Chapter 5

Optimization without Gradients

Optimization without Gradients

- Optimization with gradient information: steepest descent, conjugate gradients, Newton etc. (will be covered in the Numerical Analysis course)
- Sometimes **direct methods** without gradient information are needed:
 - function is **not differentiable**,
 - gradients are difficult to compute,
 - gradient-based optimization problematic due to many local optima.
- Example: Image registration (i.e. spatial alignment of images)
- Proposed method: Downhill-Simplex (a.k.a. Nelder-Mead) method

Example: Multi-modal Image Registration (ear)

Magnetic resonance imaging (MRI): atomic nuclei oriented in external magnetic field, absorption of RF energy \rightsquigarrow spin polarization \rightsquigarrow RF signal in detector. Basically measures local proton density. Potential problem: Spatial distortions due to in-homogeneity of magnetic field.

Computed tomography (CT): Measures local absorbtion coefficients for X-rays from external source.

Original MR

CT with registered MR contour

Original CT with MR contour

Registered MR

Problem Definition

- Given: Target or **reference image** A and the **floating image** B.
- Task: Find a **reasonable transformation** *T*, such that the transformed image *T*(*B*) is **similar** to *A*,
- where reasonable transformations are ensured through a regularization and the similarity is defined by a similarity measure C

Terminology

- Reference image A: kept unchanged and used as the reference
- Floating image B: spatially warped to align with the reference image
- Transformation T(): class of allowed transformations to warp the floating image onto the reference image.
- Similarity measure C: metric used to quantify the registration success.
- Overlap Domain $\Omega_{A,B}$

Rigid Registration Algorithm

- **Rigid registration:** compensate for the **global rigid transformation** between the images. Applicability is **limited to special cases.**
- \bullet Select the initial transform T
- **Transform** the floating image
- Calculate the **quality of the fit** using the **similarity measure**.
- Verify the stopping criterion: if the fit is still not good enough estimate a new T.
 Otherwise transform the floating image to its final position.

Rigid Transformation Model

As the rigid transformation model **preserves Euclidean distances** it is also known as **isometry** (from iso = same, metric = measure).

$$\begin{pmatrix} x'\\y'\\1 \end{pmatrix} = \begin{bmatrix} \epsilon \cos \theta & -\sin \theta & t_x\\ \epsilon \sin \theta & \cos \theta & t_y\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\1 \end{pmatrix}$$

where $\epsilon = \pm 1$. If $\epsilon = 1$ then the isometry is **orientation-preserving** and is composed of a **translation and rotation**. If $\epsilon = -1$ then the isometry reverses orientation (not useful here).

Pixel Interpolation

Spatial Transformations

Given the **spatial transformation** H, the floating image has to be mapped into the output image. **Two approaches** are common:

- Forward mapping: x' = Hx
- Backward mapping: $x = H^{-1}x'$

Problem with both approaches: The pixel coordinate x generally **does not fall onto an exact pixel location** \Rightarrow **interpolation needed**.

Bilinear Interpolation

Idea: compute weighted average of the four closest pixels:

$$I_{x,y} = \omega_4 I_{u,v} + \omega_2 I_{u,v+1} + \omega_3 I_{u+1,v} + \omega_1 I_{u+1,v+1},$$

Artifacts of Interpolation in Similarity Measures

1D-Example: approximate $f(x) = ax + b \sin(x)/x + c$ on a grid, consider translation $f_t(x) = f(x + \Delta)$, use linear interpolation and measure similarity as a function of Δ by the sum of squared differences:

Similarity Measures based on the Joint Histogram

The Joint- or 2D Histogram forms the basis of most similarity measures in multi-modal registration.

The value at position a, b is the number of pixels with value a in one modality and value b at the same location in the other modality.

As the intensities are only related by their **co-occurrence** and not by their value, the similarity measure can handle **multi-modal images**.

Joint Histogram (2)

Scaling the joint histogram with the total number of pixel pairs N yields an approximation of the **joint probaility**

$$p(a,b) = \frac{1}{N}h(a,b)$$

p(a, b) represents the probability of the pixel pair with intensities a and b to occur in the two images.

Review: Joint and Conditional Probabilities

Probability distribution over the 27 outcomes for a randomly selected letter in an English language document (estimated from *The Frequently Asked Questions Manual for Linux*).

The picture shows the probabilities by the areas of white squares.

i	a_i	p_i		
1	a	0.0575	a	
2	b	0.0128	Ъ	
3	с	0.0263	с	
4	d	0.0285	d	
5	е	0.0913	е	
6	f	0.0173	f	
7	g	0.0133	g	
8	h	0.0313	h	
9	i	0.0599	i	
10	j	0.0006	j	
11	k	0.0084	k	•
12	1	0.0335	1	
13	m	0.0235	m	
14	n	0.0596	n	
15	0	0.0689	0	
16	р	0.0192	р	
17	q	0.0008	q	•
18	r	0.0508	r	
19	s	0.0567	S	
20	t	0.0706	t	
21	u	0.0334	u	
22	v	0.0069	v	•
23	W	0.0119	W	
24	x	0.0073	х	
25	у	0.0164	У	
26	z	0.0007	z	
27	-	0.1928	—	

David J.C. MacKay, Cambridge University Press, 2003.

Review: Joint and Conditional Probabilities

x

The probability distribution over the 27×27 possible **bigrams** xy in The Frequently Asked Questions Manual for Linux.

Relation to marginals:

$$p(x) = \sum_{y \in \mathcal{Y}} p(x, y).$$

Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Cambridge University Press, 2003.

Review: Joint and Conditional Probabilities

(a) p(y|x): Each row shows the conditional distribution of the second letter, y, given the first letter, x, in a bigram xy. (b) vice versa.

Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Cambridge University Press, 2003.

Excursion to Information Theory

- Image registration: maximizing the amount of information shared by the two images ~> suggests the use of a measure of information.
- \bullet The most commonly used: Shannon-Wiener entropy H

$$H = -\sum_{i=1}^{n} p_i \log p_i = -\sum_{x \in \mathcal{X}} p(x) \log p(x)$$

- Entropy H will have a
 - maximum if all symbols have equal probability $p_i = 1/n, \ \forall i$
 - minimum of zero if the probability of one symbol is 1 (all others 0). Note that $0 \log 0 = 0$.

Interpretation of Entropy

- Logarithms of base 2 ~> entropy measured in **bits**.
- Entropy is a measure of the average uncertainty in a RV: **number of bits on the average required to describe the RV**.
- Example: uniform distribution over 32 outcomes
 → for identifying an outcome we need a label that takes 32 different values

 \rightsquigarrow 5-bit strings suffice.

$$H(X) = -\sum_{i=1}^{32} \frac{1}{32} \log \frac{1}{32} = -\log \frac{1}{32} = \log 32 = 5 \text{ bits}$$

Interpretation of Entropy (2)

Example:

$$X = \begin{cases} 1 & \text{with prob. } p \\ 0 & \text{with prob. } 1 - p. \end{cases}$$

Entropy: $H(X) = -p \log p - (1 - p) \log(1 - p)$
Special cases: $p = 1/2 \Rightarrow H(X) = 1$, $p = 0$ or $1 \Rightarrow H(X) = 0$

Information Theory, Inference, and Learning Algorithms, David J.C. MacKay, Cambridge University Press, 2003.

Entropy of Images

The entropy of two registered images A and B can be determined from the joint probability p(A, B) – estimated by the joint histogram on the overlap domain $\Omega_{A,B}$ – via marginalization:

Joint Entropy

Joint entropy measures uncertainty in combined RVs (X, Y): $H(X, Y) = -\sum_{x \in \mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(x, y)$

If X, Y are independent, the joint entropy is the sum of the individual entropies 255

$$H(X,Y) = H(X) + H(Y)$$

The less independent (the more "similar") X and Y are, the lower the joint entropy compared to the sum of the individual entropies

$$H(X,Y) \le H(X) + H(Y)$$

Conditional Entropy

Conditional Entropy = entropy of one RV given another = expected value of entropies of conditional distributions, averaged over the conditioning variable:

$$H(Y|X) = \sum_{x \in \mathcal{X}} p(x)H(Y|X=x)$$

Let the **combined system** determined by two random variables X, Y have **joint entropy** H(X, Y)

 \rightsquigarrow we need H(X, Y) bits of information to describe its exact state. **Observing** X gives us H(X) bits of information \rightsquigarrow we only need H(X, Y) - H(X) bits. This quantity is $H(Y|X) \rightsquigarrow$ chain rule of conditional entropy:

$$H(X,Y) = H(X) + H(Y|X)$$

Conditional Entropy

$$H(Y|X) \equiv \sum_{x \in \mathcal{X}} p(x) H(Y|X = x)$$

= $-\sum_{x \in \mathcal{X}} p(x) \sum_{y \in \mathcal{Y}} p(y|x) \log p(y|x)$
= $-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log p(y|x)$
= $-\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log \frac{p(x, y)}{p(x)}.$

H(Y|X) = 0 if and only if the value of Y is completely determined by the value of X (then, p(y|x) is a degenerate (0,1) probability, and $0 \log 0 = 0 = 1 \log 1$)

Conversely, H(Y|X) = H(Y) if and only if Y and X are independent.

Conditional Entropy: Chain rule

The chain rule follows from the above definition of conditional entropy:

$$\begin{split} H(Y|X) &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log\left(\frac{p(x, y)}{p(x)}\right) \\ &= -\sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log(p(x, y)) + \sum_{x \in \mathcal{X}, y \in \mathcal{Y}} p(x, y) \log(p(x)) \\ &= H(X, Y) + \sum_{x \in \mathcal{X}} p(x) \log(p(x)) \\ &= H(X, Y) - H(X). \end{split}$$

Mutual Information

Mutual Information I(X;Y) = reduction in uncertainty of X due to knowledge of Y (and vice versa):

$$I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X)$$

Since H(X, Y) = H(X) + H(Y|X), it follows that

$$I(X;Y) = H(X) + H(Y) - H(X,Y).$$

If X and Y independent: $\Rightarrow H(X,Y) = H(X) + H(Y) \Rightarrow I(X,Y) = 0.$

MI and image registration

Identify RV X with image A and Y with image B. Consider only information contained in $\Omega_{A,B}$. I(A,B) = H(A) + H(B) - H(A,B).

Maximizing MI: Find registrations with high marginal entropies and low joint entropy. MI is maximum if images A and B are **properly aligned**.

The Downhill Simplex (or Nelder-Mead) Method

• A simplex is a simple geometric shape defined by the convex hull of n+1 vertices in *n*-dimensional space.

- 1D: edge; 2D: triangle; 3D: tetrahedron.
- If we're optimizing a function on n parameters, then we're searching in a n-dimensional parameter space, and our simplex has n + 1 vertices.
- Calculate function values at simplex vertices
- Simplex "crawls"
 - Towards minimum
 - Away from maximum
- Probably the most widely used optimization method

Simplex transformation algorithm

One iteration consists of the following three steps.

- 1. Ordering: Determine the indices $\{0, 1, 2\}$ of the worst, second worst and the best vertex, respectively, in the current working simplex S $f_0 = \max_j f_j, \quad f_1 = \max_{j \neq 0} f_j, \quad f_2 = \min_j f_j.$
- 2. **Centroid:** Calculate the centroid \bar{x} of the best side the one opposite to the worst vertex x_0 $\bar{x} := \frac{1}{n} \sum_{j \neq 0} x_j$.
- 3. **Transformation:** Compute the new working simplex from the current one. First, try to replace only the worst vertex x_0 with a better point by using **reflection**, **expansion** or **contraction** with respect to the best side.

A Simplex in Two Dimensions

Reflection and Expansion

Contraction

Summary: The Downhill Simplex Method

Karimzadehgan, Maryam et al. (2011). A stochastic learning-to-rank algorithm and its application to contextual advertising.

10.1145/1963405.1963460.

Summary: The Downhill Simplex Method

Algorithm

- Reorder points: $f(x_0) > f(x_1) > \cdots > f(x_2)$ (x_0 is worst point).
- New trial point \boldsymbol{x}_r by refection $\boldsymbol{x}_r = \bar{\boldsymbol{x}} + \alpha(\bar{\boldsymbol{x}} - \boldsymbol{x}_0), \ \bar{\boldsymbol{x}} := \frac{1}{n} \sum_{j \neq 0} x_j.$

Compute $f(\boldsymbol{x}_r)$, **3 possibilities:**

- 1. $f(\boldsymbol{x}_2) < f(\boldsymbol{x}_r) < f(\boldsymbol{x}_0)$, replace \boldsymbol{x}_0 by \boldsymbol{x}_r .
- 2. $f(\boldsymbol{x}_r) < f(\boldsymbol{x}_2)$ \rightsquigarrow direction of reflection is good \rightsquigarrow expansion $\boldsymbol{x}_e = \boldsymbol{x}_r + \beta(\boldsymbol{x}_r - \bar{\boldsymbol{x}})$. If $f(\boldsymbol{x}_e) < f(\boldsymbol{x}_r)$, replace \boldsymbol{x}_0 by \boldsymbol{x}_e . Otherwise, expansion has failed, replace \boldsymbol{x}_0 by \boldsymbol{x}_r .

Algorithm

3. $f(\boldsymbol{x}_r) > f(\boldsymbol{x}_0)$ \rightsquigarrow polytope is too large \rightsquigarrow contraction $\boldsymbol{x}_c = \bar{\boldsymbol{x}} + \gamma(\boldsymbol{x}_0 - \bar{\boldsymbol{x}})$ where $(0 < \gamma < 1)$. If $f(\boldsymbol{x}_c) < f(\boldsymbol{x}_0) \rightsquigarrow$ contraction succeeded \rightsquigarrow replace \boldsymbol{x}_0 by \boldsymbol{x}_c , otherwise contract again.

A Counter Example due to McKinnon

McKinnon, K.I.M., Convergence of the Nelder-Mead simplex method to a non-stationary point, SIAM Journal on Optimization 9 (1998), 148-158.

Back to image registration

Use Downhill-Simplex for minimizing the negative mutual information over rigid transformations $(\theta, t_x, t_y) \sim 4$ -dim simplex (tetrahedron)

$$\begin{pmatrix} x'\\y'\\1 \end{pmatrix} = \begin{bmatrix} \cos\theta & -\sin\theta & t_x\\ \sin\theta & \cos\theta & t_y\\ 0 & 0 & 1 \end{bmatrix} \begin{pmatrix} x\\y\\1 \end{pmatrix}$$

Function that computes $MI(\theta, t_x, t_y)$: Transformation \rightsquigarrow interpolation \rightsquigarrow joint histogram on Ω \rightsquigarrow marginal and joint entropies \rightsquigarrow MI

