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Why study differential equations?

FinanceEngineeringLife sciences EnvironmentPhysics

• But differential equations are so 20th century :-(

{Epi, Pan}demics

Neuroscience

Planetary dynamics

Turbulence

 concentrationCO2

Ice melting

Heat transfer 

Trajectory design

Black–Scholes

Market crashes
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Recap: linear ODEs with linear algebra

du
dt

= Au

u′ (t) = αu(t) u(t) = eαtu(0) u(t) = eAtu0

A system of first-order linear ODEs (homogeneous, constant-coefficient)

Entries of  model positions, velocities,  concentrations, …u CO2

u(t) ∈ ℝn A ∈ ℝn×n

Scalar case ( )n = 1 Vector case
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The meaning of eAt

Defined via the Taylor (power) series

eAt :=
∞

∑
k=0

(At)k

k!

(eAt)′ :=
∞

∑
k=1

ktk−1Ak

k!
= A

∞

∑
k=1

tk−1Ak−1

(k − 1)!
= A

∞

∑
k=0

tkAk

k!
= AeAt

Use to check the solution 
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For diagonalizable matrices, we get a very simple rule

A = V

λ1 0 ⋯ 0
0 λ2 ⋱ 0
0 ⋱ ⋱ 0
0 ⋯ 0 λn

V−1 eAt = V

eλ1t 0 ⋯ 0
0 eλ2t ⋱ 0
0 ⋱ ⋱ 0
0 ⋯ 0 eλnt

V−1⟹



Behavior of first-order equations for n = 1

u′ (t) = αu(t)

When  is a real number,α

u(t) = eαtu(0)

In this case the possible dynamics are quite boring… (but they can also be dangerous!)
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Not so boring: second-order differential equations

mx′ ′ + bx′ + kx = 0

0

∆x

x

−kx
θ

mg

+

i

u
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Mass on a spring

FG = mg FS = − k(s + x)

ACME ACME

ACME

ACME

Equilibrium 
mg = ks

Natural spring 
position
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Mass on a spring

x′ ′ = − ω2x

u := [x
x′ ]

du
dt

:= [x′ 

x′ ′ ] = [ 0 1
−ω2 0]

A

[x
x′ ]⏟
u

FG = mg FS = − k(s + x)

Ftot = FS + FG ⟹ mx′ ′ + kx = 0

Gravitational force Restoring force in the spring

k = ω2

8

Newton says Ftot = ma = mx′ ′ 

A second-order linear ODE! Converting to first order lets us use linear algebra:



Writing down the solution

u(t) = c1ejωtv1 + c2e−jωtv2

By solving  we get the eigenvalues of  asdet(λI − A) = 0 A

λ1 = jω λ2 = − jω

Solving  we further get the eigenvectorsAv1,2 = λ1,2v1,2

v1 = [ 1
λ1] = [ 1

jω] v2 = [ 1
λ2] = [ 1

−jω]

u(0) = c1v1 + c2v2

Any solution can thus be written as (for some constants  and )c1 c2

The constants  and  can be determined from two initial conditions (on  and  )c1 c2 x x′ 
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We get the familiar harmonic oscillations

x(t) = c1ejωt + c2e−jωt

ℑ(x(t)) = 0 |t=0 ⟹ ℑ(c1) = − ℑ(c2)

ℑ(x(t)) = 0 |t= π
2

⟹ ℜ(c1) = ℜ(c2)

⟹ c1 = c2

x(t) = A cos(ωt) + B sin(ωt) = α sin(ωt + ϕ)
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So finally, for some real  and  (or  and )A B α ϕ



du
dt

:= [x′ 

x′ ′ ] = [ 0 1
−k/m −b/m]

A

[x
x′ ]⏟
u

mx′ ′ + bx′ + kx = 0

 now gives the full second-order equatonFS + FG + FD = mx′ ′ 

The force  describes damping, friction, proportional to velocityFD = − bx′ 

Damped oscillations with FD = − bx′ 

Rewrite again as a first-order system
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General solution

λ1 =
−b + b2 − 4mk

2m
λ2 =

−b − b2 − 4mk
2m

x(t) = c1eλ1t + c2eλ2t

Solving  givesdet(λI − A) = 0

General solution

Behavior depends on the sign of the discriminant

b2 − 4mk ≶ 0
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Different kinds of solutions

Overdamped Underdamped

b2 > 4mk b2 < 4mk

x(t) = c1eλ1t + c2eλ2t

λ1,2 < 0
ℜ(λ1) = ℜ(λ2) < 0

x(t) = e−αt(A cos(ωt) + B sin(ωt))
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Forced oscillations

mx′ ′ (t) + bx′ (t) + kx(t) = f(t)

So far: the right-hand side of the ODE is zero: natural modes of the spring-mass system 

In most practical applications there is an external forcing

• A voltage source in a circuit 

• Uneven road hits the wheels 

• Greenhouse gas emissions

In our second-order linear case this is modeled as a right-hand side f(t)
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General solution to the non-homogeneous equation

x(t) = c1x1(t) + c2x2(t) + xp(t)

In a damped system,  dictates the long-term behavior—steady-state solutionxp
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Solution to the homogeneous equation 
mx′ ′ + bx′ + kx = 0

A particular solution

A general solution to  can be written asmx′ ′ (t) + bx′ (t) + kx(t) = f(t)



Forced oscillations: example

x′ ′ + 8x′ + 16x = 8 sin(4t)

A = [ 0 1
−16 −8] eAt = [e−4t(4t + 1) te−4t

−16te−4t −e−4t(4t − 1)]
xh(t) = c1e−4t + c2te−4t
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Homogeneous

⟹

x(0) = x′ (0) = 0



Forced oscillations: total solution
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Method of undetermined 
coefficients suggests to try 
xp(t) = A cos(4t) + B sin(4t)

xp(t) = − 1
4 cos(4t)

Particular

⟹

(From Wikipedia)

Total
1
4 e−4t + te−4t− 1

4 cos(4t)



Resonance

Systems that are not overdamped have their own natural modes or resonant frequencies

https://sites.lsa.umich.edu/ksmoore/research/tacoma-narrows-bridge/

x′ ′ (t) + x(t) = 5 cos(t)

x(t) = xh(t) + xp(t)

= A sin(t + φ)+ 1
2 t sin(1t)

xp(t) = 1
2 t sin(1t)
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• Homogeneous solution is xh(t) = A sin(t + φ)

Example

• Method of undetermined coefficients gives

• The total solution is then 



It happens even in real systems with damping!
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Application 1: Predicting the  concentration in the atmosphereCO2
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The DICE model
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(Therina Groenewald/Shutterstock) (https://www.unenvironment.org/)

The Dynamic Integrated Climate-Economy model

Economics Carbon cycle Climate science Policy

William Nordhaus, 2018 Nobel Prize in Economics
Subject of quite a bit of controversy (likely a gross underestimate of the adverse effects)

https://www.unenvironment.org/


Coupling between the  containersCO2
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ka
−ka

kd −kd

Atmosphere

Upper ocean

Lower ocean

• An example of a box model: split the total  into boxes (atmosphere, upper and lower ocean)CO2

• The boxes exchange  with certain rates (often determined via experimental fitting) CO2



Coupling between the  containersCO2
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dMAT

dt
= E(t) − ka ⋅ (MAT − A ⋅ B ⋅ MUP)

dMUP

dt
= ka ⋅ (MAT − A ⋅ B ⋅ MUP) − kd ⋅ (MUP −

MLO

δ
)

dMLO

dt
= kd ⋅ (MUP −

MLO

δ
)

• , ,  model  mass in atmosphere, upper, and lower ocean (in gigaton)MAT MUP MLO CO2

•  is the emission rate (gigaton / year)E(t)

•  is the equilibrium ratio of  between the atmosphere and the upper oceanAB CO2

•  is the volume ratio between upper and lower oceanδ

• ,  are  exchange rates between atmosphere/upper ocean and upper/lower oceanka kd CO2

ka
−ka

kd −kd



A linear algebra problem?
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dm
dt

= Km + e(t)

K =
−ka kaAB 0
ka −kaAB − kd kd /δ
0 kd −kd /δ

e(t) =
E(t)

0
0

• Now we have an inhomogeneous system of ODEs

• Is there a “principled” way to integrate (solve) such systems?

m =
MAT
MUP

MLO



Solving the inhomogeneous equation
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We now know that when  is constant in time, the solution to  is K
dm
dt

= Km

m(t) = eKtm(0)

dm
dt

= Km + e(t)

Duhamel’s principle
Massage the inhomogeneous equation into a homogeneous form

⟺ etK d
dt (e−tKm(t)) = e(t)

m(t) = etKm(0) + ∫
t

0
e(t−s)Ke(s)ds

It follows that



CO  emission scenarios2
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• Representative concentration pathways 
(RCPs): Emission scenarios from pre-industrial 
period to year 2050

• RCP4.5 = intermediate emission; emissions peak 
in 2040 and then decline

• RCP8.5 = business-as-usual emissions;  
worst case

• Consolidated by the Intergovernmental Panel on 
Climate Change (IPCC)



Approximating the integral by the trapezoidal rule
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∫
t

0
e(t−s)Kds ≃

N

∑
j=0

Δt
2 (e(t−jΔt)K + e(t−( j+1)Δt)K)

(Wikipedia)



CO2 concentration and the surface temperature
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• The temperature change with respect to a pre-industrial reference is estimated as

ΔT =
α
λ

log2 ( MAT

MAT,ref )
α = 3.8 W/m2

λ = 1.3 W/m2/∘C
MAT,ref = 596.4 GtC



Limitations of the model
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• A major limitation of the model is that  is a constant matrix independent of time and 
the current concentrations 

• In reality the carbonate chemistry dictates that the absorption capacity of the ocean 
drops after initial absorption, resulting in huge errors over longer timescales 

• One remedy is to allow the coefficients  to depend on time and the 
current concentrations 

K

ka, kd, AB, …
MAT, MUP, MLO

• NB: Nordhaus’s work and models have been even more heavily criticized for how they 
measure economic utility, in that they “overemphasize growth as the ultimate measure of 
economic success” (https://www.sciencemag.org/news/2018/10/roles-ideas-and-climate-growth-earn-duo-economics-nobel-prize)

https://www.sciencemag.org/news/2018/10/roles-ideas-and-climate-growth-earn-duo-economics-nobel-prize
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Application 2: Modeling the COVID-19 pandemic
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The simplest useful model: SIR
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(From Wikipedia)



The MSEIR (…) family of models
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Idea: divide population into groups according to their status relative to the disease



The simplest useful model: SIR

S I RλS γI

dS
dt

= − β
I
N

S
dI
dt

= β
I
N

S − γI
dR
dt

= γI

33

λ = β
I
N

Infection rate Recovery rate γ



Is this a linear algebra problem?
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• Letting , can we write  for some matrix  that does not depend on 

?

u(t) =
S(t)
I(t)
R(t)

du(t)
dt

= Au(t) A

S, I, R

• Sadly, no… the expressions contain multiplications between  and S I dS
dt

= − β
I(t)
N

S(t)

dI
dt

= β
I(t)
N

S(t) − γI(t)
• A superposition of two solutions is in general not a solution

• Perhaps not everything is lost…



SIR curves
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Stability of dynamical systems / ODEs

f(t) = f(t0) + f′ (t0)(t − t0) + O( | t − t0 |2 )
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Key principle When things are non-linear, linearize them!

Taylor series (first two terms)

Key question Linearize about which point? How to choose ?t0



Equilibria of dynamical 
systems

du(t)
dt

= F(t, u(t))

du
dt

= 0 F(t, u(t)) = 0⟺
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Good choice: equilibria of

In an equilibrium,  does not change:u

What happens when we tap a system in equilibrium?



Stable and unstable equilibria

UnstableStable

du
dt

= 0
du
dt

= 0

39



A stability criterion
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du
dt

= αu• Let us look at a simple first-order ODE 

• Equilibria are at  which is solved by 
du
dt

= 0 u = u0 = 0

• We know that a general solution is given as u(t) = ceαt

When we perturb the system around an equilibrium, do we  
come back to the equilibrium or we go away from it?

• Thus starting from a point , do we go back to  or not?  
We already know this!

u(0) = u0 + ϵ = ϵ 0

α < 0 stable α > 0 unstable



A stability criterion
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du
dt

u=u0+ϵ

= f(u0 + ϵ) ≈ f(u0) + f′ (u0)ϵ = f′ (u0)ϵ

• The key parameter in a linear first-order ODE is ;  

we would like to generalize to  with a nonlinear .

α
du
dt

= f(u) f(u)

• For the linear , the key parameter  equals .  
Coincidence?

f(u) = αu α f′ (u)

• What happens when we move very slightly out of an equilibrium?



A stability criterion
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du
dt

u=u0+ϵ

= f(u0 + ϵ) ≈ f(u0) + f′ (u0)ϵ = f′ (u0)ϵ

A constant scalar

• For small  (close to ) the above approximation is accurate:  plays the role of !ϵ U f′ (U) α

• Since , we effectively linearized our nonlinear equation around 
du
dt

u=U+ϵ

=
dϵ
dt

U



Example 1: Simple 1D systems
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du
dt

= αu
du
dt

= u − u2 du
dt

= u − u3

du
dt

= 0 u0 = 0 u0 = 0, 1 u0 = 0, ± 1

Stable? α < 0 U = 0
U = 1

U = 0
U = 1
U = − 1

✓ ✘

df
du

u=U

α
f′ (0) = 1

f′ (1) = − 1

f′ (0) = 1

f′ (±1) = − 2

✓
✘

✓
✘α > 0 ✓



A quick numerical check…
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u0 = 0.001

u0 = − 0.001

u0 = 3

u0 = 0



Example 2: FitzHugh—Nagumo model of a spiking neuron
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dv
dt

= Iapp + v −
v3

3
− w

dw
dt

= ϵ(v − αw + β)

u = [v
w] du

dt
= F(u)

 = membrane potentialv  = recovery variablew



Example 2: FitzHugh—Nagumo model of a spiking neuron
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(Not necessarily a realistic  
choice of parameters)

Iapp = 0.01 A

ϵ = 0.01
α = 5.00
β = 2.00

Iapp + v −
v3

3
− w = 0

ϵ(v − αw + β) = 0

-rootsv

Equilibria



Stable or unstable equilibria?
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F(u) = F(u0) + ∇uF(u0)(u − u0) + O(∥u − uu∥2)
Multivariate Taylor (linear term)

∇uF =
dF1

dv
dF1

dw
dF2

dv
dF2

dw

= [1 − v2 −1
ϵ −ϵα]

 is the Jacobian∇uF



Phase portrait: FitzHugh—Nagumo
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• Start the evolution of the system at many points 
and track where it goes



OK, back to COVID…

49

(



Application to the SIR model

d
dt [S

I] = F(S, I) = [F1(S, I)
F2(S, I)]

dS
dt

= − β
I(t)
N

S(t)

dI
dt

= β
I(t)
N

S(t) − γI(t)

Since , if  and  don’t change, neither does R = N − S − I S(t) I(t) R

dS
dt

= 0

dI
dt

= 0
⟹ (S, I) = (N,0)

(S, I) = (0,0)
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Epidemic equilibria



Linearize around the  equilibrium(N,0)

d
dt [S

I] =
−β I

N S

β I
N S − γI

≈
−β I

N S

β I
N S − γI

S=N,I=0

+

d
dS (−β I

N S) d
dI (−β I

N S)
d
dS (β I

N S − γI) d
dI (β I

N S − γI)
S=N,I=0

([S
I] − [N

0])

F(u) = F(u0) + ∇uF(u0)(u − u0) + O(∥u − uu∥2)

51

Taylor series (first two terms)



Finally…
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d
dt [S

I] ≈ [0 −β
0 β − γ] ([S

I] − [N
0])

Eigenvalues of the Jacobian matrix

λ1 = 0 λ2 = β − γ

epidemic β > γ ⇒
no epidemic β < γ ⇒

key parameter 

R0 :=
β
γ



Phase portraits
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R0 = 0.8R0 = 3



Extending the model
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S I RλS γI

dS
dt

= − β
I
N

S
dI
dt

= β
I
N

S − γI
dR
dt

= γI

• We can first improve the model by adding a 4th compartment, E

• This models exposed individuals who will become infected after an incubation period

E σE

dE
dt

= βS
I
N

S − σE



Extending the model
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• Next, we normalize everything by the total population, s = S/N, i = I/N, e = E/N, r = R/N

• Reparameterize the equations in terms of ; here it is defined as R0 R0 =
β
γ

·s = − γR0 s i
·e = γR0 s i − σe
·i = σe − γi
·r = γi

s + e + i + r = 1



Mitigation
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• The idea is that  can be influenced by policy—a lockdown hopefully makes it smallerR0

•  does not change instantaneouslyR0

dR0

dt
= η(Rtarget − R0)

• It will be interesting to track the cumulative caseload  and the number of deathsc = i + r

dc
dr

= σe
dd
dt

= δγi



Modeling in python
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Introducing lockdown
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Lifting lockdown
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