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Abstract

Godel’s proof that apparently all reasonable formal systems which can
model simple arithmetic are either inconsistent or incomplete is both of
enormous importance and a masterful display of proof techniques. Since
the theorems have such widereaching consequences and appeal, it is a
worthwhile undertaking to present a sketch of the essential parts of his
paper in a way that is more easily understandable and to put the results
in their historical context. This paper is aimed at bachelor or master level
students of Computer Science specifically, but we hope it may prove useful
to other audiences as well.
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1 Introduction

In this paper we will present a moderately detailed account of Gédel’s incom-
pleteness theorems. After providing some historical and mathematical context,
we will cover much of the proof of the first incompleteness theorem. At the end
of the paper we will briefly discuss the impact of Godel’s work.

2 What Lead to Godel’s Paper

In 1878, the mathematician Georg Cantor proposed the Continuum Hypothesis
(CH). CH states that there is no set whose cardinality is strictly between that
of the integers and the real numbers (Dauben, 1979). Cantor would not see his
hypothesis resolved within his lifetime. His fruitless attempts to prove his own
hypothesis caused him much anxiety (Dauben, 1979, p. 248).

As|Godell (1931)) alludes to in his introduction, the decades before this paper
were published were marked by a strive towards greater exactness in math-
ematics. The goal was to discover all important unsolved problems like the
Continuum Hypothesis, and solve them. There are three mathematicians who
produced seminal work during these few decades which had a considerable direct
influence on Godel’s paper.

Each work we will discuss —including Godel’s —used its own notation, many
of which have since fallen out of use or will seem foreign to the target audience of
this paper. We naturally attempt to unify the notation into a more familiar and
modern one. We lean heavily on a translation of Godel’s paper from German
to English (Hirzel, |2000) in this regard.

2.1 Peano’s Arithmetic

In 1889, Giuseppe Peano published his book The principles of arithmetic, pre-
sented by a new method (Peanol |1889) in which he detailed an axiomization
of mathematics. (Van Heijenoort, 1967, p.83-97) His aim was to create a for-
mal system which models everything of interest to mathematics, ranging from
natural numbers to sets, fractions and functions. He also built upon previous
attempts to formalize logic and innovatively separated logical and mathemati-
cal operators. Much of his work is no longer considered relevant today and was
criticized by his contemporaries because his system lacked rules of derivation
and his proofs instead relied on an intuitive understanding of arithmetic logical
operations. Despite its shortcomings, two things Peano introduced proved to
be incredibly influential. The first was much of the notation he used’] More
importantly, his axiomization of natural numbers, which consisted of nine ax-
ioms —or fundamental assumptions —and treated numbers as individuals and
the successor relation as an operator whose semantics follow from the axioms,
proved especially robust. Four of the axioms are no longer considered to be
axioms of natural numbers and rather of the underlying logic and two further

IThough, ironically, we will not be using his notation in this paper.
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axioms are not necessary for our purposes since —unlike in Peano’s book —nat-
ural numbers will be the only individuals we deal with. The remaining three
put into words are as follows:

1. No natural number has 0 as its successor 2
2. If the successors of two numbers are equal, so are the two numbers.

3. If a set contains 0 and the set containing a number implies that the set
also contains its successor, this set contains all natural numbers.

The last axiom is sometimes referred to as the axiom of induction since it
allows proofs by induction over the natural numbers.

At the time there was somewhat of a consensus that Peano’s Axioms suc-
cessfully modelled all there is to natural numbers. Among the proponents was
prominent mathematician and logician Bertrand Russell (Weitz, (1952 p. 137).

2.2 Russell’s Principia Mathematica

In 1903, Bertrand Russell published his book The principles of Mathematics
(Russell, [1903) in which he reported on the advances made in mathematics by
Cantor and Peano among others and presented his now famous paradox which
he had discovered two years prior. The paradox can be paraphrased as: ” Con-
sider the set which contains all sets which do not contain themselves. The
inclusion of this set in itself implies its exclusion and vice versa.” The impli-
cation of this paradox is that any system which allows the definition of such a
set (or an equivalent construct) is necessarily inconsistent or incomplete. That
is to say, there exists a statement such that the statement and its negation are
both provable or unprovable respectively.

Russell set out to resolve this paradox by developing a theory of types which en-
forces a strict type on sets and only allows sets to contains sets with a type lower
than its own. Along with some other newly introduced concepts, this was pub-
lished in a three volume work, Principia Mathematica.(Whitehead and Russell,
191041912} [1913) In it Russell defines the formal system PM, which aims to be a
minimal axiomization of all of mathematics. PM was a significant improvement
over Peano’s axiomization since it had fewer unnecessary axioms and included
rules of derivation which provided a well defined way to prove statements. The
hope was that removing intuition from mathematical proofs would also provide
a principled way to deal with paradoxes. The minimal axiomization came at
the cost of brevity, explaining the 1998 page count. Infamously, the proof for
1+ 1 = 2 appears only hundreds of pages into the first volume.

Later in this paper, we will introduce system P, which Godel used in his original
paper and is a subset of PM.

2Peano used 1 as the first natural number, not 0.
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2.3 Hilbert’s Problems

With several approaches to alleviate Russell’s paradox and related paradoxes
having been developed and several promising attempts at formalizing all of
mathematics being worked on, there was a sense that mathematics was almost
done. All that would be needed is a few more brilliant ideas to identify axioms
that need to be added to or removed from systems. After that mathematics
would become grunt work, requiring only to methodically apply rule of deriva-
tion to prove all interesting statements about mathematics. It was in this spirit
that David Hilbert had published 23 open questions in mathematics a few years
earlier. (Hilbert) [1902])

The problems ranged from very specific and precise (18.b: What is the densest
sphere packing?) to very vague (23: Further development of the calculus of
variations.). The first problem on Hilbert’s list was unsurprisingly the Contin-
uum Hypothesis. The second is of special interest to us, it simply requests to
prove that the axioms of arithmetic are consistent.

3 Godel’s Undecidability Theorem

As a response to Hilbert’s second problem, |Godel (1931)) showed that a wide
class of formal systems, including any reasonable extension of system P and ZF
—another popular formal system at the time —are necessarily either incomplete
or inconsistent. (Godel’s original claim was actually slightly weaker, but |Rosser
(1936) improved Godel’s theorem resulting in the form as it is most often ex-
pressed today.) Furthermore, he also showed that any such system cannot prove
its own consistency or the consistency of any system that is more powerful than
it.

In this section, we will provide an overview of Godel’s proof for his first
incompleteness theorem for system P and its extensions specifically. We will
not aim to achieve the same rigor and completeness as Godel, but rather to give
the reader a feel for the tactics employed in the proof as well as the confidence
that they understand how the gaps in this overview could be filled to formulate
the entire proof.

3.1 System P

For the purposes of Godel’s proof, he dealt with a subset of PM combined
with the Peano axioms, which we will refer to as system P. The fundamental,
undefined symbols of system P are:

e 0 (zero), S (the successor function), = (negation), V (disjunction), V (for

all), (,)

e 2 with m,n > 1 (a variable of type n)

We permit ourselves the following shortcuts for variables: z;, vy;, ... as a
stand-in for any unspecified variable of type ¢ and z, y, ... as any unspecified
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variable of type 1.
The notion of a sign of type n is defined as follows. 0 is a sign of type 1 and

x™ is a sign of type n. If p is a sign of type 1, then so is Sp. An elementary

formula has the form p(q) (p contains ¢) where p is a sign of type n+ 1 and ¢ a
sign of type n. The set of well-formed formulas in system P is the smallest set
which contains all elementary formulas and contains —(¢), (¢) V (¢) and Vz(¢)
if ¢ and ¢ are well-formed formulas and x is a variable. We will leave away
parentheses following the common conventions. For quantifiers we shall write
Vz : when we do. We also introduce the following abbreviations:

° PN =(mpV )

* ¢ —1hi=pVY

e p—i=(p—=V)AW —9)

e Jdx:¢p:=-Vr:—¢p

® Tp = Yp = Vi1 (Tnt1(Tn) < Tnt1(Yn))
System P has the following axioms:

e The Peano axioms.

1. ~(Sz = 0),

2. Sx=8Sy —z=y,
3. (x2(0) AVx : 2o(x) — z2(Sx)) — Yy : x2(y).

e The proposition axioms.
Given any well-formed formulas ¢, 1) and x the following are axioms:

1. ¢V — ¢

2. VY — @

3. VY — YV

(p— ) — (VX — P VX)

The proposition axioms encode semantics of the logical operator V.

>~

e The quantor axioms
Given any formula ¢, variable v,,, formula where v,, does not occur freely
1 and a sign c of type n, the following are axioms:

1. Yuo(¢) — ¢een, where ¢eey,, denotes the formula obtained when
every free occurrence of v, in ¢ is replaced by ¢

2. Yon() Vb — V(@) Vb

The quantor axioms encode the intuitive meaning of the universal quan-
tifier forall.
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e The reducability axiom
Given any variables v,, and u,41 and the formula ¢ where w,,1 does not
occur freely, the following is an axiom:

1. Fupp1 (Vo (Unt1(vn)) <— @)

The reducability axiom can be interpreted as: for each formula with one
free variable, there exists a set which contains exactly those elements for
which the formula holds.

e The set axiom
Given any variables z,,, 41 and y,4+1, the following is an axiom:

L. (Von(@ns1(@n) <= Ynt1(2n))) — Tng1 = Ynt1

We call a formula which is identical to another formula with the exception
of all variables which are all of type n higher a type lift of the other
formula. The set axiom can be interpreted as: a set is defined entirely by
its elements.

In order to now define the set of all provable formulas of system P, we
introduce the rules of derivation for system P: immediate consequence. We say
a formula ¢ is the immediate consequence of the formulas ¢ and x if

Xist— ¢
or

¢ is Vv : .
The set of provable formulas is the smallest set containing every axiom which
is closed under the relationship immediate consequence.

3.2 Godel Numbering

The overall strategy of the proof is to construct as statement within system
P which asserts its own unprovability. Any proof of such a statement would
simultaneously demonstrate that the assertion that it is unprovable is false. Any
proof of its negation would mean that the original statement must be provable
too, which would make the formal system inconsistent. Thus, the only options
are that the system is inconsistent or incomplete.

In order to construct such a statement, we must enable system P to refer to
itself. The key component is a mapping from statements within the system to
whole numbers. We call such a mapping a Gédel numbering.

Definition 3.1. The Gddel number of the primitive symbols are
#(0) =1, #('5) =3, #(=) =5, #('v) =7,

#(V) =9, #(() =11, #()) =13

#(’x™’) = p™where p is the mth prime larger than 13 and n > 0
and the Gadel number of a sequence as

#({a1,a2,...,a,)) = [] pk#(a’“)where pi 1s the kth prime.
k<n
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This ensures that every primitive sign, formula and sequence of formulas
of system P has a unique Goédel number. For instance, the first Peano ax-
iom —(Sx; = 0), which is an abbreviation for —Vzi(—(=(-23(Sz1) v 21(0)) v
—(=x3(0) vV 3(Sz})))) has the Godel number 2#C~) . 3#0Y) 1 149#()) =

£

25.39....-15113

3.3 Translating statements about system P into statements
within system P

The next step is to construct statements within system P which are equivalent
to statements about the system. As we have seen, the canonical formulas for
even simple statements are quite lengthy. To prevent having to write out these
long formulas, |Godel (1931) used primitive recursive functions.

Definition 3.2. Constant functions and the successor function succ(x) = x+1

are primitive recursive functions.
The function [ defined as

f(0,$2,$3,...,3']n) = g(iL’Q,IL'g,..-,.’En)
flk+1,z0,23,...,n) = h(f(k,x2,23,...,%n), T2, X3, ..., Tp)

18 a primitive recursive function if both g and h are primitive recursive functions.
Any function f(x1,22,...,2n) = g(h1(x1, T2, ..., Tpn), ..., ho(x1, T2, ..., Ty,)) is
primitive recursive if g and h; are.

We further call an n-ary relation R primitive recursive if and only if there
exists a primitive recursive function f such that (z1,zs,...,2,) € R if and only
if f(x1,29,...,2,) =0. We also write R(x1,x2,...,x,).

In the original paper, 46 relations and functions between numbers which
are equivalent to various statements about system P are built up. With the
exception of the last relation, they are constructed using rules which are proven
to yield primitive recursive relations. For the purpose of this paper, it will suffice
to merely list those relations which we consider of particular importance or which
serve as an illustrative example of the more interesting methods employed in
constructing the full set of 46 relations. We will call attention to any new rules
of construction that are used and provide a brief argumentation as to why they
produce primitive recursive relations.

3.3.1 Divisibility

pDiv(z,y)= 3 z:xz=y-2
z<x
This relation holds if and only if x is divisible by y. Since multiplication is re-
peated addition which, in turn, is repeated application of the successor function,
it is obvious that multiplication is primitive recursive. What is more interesting

is g z which should be read as a bounded existential quantifier, and not simply
z<zx
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as an existential quantifier and a separate constraint on z. It is possible to define
a primitive recursive function x such that x(x, 21, ..., z,) = 0 if for all y < x the
primitive relation R(y, 21, ..., 2,) does not hold and x(z, z1, . .., 2,) = y where
y is the smallest natural number for which the relation does hold otherwise.
The function is 0 if x is 0. For any larger x, it is x(z — 1, 21,...,2,) if that
is larger than 0 or the relation doesn’t hold, z if the relation does hold and 0
otherwise. In order to obtain an existential quantifier from this, we simply need
to instantiate this function x with some value which is larger than the lowest
y for which the relation holds. This is why we can only construct a bounded
existential quantifier, since we can use the bound as an input for x.

3.3.2 The Godel Number of an Item in a Sequence

ITEM(n, x) '=ARGMIN DIV(x, PRIMEFACTOR(n, x)Y)
Yysx

A —DIV(x, PRIMEFACTOR(n, 2)V ")

This function returns the Godel number of the nth item in the sequence s such
that #(s) = x. Note that this sequence can be both a formula or a sequence of

formulas. ARG<MIN is taken to mean the smallest y, smaller than or equal to x for
Yysx
which the following relation holds and 0 if no such y exists. PRIMEFACTOR(n, x)

is the nth smallest prime factor of z. This function can be constructed similarly
to the bounded existential quantifier.

3.3.3 The Concatenation of Two Sequences

Toy = ARGMIN YV n:ITEM(n, z) = ITEM(n, )
z<PRIME(|z|+|y|)*ty \n<|z|

A ( YV n:ITEM(n + |z|,2) = ITEM(n,y) Vn = O)
n<|yl

Given #(s) and #(t) as inputs, this function is #(st), where st is the concate-
nation of the sequences s and t. |z| here refers the length of the sequence s
such that #(s) = z, which can be defined similarly to ITEM(n,z). PRIME(n) is
the nth prime number. This function provides a great example of how flexible
bounded versions of quantifiers can be despite their restriction. Since z is the
Godel number of the concatenation, it will be expressible as

ni  ana | Lyl H ny
283 Py P,
1<k<L|z|+]y|
max n;
< Il »
1<k<L|z|+]y|
(| |+|y])-max n;
< Plaj+yl
< p"ty

=] +y]
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Clearly, we could have found a lower bound, but the resulting function would
have been harder to express and understand.

3.3.4 The Type of a Variable

VTYPE(n,z) = 3 z:1SPRIME(z) Az =2" A2z >13An#0

z<x

This relation holds if x is the Gédel number of a variable of type n, i.e. x =
#(x) for some m.

3.3.5 Numbers Represented in System P

succ(0,z) ===
succ(n + 1,z) = sEQ (#(’S”)) o succ(n, x)

In this translation of the successor function, we see an application of the recur-
sion scheme in the definition of primitive recursive functions, where a function
is permitted to recursively depend upon itself provided one of its arguments in
the recursive call is decreased. SEQ(z) is simply 2% and thus returns the Gédel
number of the singleton sequence which contains only s such that #(s) = «.
We can also use this successor function to define a function which transforms
a number into the Gédel number of that number’s representation in system P:

NUM(n) := succ (n, #(°0"))

3.3.6 The Type of Any Sign

TYPE(n,x) = (n =1A 3 myn:(m=#(0)VVTYPE(1,m))

m,n<x

Az = succ(n, SEQ(m))>

\/(n>1/\ 3
<

'U_

v : VIYPE(n,v) Ax = SEQ(U))

x

TYPE(n, z) holds if and only if z is the Godel number of a segment of a formula
which represents an object of type n. PAREN(z) is the Godel number of (¢) if

#(¢) = 2.

3.3.7 Elementary Formulas
ELFM(z) = EI< y,z,n : TYPE(n + 1,y) A TYPE(n, 2) A & = y o PAREN(2)
Y,2,NST

Holds if and only if z is the Gédel number of an elementary formula like x,,11 ()
or 22(550).
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3.3.8 Inductively Building up Well-Formed Formulas

FMSEQ(s) = |s| > 0A V¥V n(n =0V ELFM(ITEM(n, s))

n<|s|
V3 p,q(oP(ITEM(n, s), ITEM(p, ), ITEM(q, $))
P,q<n

Ap>0Agqg>0))

This relation holds if and only if s is G6del number of a sequence of Godel
numbers of formulas which are either elementary formulas or a logical oper-
ator applied to at most two formulas that appeared earlier in the sequence.
OP(z,y, z) holds if and only if = is the Gédel number of a formula obtained by
applying V, V or = to the formulas y and z are the Gddel numbers of. As a
consequence, we know that every formula in the sequence s is well-formed. Note
that ITEM(n, s) in this case does not refer to the Gédel number of a primitive
symbol, but rather a formula. Likewise, s is the Godel number of a sequence of
formulas, not simply a formula.

3.4 Well-Formed Formulas

1sFM(x) = 3 s : FMSEQ(S) A = LASTITEM(s)
s<PRIME(|z|2)=|=|?

Using FMSEQ(s) we can finally define a relation which holds if and only if x is
the Godel number of a well-formed formula by asserting that z is the last item
in such a formula sequence.

3.4.1 Bound Variables

BOUND(v, n, ) =ISVAR(v) A ISFM(x)
A 3 a,b c(x =aoFORALL(v,b) o c AISFM(b)

a,b,c<z

Alal+1 < n < la| + |[FORALL(v, b))
The BOUND relation holds if and only if the variable with the Godel number
v is not free at position n in the formula with Godel number z. It forms the
basis for a number of following relations relating to free and bound variables.
FORALL(v, x) is the Godel number of Vy(¢) where v is the Godel number of the
variable y and x that of the formula ¢. Intuitively, the relation checks if the
formula position n falls within a part of the formula where the variable was
bound by a universal quantifier.

3.4.2 Substituting Formulas into Other Formulas

suBsT’(0,z,v,y) ==
suBST’(k + 1,x,v,y) := INSERT(SUBST’(k, , v, y), FREEPLACE(k, v, z),y)
SUBST(x,v,y) = SUBST’(FREEPLACES(v, x), , v, y)
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SUBST(z,v,y) is the Godel number of a formula where the formula referred
to by y is inserted at every position in the formula referred to by x where
the variable referred to by v occurs freely. SUBST’(k,x,v,y) is an auxiliary
function which does the same as SUBST but only inserts the formula for the first
k free occurrences of the variable. FREEPLACE and FREEPLACES are the kth
free occurrence and the amount of free occurrences of the variable respectively.
INSERT(z, n, y) is the Godel number of a sequence which is equal to the sequence
x refers to with the nth item replaced by the sequence y is the Gédel number
of.

3.4.3 The Peano Axioms

PEANOAXIOM(z) = x = paj V & = pas V & = pag

The Peano axioms have specific Godel numbers, so we can simply precalculate
them and check if a Gédel number z is equal to any of them.

3.4.4 The Proposition Axioms

PROP2AXIOM(x) = , ZEIQ y,z : ISEM(y) A 1SFM(2) A = IMPL(y, OR(y, 2))
This relation holds if x is the Godel number of a formula which follows from the
second proposition axionﬂ More precisely, the formula has the form p — pV ¢
with p and ¢ being any two well-formed formulas. IMPL and OR are the Godel
numbers of implications and disjunctions respectively. We can translate the
other three proposition axioms analogously.

3.4.5 The Quantor Axioms

QUANTORIAXIOM(z) = 3  w,y,z :VTYPE(n,v) A TYPE(n, z) A ISFM(y)

v,y,2<n
AQUANTOR1AXIOMCONDITION(z, y, v)
Az = IMPL(FORALL(v, y), SUBST(y, v, 2))

In order to define the first quantor axiom, we require an auxiliary relation
QUANTOR1AXIOMCONDITION(z, y, v), which holds if the formula to be inserted
does not contain any free variables which would be bound at any position where
the variable to be replaced is free. Other than that, it is similar to the Peano
axioms in that it simply asserts the existence of Godel numbers which fulfill
some necessary conditions and finally asserts that = is the Godel number of
a specific composition of the formulas or symbols these Gédel numbers refer
to. The second quantor axiom and the reducability axiom can be constructed
similarly.

3We defined the relation for the second axiom only because the original paper used the
first axiom as an example. There is nothing special about either of the two axioms that would
lead us to pick one over the other as an example.
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3.4.6 The Set Axiom

SETAXIOM(z) = ni@n : ¢ = TYPELIFT(n, sa)
Since the set axiom concerns a specific formula and any type lift of this formula,
we can once again precalculate its Godel number sa. TYPELIFT(n,x) can be
implemented using an argmin to find the Goédel number of a formula which is
identical to the original formula, but has variables which are n types higher.
This gives us relations which can be used to check if a number is the Godel
number of an axiom of system P; we can move on to proofs.

3.4.7 Immediate Consequence

CONSEQUENCE(z, Yy, 2) =y = IMPL(z, ) V g v : ISVAR(v) A = FORALL(v, y)

v<x

This relation holds if and only if x is the Gédel number of an immediate conse-
quence of the formulas y and z refer to.

3.4.8 Inductively Building up Valid Proofs

ISPROOF(s) = |s| > 0
A

Y n(n = 0V ISAXIOM(ITEM(n, 5))
n<|s|
Y EI< p, ¢(CONSEQUENCE(ITEM(n, s), ITEM(p, 5), ITEM(n, 5))
p,g=n

Ap>0/\q>0)>

ISPROOF(s) recognizes s as a proof if and only if s is a sequence of Godel numbers
of formulas which are either axioms or the immediate consequence of at most
two formulas that appeared earlier in the sequence. Compare this definition
to that of FMSEQ(s). Elementary formulas have been replaced by axioms and
applications of operators have been replaced by the immediate consequence rule,
but the structure is identical.

3.4.9 Provability

It would be tempting to define PROVABLE(z) analogously to 1ISFM(z), but this is
where the restriction to bounded quantifiers becomes relevant. Since no upper
bound on the length of the shortest proof for a formula can be derived from the
formula, we cannot assert its existence using a primitive recursive relation. We
can however define the following primitive recursive relation:

PROVES(S, ) = © = LASTITEM(s) A ISPROOF(s)
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And although it is not primitive recursive, we can likewise define the relation
which holds if and only if a formula is provable within system P:

PROVABLE(z) = s : PROVES(S, )

3.5 The first incompleteness Theorem

In order to tie provability to primitive recursive relations, |Godel (1931) proves
the following:

Theorem 3.1 (Godell [1931)). Given an n-ary primitive recursive relation R,
there exists a formula in system P with Gddel number r with at most n free
variables with Godel numbers vy,--- v, such that for any natural numbers
L1y s Tn

if R(xq,--+ ,xp) then
PROVABLE(SUBST(- - - SUBST(7, v1, NUM(Z1) « - + ), Up, NUM(&Zy, )))
and
if not R(xy1,--- ,xy,) then
PROVABLE(NOT(SUBST(: - - SUBST(r, v1, NUM(21) - - - ), U, NUM(z,)))).

Proof sketch. This can be proven with induction over the structure of primitive
recursive functions. For the base case of a constant function, the formula can
just be any tautology or contradiction depending on whether the function is
constant 0 or some other number.

Since system P can model recursion and composition of functions, it’s easy to
convince oneself that the induction step for both schemes can be done. O

We can now dive into the final steps to the proof of Godel’s first incom-

pleteness theory. To assure that the proof is applicable to more systems besides
system P, we define the notion of extensions to system P. We allow system P to
be extended by any primitive recursive set of formulas ¢, by which we mean a
set of formulas whose Godel numbers are exactly the range of a primitive recur-
sive function. Note that, while every finite set of formulas is primitive recursive,
¢ does not need to be finite to qualify.
For such an extension of system P, we can define the relations ISPROOF,,
PROVESy and PROVABLEg, analogously to their counterparts for the unextended
system P with the exception that an item in a ¢-proof as recognized by ISPROOF,
does not have to be an axiom or an immediate consequence of two earlier for-
mulas, but can also be an element of ¢. We call such an extension of system P
w-consistent if and only if there is no  and v such that z = #(¢), ¢ € ¢, v is
a free variable of ¢ and

PROVABLE, ((¥n : SUBST(x, #(v), NUM(n))))
APROVABLE, (NOT (FORALL (#(v), )))
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The notion of w-consistency is stronger than consistency, since we cannot derive
a contradiction from the formula ¢ if it exists. The apparent contradiction only
arises within the system when the infinite set of concrete formulas resulting
from substituting all natural numbers into ¢ are taken into account that the
contradiction could be proverﬁ

Theorem 3.2 (Godel, [1931). For each w-consistent set of formulas ¢ which is
primitive recursive, there exists a formula with Gédel number r such that neither
PROVABLE, (NOT (FORALL (#( 'z ’),7))) nor

PROVABLE, (FORALL (#(’z’),r)) hold.

Proof sketch. Consider the relation

DOESNOTPROVERECURSIVE(s, ) = “PROVES (s, SUBST(x, #(*v’), NUM(z))

)
(1)

This can be read as the proof referred to by the Gédel number s does not prove
the formula with the Godel number z with 2 (the number represented in system
P) substituted for every free occurence of the variable v. Since this relation is
primitive recursive, per Theorem[3.I] there exists a corresponding Godel number
q with two free variables for which every combination of s and x for which the
relation holds, the formula obtained from substituting s and x is provable and
the negation is provable for combinations of s and x for which the relation does
not hold.

We can now define the Godel numbers

noProof ForRecursive := FORALL(#(’s’), q) (2)
and
r == SUBST(q, #(’z’), NUM(noProof For Recursive)) (3)

r is the Godel number of a formula with one free variable s which holds if s is
not a proof for a formula which asserts no proof exists for it.
When we investigate the formula with Gédel number FORALL(#(’s’), r) we find

FORALL(#(’s’),r) = FORALL(#(’s"),
SUBST(q, #(’z’), NUM(noProof For Recursive))) (by
= SUBST(FORALL(#(’s"), q), #('2"),
NUM(noProof ForRecursive)))
= SuBST(noProof ForRecursive, #(’'x’),
NUM(noProof For Recursive) (by
(4)

4Hence the use of w, which is also a common name for the smallest infinite ordinal number.
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This tells us that the formula with the Godel number FORALL(#(’s’), r) is equiv-
alent to the formula which —when the Godel number of another formula is
plugged into it, asserts this formula with its own Godel number plugged into it
cannot be proven —with its own Gddel number plugged into it. i.e. ”I cannot
be proven”.

Taking into account [I] and [4] we get that if there were an s such that
PROVES (8, FORALL(#(’s"), 7)), then it is also provable that

PROVABLE, (NOT(SUBST(r, #(’s’), NUM(s))))) which by the first quantor axiom
implies that the negation of the antecedent is also provable, which would be a
contradiction in the system which in turn would contradict the assumption that
¢ is w-consistent.

Similarly, we get that since FORALL(#(’s’),r) is not provable, there can’t be
a single s which is a proof for it. Because of the properties of ¢ as dis-
cussed above, this means that for every number s which is not the Godel
number of a valid proof, we can prove that the formula with Gédel number
r holds. Since this must hold for every natural number, the formula with Goédel
number NOT(FORALL(#(’s’), 7)) cannot be provable without resulting in an w-
inconsistent system which contradicts the assumption. O

The consequence of this theorem, as well as other related theorems in Godel’s
paper and Rosser’s improvement (Rosser} |1936)) is that the main goal mathe-
maticians had been striving towards for decades was unattainable. Any interest-
ing system of arithmatic will necessarily contain statements which can neither
be proven nor disproven, or every statement —including false ones —can be
proven. It still is widely believed that the former is the case. It was ultimately
proven that the Continuum Hypothesis which caused Cantor so much anciety
is one such statement which can neither be proven nor disproven.
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4 The Aftermath

Godel’s incompleteness theorems had tremendous impact. John von Neumann
allegedly attended the talk where Godel presented his results and simply said
"it’s over” after Godel was done (de Ledn, 2011). After Einstein’s Theories
of Relativity and Heisenberg’s uncertainty principle had shaken up the field of
physics, it seemed that now even something as seemingly simple like arithmetic
was not free of paradoxes. Just five years later, the field of Computer Science
would see a similar result in the halting problem due to Alan Turing, which
arguably had an even bigger impact on its field.

Despite this, most mathematicians continue their work as if Gédel’s theorems
didn’t exist. One important reason for this could be the disconnect between the
formal systems Godel’s proof was concerned with and the informal systems most
mathematicians work in. (Fefermanl 2006)) Even among those who care deeply
about Hilbert’s second problem, there exists no consensus on whether Godel’s
proof actually solves the problem. At the time of writing, eight of the problems
are generally accepted to be resolved, while nine problems are partially resolved
not universally accepted to be resolved. Excluding the two problems which are
deemed to vague to ever be resolved, that leaves only 4 problems which remain
fully open questions.

Godel’s theorems also have a tantalizing metaphysical allure which arguably
played a role in bringing about postmodernism. In his pop philosophy bestseller
Gédel, Escher, Bach: an eternal golden braid, Hofstadter| (1979) used Godel’s
work as a basis for his philosophy that all meaning stems from Godelesque self
referentiality which he calls strange loops.

Keeping in mind the considerable theoretical relevance of Godel’s findings
and the metaphysical interpretations it invites, it is more than worth it to take
an effort to understand the theorems, their proofs and the context in which they
arose. We hope that this paper may prove useful for some to be a step in that
direction.
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