Chapter 5

Optimization without Gradients

MR Image

CT Image

Optimization without Gradients

- Optimization with gradient information: steepest descent, conjugate gradients, Newton etc. (will be covered in the Numerical Analysis course)
- Sometimes direct methods without gradient information are needed:
- function is not differentiable,
- gradients are difficult to compute,
- gradient-based optimization problematic due to many local optima.
- Example: Image registration (i.e. spatial alignment of images)
- Proposed method: Downhill-Simplex (a.k.a. Nelder-Mead) method

Example: Multi-modal Image Registration (ear)

Magnetic resonance imaging (MRI): atomic nuclei oriented in external magnetic field, absorption of RF energy \rightsquigarrow spin polarization \rightsquigarrow RF signal in detector. Basically measures local proton density. Potential problem: Spatial distortions due to in-homogeneity of magnetic field.

Computed tomography (CT): Measures local absorbtion coefficients for X-rays from external source.

Original MR

Original CT with MR contour

Registered MR

CT with registered MR contour

Problem Definition

- Given: Target or reference image A and the floating image B.
- Task: Find a reasonable transformation T, such that the transformed image $T(B)$ is similar to A,
- where reasonable transformations are ensured through a regularization and the similarity is defined by a similarity measure C

Terminology

- Reference image A : kept unchanged and used as the reference
- Floating image B : spatially warped to align with the reference image
- Transformation $T()$: class of allowed transformations to warp the floating image onto the reference image.
- Similarity measure C : metric used to quantify the registration success.

- Overlap Domain $\Omega_{A, B}$

Rigid Registration Algorithm

- Rigid registration: compensate for the global rigid transformation between the images.
Applicability is limited to special cases.
- Select the initial transform T
- Transform the floating image
- Calculate the quality of the fit using the similarity measure.
- Verify the stopping criterion: if the fit is still
 not good enough estimate a new T. Otherwise transform the floating image to its final position.

Rigid Transformation Model

As the rigid transformation model preserves Euclidean distances it is also known as isometry (from iso $=$ same, metric $=$ measure).

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
\epsilon \cos \theta & -\sin \theta & t_{x} \\
\epsilon \sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

where $\epsilon= \pm 1$. If $\epsilon=1$ then the isometry

is orientation-preserving and is composed of a translation and rotation. If $\epsilon=-1$ then the isometry reverses orientation (not useful here).

Pixel Interpolation

Spatial Transformations

Given the spatial transformation H , the floating image has to be mapped into the output image. Two approaches are common:

- Forward mapping: $x^{\prime}=\mathrm{H} x$
- Backward mapping: $x=\mathrm{H}^{-1} x^{\prime}$

Problem with both approaches: The pixel coordinate x generally does not fall onto an exact pixel location \Rightarrow interpolation needed.

Bilinear Interpolation

Idea: compute weighted average of the four closest pixels:

$$
\begin{aligned}
& I_{x, y}=\omega_{4} I_{u, v}+\omega_{2} I_{u, v+1}+\omega_{3} I_{u+1, v}+\omega_{1} I_{u+1, v+1}, \\
\omega_{1}= & (x-u)(y-v) \\
\omega_{2}= & (u+1-x)(y-v) \\
\omega_{3}= & (x-u)(v+1-y) \\
\omega_{4}= & (u+1-x)(v+1-y)
\end{aligned}
$$

Artifacts of Interpolation in Similarity Measures

1D-Example: approximate $f(x)=a x+b \sin (x) / x+c$ on a grid, consider translation $f_{t}(x)=f(x+\Delta)$, use linear interpolation and measure similarity as a function of Δ by the sum of squared differences:

Similarity Measures based on the Joint Histogram

The Joint- or 2D Histogram forms the basis of most similarity measures in multi-modal registration.

The value at position a, b is the number of pixels with value a in one modality and value b at the same location in the other modality.

As the intensities are only related by their co-occurrence and not by their value, the similarity measure can handle multi-modal images.

Joint Histogram (2)

Scaling the joint histogram with the total number of pixel pairs N yields an approximation of the joint probaility

$$
p(a, b)=\frac{1}{N} h(a, b)
$$

$p(a, b)$ represents the probability of the pixel pair with intensities a and b to occur in the
 two images.

Review: Joint and Conditional Probabilities

Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from The Frequently Asked Questions Manual for Linux).
The picture shows the probabilities by the areas of white squares.

i	a_{i}	p_{i}
1	a	0.0575
2	b	0.0128
3	c	0.0263
4	d	0.0285
5	e	0.0913
6	f	0.0173
7	g	0.0133
8	h	0.0313
9	i	0.0599
10	j	0.0006
11	k	0.0084
12	1	0.0335
13	m	0.0235
14	n	0.0596
15	-	0.0689
16	p	0.0192
17	q	0.0008
18	r	0.0508
19	s	0.0567
20	t	0.0706
21	u	0.0334
22	v	0.0069
23	w	0.0119
24	x	0.0073
25	y	0.0164
26	z	0.0007
27	-	0.1928

Review: Joint and Conditional Probabilities

The probability distribution over the 27×27 possible bigrams $x y$ in The Frequently Asked Questions Manual for Linux.

Relation to marginals:

$$
p(x)=\sum_{y \in \mathcal{Y}} p(x, y)
$$

Information Theory, Inference, and Learning Algorithms,
David J.C. MacKay, Cambridge University Press, 2003.

Review: Joint and Conditional Probabilities

(a) $p(y \mid x)$: Each row shows the conditional distribution of the second letter, y, given the first letter, x, in a bigram $x y$. (b) vice versa.

Excursion to Information Theory

- Image registration: maximizing the amount of information shared by the two images \rightsquigarrow suggests the use of a measure of information.
- The most commonly used: Shannon-Wiener entropy H

$$
H=-\sum_{i=1}^{n} p_{i} \log p_{i}=-\sum_{x \in \mathcal{X}} p(x) \log p(x)
$$

- Entropy H will have a
- maximum if all symbols have equal probability $p_{i}=1 / n, \forall i$
- minimum of zero if the probability of one symbol is 1 (all others 0). Note that $0 \log 0=0$.

Interpretation of Entropy

- Logarithms of base $2 \rightsquigarrow$ entropy measured in bits.
- Entropy is a measure of the average uncertainty in a RV: number of bits on the average required to describe the RV.
- Example: uniform distribution over 32 outcomes
\rightsquigarrow for identifying an outcome we need a label that takes 32 different values
$\rightsquigarrow 5$-bit strings suffice.

$$
H(X)=-\sum_{i=1}^{32} \frac{1}{32} \log \frac{1}{32}=-\log \frac{1}{32}=\log 32=5 \text { bits }
$$

Interpretation of Entropy (2)

Example:

$$
X= \begin{cases}1 & \text { with prob. } p \\ 0 & \text { with prob. } 1-p\end{cases}
$$

Entropy: $H(X)=-p \log p-(1-p) \log (1-p)$
Special cases: $p=1 / 2 \Rightarrow H(X)=1, p=0$ or $1 \Rightarrow H(X)=0$

Entropy of Images

The entropy of two registered images A and B can be determined from the joint probability $p(A, B)$ - estimated by the joint histogram on the overlap domain $\Omega_{A, B}$ - via marginalzation:

Joint Entropy

Joint entropy measures uncertainty in combined $\mathrm{RVs}(X, Y)$:

$$
H(X, Y)=-\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)
$$

If X, Y are independent, the joint entropy is the sum of the individual entropies

$$
H(X, Y)=H(X)+H(Y)
$$

The less independent (the more "similar") X and Y are, the lower the joint entropy compared to the sum of the individual entropies

$$
H(X, Y) \leq H(X)+H(Y)
$$

Conditional Entropy

Conditional Entropy = entropy of one RV given another $=$ expected value of entropies of conditional distributions, averaged over the conditioning variable:

$$
H(Y \mid X)=\sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x)
$$

Let the combined system determined by two random variables X, Y have joint entropy $H(X, Y)$
\rightsquigarrow we need $H(X, Y)$ bits of information to describe its exact state.
Observing X gives us $H(X)$ bits of information
\rightsquigarrow we only need $H(X, Y)-H(X)$ bits.
This quantity is $H(Y \mid X) \rightsquigarrow$ chain rule of conditional entropy:

$$
H(X, Y)=H(X)+H(Y \mid X)
$$

Conditional Entropy

$$
\begin{aligned}
H(Y \mid X) & \equiv \sum_{x \in \mathcal{X}} p(x) H(Y \mid X=x) \\
& =-\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y \mid x) \log p(y \mid x) \\
& =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p(y \mid x) \\
& =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)} .
\end{aligned}
$$

$H(Y \mid X)=0$ if and only if the value of Y is completely determined by the value of X (then, $p(y \mid x)$ is a degenerate $(0,1)$ probability, and $0 \log 0=0=1 \log 1$)

Conversely, $H(Y \mid X)=H(Y)$ if and only if Y and X are independent.

Conditional Entropy: Chain rule

The chain rule follows from the above definition of conditional entropy:

$$
\begin{aligned}
H(Y \mid X) & =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \left(\frac{p(x, y)}{p(x)}\right) \\
& =-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log (p(x, y))+\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log (p(x)) \\
& =H(X, Y)+\sum_{x \in \mathcal{X}} p(x) \log (p(x)) \\
& =H(X, Y)-H(X)
\end{aligned}
$$

Mutual Information

Mutual Information $I(X ; Y)=$ reduction in uncertainty of X due to knowledge of Y (and vice versa):

$$
I(X ; Y)=H(X)-H(X \mid Y)=H(Y)-H(Y \mid X)
$$

Since $H(X, Y)=H(X)+H(Y \mid X)$, it follows that

$$
I(X ; Y)=H(X)+H(Y)-H(X, Y)
$$

If X and Y independent: $\Rightarrow H(X, Y)=H(X)+H(Y) \Rightarrow I(X, Y)=0$.

MI and image registration

Identify $\mathrm{RV} X$ with image A and Y with image B. Consider only information contained in $\Omega_{A, B} . I(A, B)=H(A)+H(B)-H(A, B)$.

Maximizing MI: Find registrations with high marginal entropies and low joint entropy. MI is maximum if images A and B are properly aligned.

The Downhill Simplex (or Nelder-Mead) Method

- A simplex is a simple geometric shape defined by the convex hull of $n+1$ vertices in n-dimensional space.
- 1D: edge; 2D: triangle; 3D: tetrahedron.

- If we're optimizing a function on n parameters, then we're searching in a n-dimensional parameter space, and our simplex has $n+1$ vertices.
- Calculate function values at simplex vertices
- Simplex "crawls"
- Towards minimum
- Away from maximum
- Probably the most widely used optimization method

Simplex transformation algorithm

One iteration consists of the following three steps.

1. Ordering: Determine the indices $\{0,1,2\}$ of the worst, second worst and the best vertex, respectively, in the current working simplex S $f_{0}=\max _{j} f_{j}, \quad f_{1}=\max _{j \neq 0} f_{j}, \quad f_{2}=\min _{j} f_{j}$.
2. Centroid: Calculate the centroid $\overline{\boldsymbol{x}}$ of the best side - the one opposite to the worst vertex $\boldsymbol{x}_{0} \quad \overline{\boldsymbol{x}}:=\frac{1}{n} \sum_{j \neq 0} x_{j}$.
3. Transformation: Compute the new working simplex from the current one. First, try to replace only the worst vertex \boldsymbol{x}_{0} with a better point by using reflection, expansion or contraction with respect to the best side.

A Simplex in Two Dimensions

- Evaluate function at vertices
- Highest (worst) point: \boldsymbol{x}_{0}

Next highest point: \boldsymbol{x}_{1}
Lowest (best) point: \boldsymbol{x}_{2}

- Intuition: move away from high point, towards low point.

Reflection and Expansion

Contraction

Summary: The Downhill Simplex Method

Karimzadehgan, Maryam et al. (2011). A stochastic learning-to-rank algorithm and its application to contextual advertising.

Summary: The Downhill Simplex Method

Algorithm

- Reorder points: $f\left(\boldsymbol{x}_{0}\right)>f\left(\boldsymbol{x}_{1}\right)>\cdots>f\left(\boldsymbol{x}_{2}\right)$ (\boldsymbol{x}_{0} is worst point).
- New trial point \boldsymbol{x}_{r} by refection
$\boldsymbol{x}_{r}=\overline{\boldsymbol{x}}+\alpha\left(\overline{\boldsymbol{x}}-\boldsymbol{x}_{0}\right), \overline{\boldsymbol{x}}:=\frac{1}{n} \sum_{j \neq 0} x_{j}$.

Compute $f\left(\boldsymbol{x}_{r}\right)$, $\mathbf{3}$ possibilities:

1. $f\left(\boldsymbol{x}_{2}\right)<f\left(\boldsymbol{x}_{r}\right)<f\left(\boldsymbol{x}_{0}\right)$,
replace \boldsymbol{x}_{0} by \boldsymbol{x}_{r}.
2. $f\left(\boldsymbol{x}_{r}\right)<f\left(\boldsymbol{x}_{2}\right)$
\rightsquigarrow direction of reflection is good
\rightsquigarrow expansion $\boldsymbol{x}_{e}=\boldsymbol{x}_{r}+\beta\left(\boldsymbol{x}_{r}-\overline{\boldsymbol{x}}\right)$.

If $f\left(\boldsymbol{x}_{e}\right)<f\left(\boldsymbol{x}_{r}\right)$, replace \boldsymbol{x}_{0} by \boldsymbol{x}_{e}.
Otherwise, expansion has failed, replace \boldsymbol{x}_{0} by \boldsymbol{x}_{r}.

Algorithm

3. $f\left(\boldsymbol{x}_{r}\right)>f\left(\boldsymbol{x}_{0}\right)$
\rightsquigarrow polytope is too large
\rightsquigarrow contraction $\boldsymbol{x}_{c}=\overline{\boldsymbol{x}}+\gamma\left(\boldsymbol{x}_{0}-\overline{\boldsymbol{x}}\right)$ where $(0<\gamma<1)$.
If $f\left(\boldsymbol{x}_{c}\right)<f\left(\boldsymbol{x}_{0}\right) \rightsquigarrow$ contraction succeeded \rightsquigarrow replace \boldsymbol{x}_{0} by \boldsymbol{x}_{c}, otherwise contract again.

A Counter Example due to McKinnon

McKinnon, K.I.M., Convergence of the Nelder-Mead simplex method to a non-stationary point, SIAM Journal on Optimization 9 (1998), 148-158.

Back to image registration

Use Downhill-Simplex for minimizing the negative mutual information over rigid transformations $\left(\theta, t_{x}, t_{y}\right)$ $\rightsquigarrow 4$-dim simplex (tetrahedron)

$$
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
1
\end{array}\right)=\left[\begin{array}{ccc}
\cos \theta & -\sin \theta & t_{x} \\
\sin \theta & \cos \theta & t_{y} \\
0 & 0 & 1
\end{array}\right]\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right)
$$

