
Chapter 5

Optimization without Gradients



Optimization without Gradients

• Optimization with gradient information: steepest descent, conjugate

gradients, Newton etc. (will be covered in the Numerical Analysis

course)

• Sometimes direct methods without gradient information are needed:

– function is not differentiable,

– gradients are difficult to compute,

– gradient-based optimization problematic due to many local optima.

• Example: Image registration (i.e. spatial alignment of images)

• Proposed method: Downhill-Simplex (a.k.a. Nelder-Mead) method

1



Example: Multi-modal Image Registration (ear)

Magnetic resonance imaging (MRI): atomic nuclei oriented in external

magnetic field, absorption of RF energy  spin polarization  RF signal

in detector. Basically measures local proton density. Potential problem:

Spatial distortions due to in-homogeneity of magnetic field.

Computed tomography (CT): Measures local absorbtion coefficients for

X-rays from external source.

Original MR Original CT with

MR contour

Registered MR CT with registered

MR contour
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Problem Definition

• Given: Target or reference image A
and the floating image B.

• Task: Find a reasonable transformation T ,

such that the transformed image T (B)

is similar to A,

• where reasonable transformations are

ensured through a regularization
and the similarity is defined by a

similarity measure C
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Terminology

• Reference image A: kept unchanged and used as

the reference

• Floating image B: spatially warped to align with

the reference image

• Transformation T (): class of allowed transforma-

tions to warp the floating image onto the reference

image.

• Similarity measure C: metric used to quantify the
registration success.

• Overlap Domain ΩA,B
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Rigid Registration Algorithm

• Rigid registration: compensate for the global
rigid transformation between the images.

Applicability is limited to special cases.

• Select the initial transform T

• Transform the floating image

• Calculate the quality of the fit using the

similarity measure.

• Verify the stopping criterion: if the fit is still

not good enough estimate a new T .

Otherwise transform the floating image to its

final position.
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Rigid Transformation Model

As the rigid transformation model preserves Eu-
clidean distances it is also known as isometry
(from iso = same, metric = measure).x′y′

1

 =

ε cos θ − sin θ tx
ε sin θ cos θ ty

0 0 1


xy

1


where ε = ±1. If ε = 1 then the isometry

is orientation-preserving and is composed of a

translation and rotation. If ε = −1 then the

isometry reverses orientation (not useful here).
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Pixel Interpolation
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Spatial Transformations

Given the spatial transformation H, the floating image has to be mapped

into the output image. Two approaches are common:

• Forward mapping: x′ = Hx

• Backward mapping: x = H−1x′

Problem with both approaches: The pixel coordinate x generally does
not fall onto an exact pixel location ⇒ interpolation needed.
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Bilinear Interpolation

Idea: compute weighted average of the four closest pixels:

Ix,y = ω4Iu,v + ω2Iu,v+1 + ω3Iu+1,v + ω1Iu+1,v+1,

ω1 = (x− u)(y − v)

ω2 = (u+ 1− x)(y − v)

ω3 = (x− u)(v + 1− y)

ω4 = (u+ 1− x)(v + 1− y)
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Artifacts of Interpolation in Similarity Measures

1D-Example: approximate f(x) = ax+ b sin(x)/x+ c on a grid, consider

translation ft(x) = f(x + ∆), use linear interpolation and measure

similarity as a function of ∆ by the sum of squared differences:
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Similarity Measures based on the Joint Histogram

The Joint- or 2D Histogram forms the basis of most similarity mea-
sures in multi-modal registration.

The value at position a, b is the number of pixels with value a in one
modality and value b at the same location in the other modality.

As the intensities are only related by their co-occurrence and not by

their value, the similarity measure can handle multi-modal images.
11



Joint Histogram (2)

Scaling the joint histogram with the total num-

ber of pixel pairs N yields an approximation of

the joint probaility

p(a, b) =
1

N
h(a, b)

p(a, b) represents the probability of the pixel
pair with intensities a and b to occur in the
two images.
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Review: Joint and Conditional Probabilities

Probability distribution over the 27 outcomes for a

randomly selected letter in an English language docu-

ment (estimated from The Frequently Asked Questions

Manual for Linux ).

The picture shows the probabilities by the areas of

white squares.

i ai pi1 a 0.05752 b 0.01283 
 0.02634 d 0.02855 e 0.09136 f 0.01737 g 0.01338 h 0.03139 i 0.059910 j 0.000611 k 0.008412 l 0.033513 m 0.023514 n 0.059615 o 0.068916 p 0.019217 q 0.000818 r 0.050819 s 0.056720 t 0.070621 u 0.033422 v 0.006923 w 0.011924 x 0.007325 y 0.016426 z 0.000727 { 0.1928

ab
defghijklmnopqrstuvwxyz{
David J.C. MacKay, Cambridge

University Press, 2003.
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Review: Joint and Conditional Probabilities

The probability distribution over

the 27 × 27 possible bigrams
xy in The Frequently Asked

Questions Manual for Linux.

Relation to marginals:

p(x) =
∑
y∈Y

p(x, y). a b 
 d e f g h i j k l m n o p q r s t u v w x y z { y

ab
defghijklmnopqrstuvwxyz{

x

Information Theory, Inference, and Learning Algorithms,

David J.C. MacKay, Cambridge University Press, 2003.
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Review: Joint and Conditional Probabilities

(a) p(y|x): Each row shows the conditional distribution of the second

letter, y, given the first letter, x, in a bigram xy. (b) vice versa.

ab
defghijklmnopqrstuvwxyz{ y

ab
defghijklmnopqrstuvwxyz{

x

ab
defghijklmnopqrstuvwxyz{ y

ab
defghijklmnopqrstuvwxyz{

x

(a) P (y jx) (b) P (x j y)
Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Cambridge University Press, 2003.
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Excursion to Information Theory

• Image registration: maximizing the amount of information shared by

the two images  suggests the use of a measure of information.

• The most commonly used: Shannon-Wiener entropy H

H = −
n∑

i=1

pi log pi = −
∑
x∈X

p(x) log p(x)

• Entropy H will have a

– maximum if all symbols have equal probability pi = 1/n, ∀i
– minimum of zero if the probability of one symbol is 1 (all others 0).

Note that 0 log 0 = 0.

16



Interpretation of Entropy

• Logarithms of base 2  entropy measured in bits.

• Entropy is a measure of the average uncertainty in a RV:

number of bits on the average required to describe the RV.

• Example: uniform distribution over 32 outcomes

 for identifying an outcome we need a label that takes 32 different

values

 5-bit strings suffice.

H(X) = −
32∑
i=1

1

32
log

1

32
= − log

1

32
= log 32 = 5 bits

17



Interpretation of Entropy (2)

Example:

X =

{
1 with prob. p

0 with prob. 1− p.
Entropy: H(X) = −p log p− (1− p) log(1− p)
Special cases: p = 1/2 ⇒ H(X) = 1, p = 0 or 1 ⇒ H(X) = 0H2(x)

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1 x
Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Cambridge University Press, 2003.
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Entropy of Images

The entropy of two registered images A and B can be determined from

the joint probability p(A,B) – estimated by the joint histogram on the

overlap domain ΩA,B – via marginalzation:
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Joint Entropy

Joint entropy measures uncertainty in combined RVs (X,Y ):

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log p(x, y)

If X,Y are independent, the joint entropy is the

sum of the individual entropies

H(X,Y ) = H(X) +H(Y )

The less independent ( the more “similar” ) X and

Y are, the lower the joint entropy compared to the

sum of the individual entropies

H(X,Y ) ≤ H(X) +H(Y )

20



Conditional Entropy

Conditional Entropy = entropy of one RV given another

= expected value of entropies of conditional distributions,

averaged over the conditioning variable:

H(Y |X) =
∑
x∈X

p(x)H(Y |X = x)

Let the combined system determined by two random variables X,Y

have joint entropy H(X,Y )

 we need H(X,Y ) bits of information to describe its exact state.

Observing X gives us H(X) bits of information

 we only need H(X,Y )−H(X) bits.

This quantity is H(Y |X)  chain rule of conditional entropy:

H(X,Y ) = H(X) +H(Y |X)

21



Conditional Entropy

H(Y |X) ≡
∑
x∈X

p(x)H(Y |X = x)

= −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x)

= −
∑

x∈X ,y∈Y

p(x, y) log p(y|x)

= −
∑

x∈X ,y∈Y

p(x, y) log
p(x, y)

p(x)
.

H(Y |X) = 0 if and only if the value of Y is completely determined

by the value of X (then, p(y|x) is a degenerate (0, 1) probability, and

0 log 0 = 0 = 1 log 1)

Conversely, H(Y |X) = H(Y ) if and only if Y and X are independent.

22



Conditional Entropy: Chain rule

The chain rule follows from the above definition of conditional entropy:

H(Y |X) = −
∑

x∈X ,y∈Y

p(x, y) log

(
p(x, y)

p(x)

)
= −

∑
x∈X ,y∈Y

p(x, y) log(p(x, y)) +
∑

x∈X ,y∈Y

p(x, y) log(p(x))

= H(X,Y ) +
∑
x∈X

p(x) log(p(x))

= H(X,Y )−H(X).
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Mutual Information

Mutual Information I(X;Y ) = reduction in uncertainty of X due to

knowledge of Y (and vice versa):

I(X;Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X)

Since H(X,Y ) = H(X) +H(Y |X), it follows that

I(X;Y ) = H(X) +H(Y )−H(X,Y ).

If X and Y independent: ⇒ H(X,Y ) = H(X) +H(Y )⇒ I(X,Y ) = 0.
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MI and image registration

Identify RV X with image A and Y with image B. Consider only

information contained in ΩA,B. I(A,B) = H(A) +H(B)−H(A,B).

Maximizing MI: Find registrations with high marginal entropies and low

joint entropy. MI is maximum if images A and B are properly aligned.
25



The Downhill Simplex (or Nelder-Mead) Method

• A simplex is a simple geometric shape defined by the convex hull of

n+ 1 vertices in n-dimensional space.

• 1D: edge; 2D: triangle; 3D: tetrahedron.

• If we’re optimizing a function on n parameters, then we’re searching in

a n-dimensional parameter space, and our simplex has n+ 1 vertices.

• Calculate function values at simplex vertices

• Simplex “crawls”

– Towards minimum

– Away from maximum

• Probably the most widely used optimization method
26



Simplex transformation algorithm

One iteration consists of the following three steps.

1. Ordering: Determine the indices {0, 1, 2} of the worst, second worst

and the best vertex, respectively, in the current working simplex S

f0 = maxj fj, f1 = maxj 6=0 fj, f2 = minj fj.

2. Centroid: Calculate the centroid x̄ of the best side – the one opposite

to the worst vertex x0 x̄ := 1
n

∑
j 6=0 xj.

3. Transformation: Compute the new working simplex from the current

one. First, try to replace only the worst vertex x0 with a better point

by using reflection, expansion or contraction with respect to the

best side.
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A Simplex in Two Dimensions

x

x

x

1

2

0

• Evaluate function at vertices

• Highest (worst) point: x0

Next highest point: x1

Lowest (best) point: x2

• Intuition: move away from high point,

towards low point.

x

x

x

1

2

0
x

Line through worst point
and average of other points
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Reflection and Expansion

x

x

x

1

2

0
x

xr

Reflection −> new trial point

...accept if neither worst nor best

x

x

x

1

2

0
x

xr

Reflection −> new minimum...

...move further along
   descent direction

xe
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Contraction

x

x

x

1

2

0
x

xr

Reflection −> still worst point...

...Try a smaller step

x

x

x

1

2

0
x

If simple contraction is not sucessful...

...Try moving all points towards minimum
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Summary: The Downhill Simplex Method

Karimzadehgan, Maryam et al. (2011). A stochastic learning-to-rank algorithm and its application to contextual advertising.

10.1145/1963405.1963460.
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Summary: The Downhill Simplex Method
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Algorithm
• Reorder points: f(x0) > f(x1) > · · · > f(x2) (x0 is worst point).

• New trial point xr by refection
xr = x̄ + α(x̄− x0), x̄ := 1

n

∑
j 6=0 xj.

x

x

x

1

2

0
x

xr

Reflection −> new trial point

...accept if neither worst nor best

Compute f(xr), 3 possibilities:

1. f(x2) < f(xr) < f(x0),

replace x0 by xr.

2. f(xr) < f(x2)

 direction of reflection is good
 expansion xe = xr + β(xr − x̄).

If f(xe) < f(xr), replace x0 by xe.

Otherwise, expansion has failed,

replace x0 by xr.

x

x

x

1

2

0
x

xr

Reflection −> new minimum...

...move further along
   descent direction

xe
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Algorithm

3. f(xr) > f(x0)

 polytope is too large
 contraction xc = x̄ + γ(x0 − x̄) where (0 < γ < 1).

If f(xc) < f(x0)  contraction succeeded  replace x0 by xc,

otherwise contract again.

x

x

x

1

2

0
x

xr

Reflection −> still worst point...

...Try a smaller step

x

x

x

1

2

0
x

If simple contraction is not sucessful...

...Try moving all points towards minimum
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A Counter Example due to McKinnon

McKinnon, K.I.M., Convergence of the Nelder-Mead simplex method to a non-stationary

point, SIAM Journal on Optimization 9 (1998), 148-158.
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Back to image registration

Use Downhill-Simplex for minimizing the negative mutual

information over rigid transformations (θ, tx, ty)

 4-dim simplex (tetrahedron)x′y′
1

 =

cos θ − sin θ tx
sin θ cos θ ty

0 0 1


xy

1



Function that computes MI(θ, tx, ty):

Transformation  interpolation

 joint histogram on Ω

 marginal and joint entropies  MI
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