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Linear algebra and dynamical systems
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Why study differential equations”?

- But differential equations are so 20th century :-(
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Recap: linear ODEs with linear algebra

A system of first-order linear OD

du

=S (homogeneous, constant-coefficient)

—=Au u@)eR" AeR™

Scalar case (n = 1)

dt

—ntries of u model positions, velocities, CO, concentrations, ...

Vector case

u' () = au(®)  u(t) = e*u(0) u(t) = eu,




The meaning of e

Defined via the Taylor (power) series

Use to check the solution
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Behavior of first-order equations forn = 1

When a I1s a real number,
u'(t) = au(r) u(t) = e®u(0)

In this case the possible dynamics are quite boring... (but they can also lbe dangerous!)
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Not so boring: second-order differential equations

mx" + bx'+ kx =0

mg




Mass on a spring

Natural spring | Equilibrium
position mg = ks
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Mass on a spring

Gravitational force Restoring force in the spring

_ _ 7
Newton says F, , = ma = mx

Fl‘Ot:FS_l_FG:mxﬁ_l_kx:O

7 2

x"'= — w*x k= op?

A second-order linear ODE! Converting to first order lets us use linear algebra:

X du x’ 0 1l x
c=[ T e o]
X dt X -~ 0] W1
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Writing down the solution

By solving det(A/ — A) = 0 we get the eigenvalues of A as
M =jo  Ay=—jo

Solving Avy , = A; ,v , we further get the eigenvectors

SIRAESIRT

Any solution can thus be written as (for some constants ¢; and ¢,)

—Jwt

u(t) — Cleja)tvl —+ 626 V2

The constants ¢; and ¢, can be determined from two initial conditions (on x and x")

u(O) — Clvl + Csz



We get the tamiliar harmonic oscillations

x(1) = ¢,/ + c,e !

S(x(1) = 0]y = () = = 3(c)
S(0) = 0] = R(cy) = R(cp)

=}C1=62

So finally, for some real A and B (or a and @)

x(t) = A cos(wt) + B sin(wt) = a sin(wt + @)

06

02

A1 = 0.000000 + 1.732051j, A3 = 0.000000 + -1.732051j
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Damped oscillations with F', = — bx

The force F', = — bx' describes damping, friction, proportional to velocity

F¢+ F + Fp = mx" now gives the full second-order equaton

mx" + bx'+ kx =0

Rewrite again as a first-order system

du | x 0 1 m
de x| |=kim —bim| ¥

—~

A i u
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(General solution

Solving det(Al — A) = 0 gives

—b+b%— dmk —b—/b% — 4mk
/11 — /12 —

2m 2m

(General solution

x(f) = c;eM + c,e™

Behavior depends on the sign of the discriminant

b* —4mk < 0
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Different kinds of solutions

Overdamped

b* > dmk A, <0

At Aot

x(t) = cie™ + cye

A1 = -1.381966 + 0.000000j, A; =-3.618034 + 0.000000j

Underdamped

b> < 4mk
R(A) = R(L,) < 0
x() = e (A cos(wt) + B sin(wt))

A1 = -0.500000 + 2.179449j, A; =-0.500000 + -2.179449j
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Forced osclllations

So far: the right-hand side of the ODE is zero: natural modes of the spring-mass system

In most practical applications there is an external forcing

e A voltage source In a circuit
e Uneven road hits the wheels

e (Greenhouse gas emissions

In our second-order linear case this is modeled as a right-hand side f(7)

mx"(t) + bx'(t) + kx(t) = f(¢)
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General solution to the non-homogeneous equation

A general solution to mx"(t) + bx'(¢t) + kx(t) = f(¢) can be written as

x(1) = X% (1) + cx5(7) + x,(7)

Solution to the homogeneous equation A particular solution
mx" + bx'+ kx =0

In a damped system, X, dictates the long-term behavior —steady-state solution

15



Forced oscillations: example

x" 4+ 8x"+ 16x = 8 sin(4r) x(0)=x'(0) =0

Homogeneous

—4 —4
Azl 0 1] Ao e "4+ 1) te™™
— —16te™ —e (41— 1)

x, (1) = c;e™ + cote ™



Forced osclllations: total solution

Typical forms of the particular integral | edit]

In order to find the particular integral, we need to 'guess’ its form, with some coefficients left as variables to be
solved for. This takes the form of the first derivative of the complementary function. Below is a table of some typical
functions and the solution to guess for them.

Function of x Form for y
keaa} Ceaw
kx", n=20,1,2,... ZKZZCZ
i=0
k cos(az) or ksin(azx) K cos(ax) + M sin(ax)
ke®* cos(bx) or ke*” sin(bx) e’ (K cos(bx) + M sin(bx))

(Zk T ) cos(bzx) (Zk T ) sin(bzx) (i Q,,;wi> cos(bx) (ZR T ) sin(bzx)

(Zz; kz;p") * cos(bx) (Zk T ) * sin(bx) Lo ((i szz> cos(bz) (ZR . ) sin(ba )
i=0

If a term in the above particular integral for y appears in the homogeneous solution, it is necessary to multiply by a
sufficiently large power of x in order to make the solution independent. If the function of x is a sum of terms in the
above table, the particular integral can be guessed using a sum of the corresponding terms for y.[”

(From Wikipedia)

Particular

Method of undetermined
coefficients suggests to try

xp(t) = A cos(4t) + B sin(4t)

x,(f) = —5 cos(4r)

Total

%e“” + te _4"—% cos(4t)
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Resonance

Systems that are not overdamped have their own natural modes or resonant frequencies

Example
x"(t) + x(t) = 5 cos(?)

e Homogeneous solution is x, (1) = A sin(z + @)

o MethOd Of ur‘]determ”’]ed COeff|C|en'tS g|\/es https://sites.lsa.umich.edu/ksmoore/research/tacoma-narrows-bridge/

1 | A1 = 0.000000 + 2.449490j, A; =-0.000000 + -2.449490j
x, (1) = =tsin(17) & e
P 2 ) y W
|
e The total solution is then 2 \ [

x(1) = x,(2) + x,(1) I | |
-5.0 U u
= A sin(z + q0)+%t sin(17)




't happens even In real systems with damping!

def f_OSC(X, tl m=1' b=1' k=6' c=1' alpha=01 Omega=1): A1 =-0.050000 + 2.448979j, A; =-0.050000 + -2.448979j A1 =-0.050000 + 2.448979j, A; =-0.050000 + -2.448979j
A = np.array([[ o0, 11, ﬂ .
S T T R—
| " I
dydt = A.dot(x) + [0, | | | 2 R”M

c * tkkalpha * np.cos(omegaxt) ’
] A
return dydt B U

A |
Y
u_e = [0, 1] ) N ) ) )
A = np.array([[ o, 1], A1 = 0.050000 + 2 448975}, A = 0.050000 + -2 448975 0.050000 + 2 448975, A7 = 0.050000 + 2 448
lam, V = np.lir[lglfgl?éi;t()ﬂ]]) | ” ; H
=100 S My | ettt
tspan = np.arange(0.0, T, dt /\ v f
f _osc_kb = lambda x, t : f_OSC(zée;;=2;?éb§7T;m[@].imag)) Ez | | I | | | U \/ u E: ““%uVuggﬁﬂguﬁNQMN8“#N3%uﬁ&U

u = odeint(f_osc_kb, u_0, tspan)




Application 1: Predicting the CO» concentration in the atmosphere
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The DICE model

==

—_—

(Therina Groenewald/Shutterstock) (https://www.unenvironment.org/)

The Dynamic Integrated Climate-Economy model

Economics Carbon cycle @ Climate science Policy

Willlam Nordhaus, 2018 Nobel Prize iIn Economics

Subject of quite a bit of controversy (likely a gross underestimate of the adverse effects)
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Coupling between the CO, containers

e An example of a box model: split the total CO, into boxes (atmosphere, upper and lower ocean)

e [he boxes exchange CO, with certain rates (often determined via experimental fitting)

Atmospheric CO,

Atmosphere

Dissolved

co, T Upper ocean

| ower ocean

Sequestration of carbon
in the deep cold waters

Physical carbon pump

22



Coupling between the CO, containers

M
A —E®)—k,-(My;—A-B-M,,)

dt
aM
d;]P — ka ' (MAT_A°B°MUP) _kd° (MUP
dM; My o
=k, - (M
dt a" Mup 5 )

o M7, My;p, M; , model CO, mass in atmosphere, upper, and lower ocean (in gigaton)
o E(?) is the emission rate (gigaton / year)

o AB is the equilibrium ratio of CO, between the atmosphere and the upper ocean

e 0 is the volume ratio between upper and lower ocean

e k, k;are CO, exchange rates between atmosphere/upper ocean and upper/lower ocean

MLO

0

)
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A linear algelra problem??

dm
= Km + e(?)
dt
M, —k kAB 0
m — MUP K — ka —kaAB — kd kd/5
MLO 0 kd _kd/5

e Now we have an inhomogeneous system of ODEs

® |s there a “principled” way to integrate (solve) such systems?

e(t) =

E(?)
0

24



Solving the inhomogeneous equation
dm

We now know that when K is constant in time, the solution to = Km is

dt

m(t) = e*'m(0)

Duhamel’s principle

Massage the iInnomogeneous equation into a homogeneous form

dm B tKi —tK _
——=Km+e(n) = — (e ®m(t)) = e(r)

It follows that
t

m(t) = e m(0) + J e '=Ke(s)ds
0

25



CO, emission scenarios

* Representative concentration pathways
(RCPs): Emission scenarios from pre-industrial —
period to year 2050

e Consolidated by the Intergovernmental Panel on
Climate Change (IPCC)

gigatons per year

« RCP4.5 = intermediate emission; emissions peak
N 2040 and then decline

« RCP8.5 = business-as-usual emissions;
WOrSt case

26



Approximating the integral by the trapezoidal rule

4 N Zﬁll'
o (=K ¢ Z o (1—IADK 5 (t=(j+DADK

0 j=0

12

# Solution for the emission rate using RCP8.5

M85 = np.zeros([nt, M0@.shapel[0]])
M85[0, :1 = MO

> <

# precompute matrix exponentials
expKt = np.zeros((nt, 3, 3))
for i in range(nt):
f(xi+1) expKt[i] = la.expm(K * dt * i)
for i in range(nt - 1):
addsrc = np.zeros([1, 3])
f(x) # integrate using trapezoidal rule
for j in range(i - 1):
addsrc += 0.5 x dt * (np.matmul(expKt[i + 1 - j]I,
emis85[j,:1)

> X +
np.matmul(expKt[i + 1 = (j + 1)],
emis85([j + 1, :1))

M85[i + 1, :] = np.matmul(expKt[i + 1], MO@) + addsrc



CO2 concentration and the surface temperature

* [he temperature change with respect to a pre-industrial reference is estimated as

a = 3.8 W/m?
AT = %logz (MMAT ) 1 =13 W/m?%/ C
Al.ref My er = 596.4 GtC

CO2 mass in atmosphere Change in surface temperature

28



Limitations of the model

e A major limitation of the model is that K is a constant matrix independent of time and
the current concentrations

* |n reality the carbonate chemistry dictates
drops after initial absorpti

hat the absorption capacity of the ocean

on, resulting in ht

e One remedy is to allow t

ne coefficients k ,

current concentrations M 47, My;p, M;

ge errors over longer timescales
k;,, AB, ... to depend on time and the

e NB: Nordhaus’s work and models have been even more heavily criticized for how they
measure economic utility, in that they “overemphasize growth as the ultimate measure of

economic success” (https://www.sciencemag.org/news/2018/10/roles-ideas-and-climate-growth-earn-duo-economics-nobel-prize)
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Limitations of the model

e A major limitat

the current co
¢ |n reality the ¢
drops after ini

e One remedy s
current conce

_ r - - - _ _ _ r_ 1 " _ al_

Nobel Prize for the economics of innovation and snt of time ana
climate change stirs controversy

By Adrian Cho | Oct. 8,2018, 9:40 PM

of the ocean
ales

ne and the

Often, the awarding of a Nobel Prize triggers a round of carping about who else should have
shared in the prize. This year's prize for economics—officially, the Sveriges Riksbank Prize in
Economic Sciences in Memory of Alfred Nobel—has sparked a rarer controversy. Some
economists argue one winner's work is wrongheaded and has compromised humanity's ability to
deal with the existential threat of climate change.

e NB: Nordhaus’s work and models have been even more heavily criticized for how they
measure economic utility, in that they “overemphasize growth as the ultimate measure of

economic success” (https://www.sciencemag.org/news/2018/10/roles-ideas-and-climate-growth-earn-duo-economics-nobel-prize)
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Application 2: Modeling the COVID-19 pandemic

30



The simplest useful model: SIR

The SIR model | edit]

In 1927, W. O. Kermack and A. G. McKendrick created a model in which they considered a fixed
population with only three compartments: susceptible, S(t); infected, I(t); and recovered, R(t).
The compartments used for this model consist of three classes:!'!

 S(t) is used to represent the individuals not yet infected with the disease at time t, or those
susceptible to the disease of the population.

e I(t) denotes the individuals of the population who have been infected with the disease and are
capable of spreading the disease to those in the susceptible category.

e R(t) is the compartment used for the individuals of the population who have been infected and
then removed from the disease, either due to immunization or due to death. Those in this
category are not able to be infected again or to transmit the infection to others.

(From Wikipedia)

31



The MSEIR (...) family of models

|[dea: divide population into groups according to their status relative to the disease

bz'rthflwz’th bz’rtth without

passiye tmmunity pasgive tmmunity

transfer . horizontal _ transfer _ transfer _
M from M > incidence I from E I from I R

de%ths de%ths de%ths de%ths de%ths

Fig. | The general transfer diagram for the MSEIR model with the passively immune class M, the
susceptible class S, the exposed class E, the infective class I, and the recovered class R.



The simplest useful model: SIR

AS

as_ 1 d_ Lo
dd N a N

Infectionrate A = ff—
N

Recovery rate 7

33



s this a linear algelbra problem?

S() du (1)

o Lettingu(t) = | I(¢) |, can we write = Au(t) for some matrix A that does not depend on

R dt

5,1, R?

e Sadly, no... the expressions contain multiplications between S and 1

e A superposition of two solutions is In general not a solution

® Perhaps not everything is lost...

S —
di
dl

dr

y I](Vf) S0

1(7)
N

5(t) — yI(¥)

34




SIR curves

def f_sir(x, t, gamma=1/18, R0=3):
s, 1, r = X

dydt = [-gamma*R@Oxsx*i,
gamma*xR@O*s*1 - gammaxi,
gammax 1

]
return dydt

# parameters

T = 350

dt = 0.1

1.0 = 1e-7 # 33 = 1E-7 *x 330 million

s 0 =1.0-10

ro=20.0

y 0 =[s_0, i 0, r_0] # initial condition

tspan = np.arange(0.0, T, dt)

y = odeint(f_sir, y_@, tspan)

ax = plt.plot(tspan, y)
plt.legend(['s', 'i', 'r'], fontsize=24)
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0.8

0.6

0.4

0.2

0.0

S0

100

150

200

250

300

350
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Stability of dynamical systems / ODES

Key principle

When things are non-linear, linearize them!

Taylor series (first two terms)

() = fty) +f 1)t — 1) + O(|t — 1,]°)

Key question

Linearize about which point”? How to choose ;"

37



Equilibria of dynamical
Systems

Good choice: equilibria of

du (1)
dt

= F(t,u(1))

In an equilibrium, u does not change:

le—u =0 < Ft,u(r)) =0
t

What happens when we tap a system in equilibrium?

38




Stable and unstable equilibria

39



A stabllity criterion

du
¢ | et us look at a simple first-order ODE 7 = au
[
o du -
e Equilibria are at == 0 which is solved by u = uy = 0
[

When we perturb t
come back to t

ne system around an equilibrium, do we

ne equilibrium or we go away from it”?

e \We know that a general solution is given as u(t) = ce™

e Thus starting from a point u(0) = u, + € = €, do we go back to 0 or not?

We already know this!

a < () stable a > () unstable

40



A stabllity criterion

e The key parameter in a linear first-order ODE is a;

du

we would like to generalize to — = f(u) with a nonlinear f(u).

dt

e For the linear f(1) = au, the key parameter a equals f'(u).

Coincidence?

e \What happens when we move very slightly out of an equilibrium?

du

dt

U=uUyt+e€

= f(uy + €) = fluy) + f(up)e = f'(uy)e




A stabllity criterion

du

dt = flug + €) = f(uy) + f(up)e =f(Up)e

U=up+e

A constant scalar

e For small € (close to U) the above approximation is accurate: f'(U) plays the role of a!

du de

® Since — = —, we effectively linearized our nonlinear equation around U

dt dt
u=U+c¢e




Example 1: Simple 1D systems

du du 5 du ;
— = Qqu —=Uu—1Uu —=Uu—-1Uu
dt dt dt
au _ iy = 0 1y = 0, 1 up = 0, £ 1
dt
0) =1 '(0) =1
df . f(0) JAQ)
du fa)y=-1 flxl)=-2
u=U
U=0
Stable? a < (0 J [J= (0 x =1
a>0 X U=1 B
U=-1



A quick numerical check...

# Simple 1D examples

def f_sysl(x, t, alpha=-1):
return alphaxx

def f_sys2(x, t):
return x = Xxxk%x2

def f_sys3(x, t):
return x = Xx*x%3

T = 12
dt = 0.01
tspan = np.arange(0.0, T, dt)

uo = 0.001
u = odeint(f_sys3, u_0, tspan)

plot(tspan, u)
plt.xlabel('$t$")
plt.ylabel('$us$"')

1.0

08

06

04

02

00

00

-1.0

10

12

10

12

3.00

275

250

225

3 200

1.75

1.50

1.25

1.00

004

002

> 000

-0.02

-0.04

12

12

14



Example 2: FitzHugh—Nagumo model of a spiking neuron

Vv = membrane potential W = recovery variable
dv P> dw
— =1, +tv——=w — =c(v—aw +))
da 3 dt




Example 2: FitzHugh—Nagumo model of a spiking neuron

I,, =0.01 A o
Equilibria

e = 0.01 3 s

V Q.50

QZSOO Iapp'l'v_?—W:O 025

ﬂ = 2.00 G(V — aw + ﬁ) =0 -0.25

(Not necessarily a realistic 075
choice of parameters) -1.00

vl = np.roots([-1.0/3.0, 0, 1.0 - 1.0 / alpha, I_app - beta / alphal)
vl = np.sort(v@.real)
wd = 1.0 / alpha * (v0 + beta)

print(ve)

V-roots [-1.75156349 0.56110887 1.19045461]



Stable or unstable equilibria”

Fu) =Fuy + V,F(uy)(u — uy) + O(||lu — %”2)

Multivariate Taylor (linear term)

V_F is the Jacobian

vV F

dF, dF,
dv  aw | ll —vZ 1 ]
dF, - dF, ¢ —ca

dv dw

for

|
SO ON

idx in [0, 1, 2]:
D = [[1 = vO[idx]**x2, =11,
[epsilon, =alphakepsilon]
]
evals, _ = np.linalg.eig(D)
print(evals)

. 06300695 -0.05496769]
.67129284 -0.03613601]
. 38755761 -0.07962457]
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Phase portrait: FitzHugh—Nagumo

e Start the evolution of the system at many points .

1.00

and track where it goes

for

SO N

0.50

025

idx in [0, 1, 2]:
D = [[1 - vO[idx]*%2, -1],
[epsilon, =alphakepsilon]
]
evals, _ = np.linalg.eig(D) 02
print(evals)

= 000

-0.50

. 06300695 -0.05496769]
.67129284 -0.03613601]
. 38755761 —-0.07962457 ] .

-1.00
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OK, back to COVID...




Application to the SIR model

dS
:_ﬁ ()S(t) d lS

dr L1

F5(S,1)

dr
a1 dt
T =p S(t) — yI(1)

Since R=N— 8§ — I, if S(t) and I(t) don’t change, neither does R

dS 0 —Epidemic equilibria—
dt _

N (S,1) = (V,0)
a_ (S, 1) = (0,0)

dt



Linearize around the (/V,0) equilibrium

Taylor series (first two terms)

5] _ [ —ﬁﬂ F(@) = Flug) + V,Fup)@ - up) + O(lu - u, ||

ﬁ%S — vl

&

BER d%(—ﬁ%s) %(‘ﬁﬁbj s [
e [ P i I CR)

S=N,I=0




Finally...

all=|

—igenvalues of the Jacobian matrix

=0 h=p—vy

o 2 (E1-13)

p > vy = epidemic
f < y = no epidemic

key parameter
RO .— é
Y
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Phase portraits
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Extending the model

e \\le can first improve the model by adding a 4th compartment, E

® [his models exposed individuals who will become infected after an incubation period

AS

as _ 1 aE_ o o a_ ol R _
— H— —_— = —y — O — = [H— — —_— =
dr N it N a TN a
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Extending the model

e Next, we normalize everything by the total population, s = S/N,i = I/N,e = E/N,r = RIN

p

e Reparameterize the equations in terms of RO; here It Is defined as Ro = —
4

€=)/ROSZ—6€
, | s+e+i+tr=1
| = o€ — Vi

r=yi
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Mitigation

e The idea is that Ry can be influenced by policy—a lockdown hopefully makes it smaller

e R, does not change instantaneously

dR,
dt

| (Rtarget - RO)

o |t will be interesting to track the cumulative caseload ¢ = 1 + r and the number of deaths

dc dd |
— = o°¢f — = 5]/1

dr dt
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Modeling in python

def f_seir_ld(x, t, gamma=1.0/18, sigma=1/5.2, RO_1=2.0,

RO_2=0.5, t_change=100, eta=1.0/20, delta=0.01):

X

s, e, i, r, RO, c, d

RO_inf = RO_1 if t < t_change else RO_2

dydt = [-gamma*xROxsxi, # ds/dt = —-yRoesi
gammaxROxsx1 - sigmaxe, # de/dt = VYReS1 -c0e
sigmaxe = gammaxi, # di/dt = oe -y1
gammax1, # dr/dt = Y1
etax(R@ _inf - RO),
sigmaxe,
deltakgammaxl

]
return dydt
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Introducing lockdown

# lifting or introducing lockdown

lift = False

R@_L = 0.5 20000
RO NL = 2.0

t_change_list = [50, 200, 300, 400]

RO 1, RO 2 = (RO_L, RO NL) if lift else (RO_NL, RO _L) 15000
T = 1000

dt = 1

Daily deaths

tspan = np.arange(0.0, T, dt)

plt.figure(figsize=(14, 10))
for t_change in t_change_list:
f_seir_1ld_t = lambda x, t : f_seir_ld(x, t, t_change=t_change,
RO _1=R0_1, RO_2=R0O _2)

y 0 =[s_0, e0, i 0, r_ 0, RO_1, 0, 0]
y = odeint(f_seir_1d_t, y_0, tspan)

deaths = N * delta * gamma * y[:, 2]
_ = plt.plot(tspan, deaths)

— 50

— 300
e 400

1000
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Lifting lockdown

# lifting or introducing lockdown

lift = True

R@_L = 0.5 20000
RO NL = 2.0

t_change_list = [50, 200, 300, 400]

RO 1, RO 2 = (RO_L, RO NL) if l1ift else (RO_NL, RO L) 15000
T = 1000

dt =1

Daily deaths

tspan = np.arange(0.0, T, dt)

plt.figure(figsize=(14, 10))
for t_change in t_change_list:
f seir_1d_t = lambda x, t : f_seir_ld(x, t, t_change=t_change, Biog
RO 1=R0 1, RO_2=R0O _2)

y 0= [s 0, e, i 0, r_0, RO_1, 0, 0]
y = odeint(f_seir_1d_t, y_0, tspan)

deaths = N % delta * gamma * y[:, 2]
_ = plt.plot(tspan, deaths)

— 50
w— 200
— 300
w400

1000
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