 x1 − −2 x2
w2 = −2 − −2 x1 − 0 x2
w3 = 10 − 3 x1 − 2 x2
w4 = 1 − −1 x1 − 3 x2
w5 = −2 − 0 x1 − −3 x2

Initial basis is not feasible!  Phase-I Problem
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Phase-I Problem

Idea: Modify problem by subtracting a new variable, x0, from each constraint and
replace objective function with −x0.

maximize −x0
subject to −x0 − 4x1 − 2x2 ≤ −8

−x0 − 2x1 ≤ −2
−x0 + 3x1 + 2x2 ≤ 10
−x0 − x1 + 3x2 ≤ 1
−x0 − 3x2 ≤ −2

x0, x1, x2 ≥ 0

• Can always be made feasible: pick x0 large, set x1 = 0 and x2 = 0.

• If optimal solution has obj1 = 0, then the original problem is feasible!
Note that obj1 = 0 means that the “correction term” x0 = 0, so the current point
(x1, x2) must lie within the feasible region.

• Final phase-I basis can be used as initial phase-II basis (ignoring x0 thereafter).

• If optimal solution has obj1 < 0, then original problem is infeasible!
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Initialization: First Pivot

obj2 = 0 + 0 x0 + −3 x1 + 4 x2

obj1 = 0 + −1 x0 + 0 x1 + 0 x2

w1 = −8 − −1 x0 − −4 x1 − −2 x2
w2 = −2 − −1 x0 − −2 x1 − 0 x2
w3 = 10 − −1 x0 − 3 x1 − 2 x2
w4 = 1 − −1 x0 − −1 x1 − 3 x2
w5 = −2 − −1 x0 − 0 x1 − −3 x2

• Current basis is infeasible even for Phase-I.

• One pivot needed to get feasible.

• Entering variable is x0 (there is no other choice, and we already know that the
problem can be made feasible for large enough x0...).

• Leaving variable is the one whose current value is most negative, i.e. the most violated
constraint (here: w1). This guarantees that after the first pivot all constraints are
fulfilled.
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Initialization: Second Pivot

obj2 = 0 + 0 w1 + −3 x1 + 4 x2

obj1 = −8 + −1 w1 + 4 x1 + 2 x2

x0 = 8 − −1 w1 − 4 x1 − 2 x2
w2 = 6 − −1 w1 − 2 x1 − 2 x2
w3 = 18 − −1 w1 − 7 x1 − 4 x2
w4 = 9 − −1 w1 − 3 x1 − 5 x2
w5 = 6 − −1 w1 − 4 x1 − −1 x2

• Feasible!

• Focus on the yellow highlights.

• Let x1 enter.

• Then w5 must leave.

• After second pivot...
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Initialization: Third Pivot

obj2 = −4.5 + −0.75 w1 + 0.75 w5 + 3.25 x2

obj1 = −2 + 0 w1 + −1 w5 + 3 x2

x0 = 2 − 0 w1 − −1 w5 − 3 x2
w2 = 3 − −0.5 w1 − −0.5 w5 − 2.5 x2
w3 = 7.5 − 0.75 w1 − −1.75 w5 − 5.75 x2
w4 = 4.5 − −0.25 w1 − −0.75 w5 − 5.75 x2
x1 = 1.5 − −0.25 w1 − 0.25 w5 − −0.25 x2

• x2 must enter

• Then x0 must leave.

• After third pivot...
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End of Phase-I, Begin of Phase-II

obj2 = −7
3 + −3

4 w1 + 11
6 w5 + 0 x0

obj1 = 0 + 0 w1 + 0 w5 + 0 x0

x2 = 2
3 − 0 w1 − −1

3 w5 − 0 x0

w2 = 4
3 − −1

2 w1 − 1
3 w5 − 0 x0

w3 = 11
3 − 3

4 w1 − 1
6 w5 − 0 x0

w4 = 2
3 − −1

4 w1 − 7
6 w5 − 0 x0

x1 = 5
3 − −1

4 w1 − 1
6 w5 − 0 x0

• Optimal for Phase-I (no yellow highlights).

• obj1 = 0, therefore original problem is feasible.

• For Phase-II: Ignore column with x0 and Phase-I objective row.

• w5 must enter. w4 must leave...
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Phase-II: Optimal Solution

obj2 = −9
7 + − 5

14 w1 + −11
7 w4

x2 = 6
7 − − 1

14 w1 − 2
7 w4

w2 = 8
7 − −3

7 w1 − −2
7 w4

w3 = 25
7 − 11

14 w1 − −1
7 w4

w5 = 4
7 − − 3

14 w1 − 6
7 w4

x1 = 11
7 − − 3

14 w1 − −1
7 w4
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Unboundedness
Consider the following tableau:

obj = 0 + 2 x1 + −1 x2 + 1 x3

w1 = 4 − −5 x1 − 3 x2 − −1 x3

w2 = 10 − −1 x1 − −5 x2 − 2 x3

w3 = 7 − 0 x1 − −4 x2 − 3 x3

w4 = 6 − −2 x1 − −2 x2 − 4 x3

w5 = 6 − −3 x1 − 0 x2 − −3 x3

• Could increase either x1 or x3 to increase obj.

• Consider increasing x1.

• Which basic variable decreases to zero first?

• Answer: none of them, x1 can grow without bound, and obj along with it.

• This is how we detect unboundedness with the simplex method.
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The Two Phase Simplex Algorithm

Phase I: Formulate and solve the auxiliary problem.

Two outcomes are possible:

• The optimal value of x0 in the auxiliary problem is positive.

In this case the original problem is infeasible.

• The optimal value is zero and an initial feasible tableau for the

original problem is obtained.

Phase II: If the original problem is feasible, apply the simplex algorithm

to the initial feasible tableau obtained from Phase I above.

Again, two outcomes are possible:

• The LP is unbounded.

• An optimal basic feasible solution is obtained.
36



The Fundamental Theorem of linear Programming

Theorem: Every LP has the following three properties:

• If it has no optimal solution, then it is either infeasible or unbounded.

• If it has a feasible solution, then it has a basic feasible solution.

• If it is bounded, then it has an optimal basic feasible solution.

Proof: Phase I algorithm either proves that the problem is infeasible or

produces a basic feasible solution. Phase II algorithm either discovers

that the problem is unbounded or finds a basic optimal solution.

Assumption: no cycling occurs, guaranteed by several pivot rules.

Bland’s rule:
Entering: choose the lowest-numbered nonbasic column with a positive

coefficient.

Leaving: in case of ties in the ratio test, choose the leaving basic variable

with the smallest index.
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Primal problem: Ressource allocation

Brewer’s problem: find optimal mix to maximize profits.
max 13A+ 23B

s.t. 5A+ 15B ≤ 480

4A+ 4B ≤ 160

35A+ 20B ≤ 1190, A,B ≥ 0

A∗ = 12

B∗ = 28

OPT = 800

General form: Find optimal allocation of m raw materials to n production

processes. This is the primal P: Given real numbers

• aij = units of raw material i needed to produce one unit of product j,

• bi = ressource constraints for raw material i, i = 1, . . . ,m,

• cj = profit per unit of product j, j = 1, . . . , n,

maximizex
∑n

j=1 cjxj ctx

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m Ax ≤ b

xj ≥ 0, j = 1, . . . , n x ≥ 0
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The dual: Brewery example

• 5corn+4hops+35malt needed to brew one barrel of Ale (which would

lead to profit of 13$). If we produce one unit less of Ale, we free up

{5/4/35} units of {corn/hops/malt}.
• Selling for C,H,M dollars/unit yields 5C + 4H + 35M dollars.

• Only interested if this exceeds lost profit of 13$: 5C+4H+35M ≥ 13.

Similar for Beer: 15C + 4H + 20M ≥ 23.

Consider a buyer offering to purchase our entire inventory. Subject to

above constraints, buyer wants to minimize cost. This is the dual D:

Buyer’s problem: Buy resources from brewer at minimum cost.

(D) min 480C + 160H + 1190M

s.t. 5C + 4H + 35M ≥ 13

15C + 4H + 20M ≥ 23

C,H,M ≥ 0

C∗ = 1

H∗ = 2

M∗ = 0

OPT = 800
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LP Duality

Every Problem P: Given real numbers aij, bi, cj,

maximizex
∑n

j=1 cjxj ctx

subject to
∑n

j=1 aijxj ≤ bi, i = 1, . . . ,m Ax ≤ b

xj ≥ 0, j = 1, . . . , n x ≥ 0

Has a dual D: Given real numbers aij, bi, cj,

minimizey
∑m

i=1 biyi bty

subject to
∑m

i=1 yiaij ≥ cj, j = 1, . . . , n Aty ≥ c

yi ≥ 0, i = 1, . . . ,m y ≥ 0

Duality Theorem ( Dantzig-von Neumann 1947, Gale-Kuhn-Tucker 1951).

If (P) and (D) have feasible solutions, then max = min.
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LP Duality: Economic Interpretation

Marginal (or Shadow-) prices:
Q. How much should brewer be willing to pay for additional supplies of

scarce resources?

A. obj = 800 + −1 SC + −2 SH

 Per unit changes in profit for changes in resources:
 corn $1, hops $2, malt $0 (210 pounds of excess malt not utilized)

Q. New product “light beer” is proposed. It requires 2 corn, 5 hops,

24 malt. How much profit must be obtained from light beer to justify

diverting resources from production of beer and ale?

A. Breakeven: 2 ($1) + 5 ($2) + 24 (0$) = $12 / barrel.

How can we compute the shadow prices?

Simplex solves primal and dual simultaneously.

Top row of final simplex tableaux provides optimal dual solution!
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Dual of Dual
Primal problem:

maximize ctx

subject to Ax ≤ b

xj ≥ 0, j = 1, . . . , n

Note: A problem is defined by its data

(notation used for the variables is arbi-

trary).

Dual in usual LP form:

maximize (−bt)y
subject to (−At)y ≤ (−c)

yi ≥ 0, i = 1, . . . ,m

Dual is negative transpose of primal.

Theorem: Dual of dual is primal. Proof:

minimize (−c)tx
subject to (−At)tx ≥ (−b) =

maximize ctx

subject to Ax ≤ b

42



Weak Duality Theorem

If x = (x1, x2, . . . , xn)
t is feasible for the primal and y = (y1, y2, . . . , ym)t

is feasible for the dual, then ctx ≤ bty

Proof: ctx ≤ ytAx ≤ ytb.

An important question: Is there a gap between the largest primal value

and the smallest dual value?

Answer is provided by the Strong Duality Theorem:
If (P) and (D) have feasible solutions, then maxP = minD.
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Simplex Method and Duality

A primal problem:

obj = 0 + −3 x1 + 2 x2 + 1 x3

w1 = 0 − 0 x1 − −1 x2 − 2 x3
w2 = 3 − 3 x1 − 4 x2 − 1 x3

Its dual:

obj = 0 + 0 y1 + −3 y2

z1 = 3 − 0 y1 − −3 y2
z2 = −2 − 1 y1 − −4 y2
z3 = −1 − −2 y1 − −1 y2

Notes:

• Dual is negative transpose of pri-
mal.

• Primal is feasible, dual is not.

Use primal to choose pivot: x2 enters, w2 leaves.

Make analogous pivot in dual: z2 leaves, y2 enters.
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Second Iteration

After First Pivot:

obj = 3/2 + −3/2 x1 + −1/2 w2 + 1/2 x3

w1 = 3/4 − −3/4 x1 − 1/4 w2 − 9/4 x3
x2 = 3/4 − −3/4 x1 − 1/4 w2 − 1/4 x3

Primal
(feasible)

obj = −3/2 + −3/4 y1 + −3/4 z2

z1 = 3/2 − 3/4 y1 − 3/4 z2
y2 = 1/2 − −1/4 y1 − −1/4 z2
z3 = −1/2 − −9/4 y1 − −1/4 y2

Dual (still
not feasible)

Note: negative transpose property intact.
Again, use primal to pick pivot: x3 enters, w1 leaves.
Make analogous pivot in dual: z3 leaves, y1 enters.
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After Second Iteration

obj = 5/3 + −4/3 x1 + −5/9 w2 + −2/9 w1

x3 = 1/3 − −1/3 x1 − 1/9 w2 − 4/9 w1

x2 = 2/3 − −2/3 x1 − 2/9 w2 − −1/9 w1

Primal
is optimal

obj = −5/3 + −1/3 z3 + −2/3 z2

z1 = 4/3 − 1/3 z3 − 2/3 z2
y2 = 5/9 − −1/9 z3 − −2/9 z2
y1 = 2/9 − −4/9 z3 − 1/9 y2

Dual: negative transpose
property remains intact,
is optimal.

Conclusion: Simplex method applied to primal problem (two phases, if

necessary), solves both the primal and the dual.

This is the essence of the strong duality theorem:

If the primal problem has an optimal solution, x∗ = (x∗1, x
∗
2, . . . , x

∗
n)

t,

then the dual also has an optimal solution, y∗ = (y∗1, y
∗
2, . . . , y

∗
m)t,

and ctx∗ = bty∗.
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Recall: Linear curve fitting

• Notation: n objects at locations xi ∈ Rp.

Every object has measurement yi ∈ R.

• Approximate “regression targets” y as a

parametrized function of x.

• Consider a 1-dim problem initially.

• Start with n data points (xi, yi), i = 1, . . . , n.

• Choose d basis functions g0(x), g1(x), . . . .

• Fitting to a line uses two basis functions

g0(x) = 1 and g1(x) = x . In most cases n� d.

• Fit function = linear combination of basis functions:
f(x;w) =

∑
j wjgj(x) = w0 + w1x.

• f(xi) = yi exactly is (usually) not possible, so approximate f(xi) ≈ yi
• n residuals are defined by ri = yi − f(xi) = yi − (w0 + w1xi).
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Recall: Basis functions

X has as many columns as there are basis functions. Examples:

• High-dimensional linear functions
x ∈ Rp, g0(x) = 1 and g1(x) = x1, g2(x) = x2, . . . , gp(x) = xp.

Xi• = gt(xi) = (1,— xt
i —), (i-th row of X)

f(x;w) = wtg = w0 + w1x1 + · · ·+ wpxp.

• Document analysis: Assume a fixed collection of words:

x = text document

g0(x) = 1

gi(x) = #(occurences of i-th word in document)

f(x;w) = wtg = w0 +
∑

i∈words

wigi(x).
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Least absolute deviations regression

Least squares regression: ŵ = argminw ‖r‖22
LAD-regression is less sensitive to outliers than least squares regres-

sion is. It is defined by minimizing the `1-norm of the residual vector.

ŵ = argmin
w
‖r‖1 = argmin

w
‖y−Xw‖1 = argmin

w

n∑
i=1

∣∣yi− d∑
j=1

xijwj

∣∣.
Unlike for least squares regression, there is no explicit formula for the

solution. However, the problem can be reformulated as:

minimize
∑
i

ti

s.t. ti −
∣∣yi −∑

j

xijwj

∣∣ = 0, i = 1, . . . , n,

which already looks similar to a LP...
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Least absolute deviations regression
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Rousseeuw & Leroy (1987) give data on annual numbers of Belgian telephone calls. Their investigations showed that for 1964-69 the total length of

calls (in minutes) had been recorded rather than the number. Red: least-squares, blue: least absolute deviations.
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Least absolute deviations regression

This is equivalent to the following problem:

minimize
∑
i

ti

s.t. ti = yi −
∑
j

xijwj, if yi −
∑
j

xijwj ≥ 0.

−ti = yi −
∑
j

xijwj, else.

Note that in the first case, we can relax the constraint to

ti ≥ yi −
∑

j xijwj, since we minimize over the ti anyway.

Similarly, in the second case: −ti ≤ yi −
∑

j xijwj.

Both cases can be combined into range constraints:

−ti ≤ yi −
∑
j

xijwj ≤ ti, i = 1, . . . , n.
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Least absolute deviations regression
Finally, LAD-regression is equivalent to the following LP problem:

minimize
∑

i
ti

s.t. −ti ≤ yi −
∑

j
xijwj ≤ ti, i = 1, . . . , n.

Range constraints can be transformed to standard notation by replication:

−
∑

j
xijwj − ti ≤ −yi, i = 1, . . . , n.∑

j
xijwj − ti ≤ yi, i = 1, . . . , n.

⇒ Use Simplex algorithm on joint variable set {w, t} to find optimal ŵ:

max
(
0t,−1t

)( w

t

)
s.t. −Xw − t ≤ −y, Xw − t ≤ y.
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