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Caveats of optimal alignment algorithms

• All pairs of sequences have an optimal alignment, whether the
sequences are related or not.

• Optimal alignment is not necessarily unique. Many possible
alignments may be statistically indistinguishable.

• There is, however, only one biologically relevant alignment,
the one that traces the evolutionary descent of the two se-
quences.

• ...a more probabilistic treatment is desirable...
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Hidden Markov Models

• Hidden Markov Models are very general
probabilistic models for sequences.

• Typical questions for a given sequence:

– Does a given (protein) sequence belong to a particular family
(of proteins) ?

– Assuming the protein does come from some family, what can
we say about its internal (secondary) structure ?

• HMMs are powerful tools for probabilistic sequence alignment,
overcoming most of the shortcomings of classical algorithms.
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Markov Chains

Definition: A Markov chain is a triplet (Q,P,A), where

Q is a finite set of states.
Each state corresponds to a symbol in the alphabet Σ;

P = P (x1) is the initial state probabilities.

A is the state transition probabilities,
denoted by ast for each s, t ∈ Q: ast := P (xi = t|xi−1 = s).

Central property of Markov chains: Probability of symbol xi
depends only on the value of the preceding symbol xi−1:

P (xi|x1, . . . , xi−1) = P (xi|xi−1) = axi−1xi

M-chains are random processes with memory length 1.
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Markov Chains
• Joint probabiliy of two RVs A and B factorizes as
P (A,B) = P (B|A)P (A).
• Total probability of sequence X = (x1, . . . , xL):

P (X) = P (xL|xL−1, . . . , x1)· P (xL−1|xL−2, . . . , x1) · · ·P (x1)

= P (xL|xL−1)· P (xL−1|xL−2) · · · · · ·P (x1)

= P (x1)

L∏
i=2

axi−1xi

• Silent states:
Begin state: x0 := B ⇒ P (x1 = s) = aBs
End state: xL+1 = E ⇒ P (E|xL = t) = atE

P (X) =

L+1∏
i=1

axi−1xi
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A Markov chain for DNA sequences

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Example: CpG islands

• CpG denotes the dinucleotide CG:
...CATTCATCGCATTCTTTGGCAGGCGGAGGGAAGCCT...

• For chemical reasons, CpG is relatively rare in most DNA se-
quences (as compared to the product of independent probabili-
ties P(C) and P(G)).

• However, in particular short subsequences, called CpG islands,
the couple CG is more frequent.

• CpG islands are interesting, since they are known to appear in
more significant regions of the genome, such as around the
start regions of genes.
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Example: CpG islands

Wikipedia: CFCF, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30029083
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A Markov model for CpG islands

Problem: Identifying CpG islands.
INPUT: A short DNA sequence

X = (x1, . . . , xL), xi ∈ {A,C,G, T}.
QUESTION: Decide whether X is a CpG island.

• Use two different Markov chains: one for dealing with the CpG
islands (the “+” model), one for non CpG islands (the “-” model).

• Denote by a+/−
st the transition probabilities inside/outside CpG

islands.

• score(X) = log P (X|CpG island)
P (X|non CpG island) =

∑L
i=1 log

a+
xi−1xi

a−xi−1xi

High score it is more likely that X is a CpG island.
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Estimating the probabilities

Assume we are given a training sample of known sequences with
regions labeled as CpG/non-CpG islands.
Estimate transition probabilities by counting the number c+/−st of
times letter t followed letter s in +/− regions.  Maximum likelihood estimate

a
+/−
st =

c
+/−
st∑
t′ c

+/−
st′

Result are two tables:

+ A C G T - A C G T
A a+

AA a+
AC a+

AG a+
AT a−AA a−AC a−AG a−AT

C a+
CA . . . a−CA . . .

G a+
GA a−GA

T a+
TA a−TA
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Identifying CpG islands: Experimental results

In a set of human DNA sequences (in total ≈ 60, 000 nucleotides),
48 putative CpG islands have been identified

+ A C G T - A C G T
A 0.180 0.274 0.426 0.120 A 0.300 0.205 0.285 0.210
C 0.171 0.368 0.274 0.188 C 0.322 0.298 0.078 0.302
G 0.161 0.339 0.375 0.125 G 0.248 0.246 0.298 0.208
T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.292

 Two Markov-chains have been trained
 Length-normalized scores reported (in bits) according to

score(X) =
1

L
log

P (X|CpG island)

P (X|non CpG island)
=

1

L

L∑
i=1

log
a+
xi−1xi

a−xi−1xi
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Identifying CpG islands: Experimental results

Histogram of length-normalized scores. CpG islands are shown with dark grey, non-CpG islands shown with light grey.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Locating CpG islands

Problem: Locating CpG islands in a DNA sequence.
INPUT: A long DNA sequence X = (x1, . . . , xL), xi ∈ {A,C,G, T}.
QUESTION: Locate the CpG islands along X.

• Naive solution: extract sliding window of length l � L from the
sequence: Xk = (xk+1, . . . , xk+l) where 1 ≤ k ≤ L− l.
Calculate score(Xk) for each resulting subsequence.
Subsequences with positive score are potential CpG islands.

• Problem: No information about the length of the islands, but
algorithm assumes that islands are at least l nucleotides long.

– l too large islands are short substrings, and the scores may
not be high enough for a clear distinction.

– l too small small windows do not provide enough information
to distinguish between islands / non-islands.
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A unified model for locating CpG islands

Idea: combine the two Markov chains into a unified model, with a
small probability of switching from one chain to the other.

(Transitions within each set are not shown) Durbin et al., Cambridge University Press.

https://doi.org/10.1017/CBO9780511790492.004
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Hidden Markov Models

Definition: A Hidden Markov Model (HMM) is a triplet
M = (Σ, Q,Θ), where

Σ is an alphabet of symbols;

Q is a finite set of states, capable of emitting symbols from Σ;

Θ is a set of probabilities, comprised of

state transition probabilities akl for each k, l ∈ Q:
akl = P (πi = l|πi−1 = k).

emission probabilities ek(b) for each k ∈ Q and b ∈ Σ:
ek(b) = P (xi = b|πi = k).

A path Π = (π1, . . . , πn) is a sequence of states.

A path follows a simple Markov chain  probability of moving to
a given state depends only on previous state.
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Hidden Markov Models

Probability that the sequence X was generated by modelM using
the path Π:

P (X,Π) = aπ0π1 ·
L∏
i=1

eπi(xi)aπiπi+1
,

with π0 ≡ Begin and πn+1 ≡ End.

Begin End

AACTGGCGAATTCAGTCGAGGGTTAC
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Example 1: An HMM for detecting CpG islands

CA G T

TGCA

State
A+ C+ G+ T+ A− C− G− T−

↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓
A C G T A C G T

Emitted Symbol

Degenerate emission probabilities:

P (xi = A|πi = A+/−) = 1,

P (xi = A|πi = {C,G, T}+/−) = 0

analogous for other symbols.

Contrary to Markov chains: No longer a one-to-one correspon-
dence between states and the symbols. The path is hidden.
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Example 2: Modeling a dishonest casino

• Setting: dealer in casino rolls a die.

• He uses a fair die most of the time, but occasionally he switches
to a loaded die: P (6) = 0.5, P ({1, . . . , 5}) = 0.1.

• He switches from state “fair” (F) to state “loaded” (L) with prob-
ability aFL = 0.05. He switches back with probability aLF = 0.1.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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The decoding problem

• We observe a sequence of emitted symbols X = (x1, . . . , xL).

• But we do not know the sequence of states Π = (π1, . . . , πL) that
emitted X  the path Π is hidden.

• CpG islands:
knowing the path would allow us to locate the islands:
all parts that pass through the “+” states are CpG islands.

Problem: The decoding problem.
INPUT: A hidden Markov modelM = (Σ, Q,Θ) and a sequence X
over alphabet Σ, for which the generating path Π = (π1, . . . , πL) is
unknown.
QUESTION: Find the most probable generating path Π∗ for X,
i.e. the path Π∗ = arg maxΠP (X,Π).
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The Viterbi Algorithm

Notation:

For k ∈ Q and 0 ≤ i ≤ L, denote by vk(i) the probability of the
most probable path for the prefix (x1, . . . , xi) that ends in state k:

vk(i) = max
{Π|πi=k}

P (x1, . . . , xi,Π).

Arrange these values in a matrix V with Vki = vk(i).
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The Viterbi Algorithm: Main idea

• Assume that we know (for all k) vk(i − 1) = probability of most
likely path ending in state k with observation xi−1.

• Then vl(i) = el(xi) ·maxk∈Q(vk(i− 1)akl)

l

xix1, . . . , xi−1

v1(i− 1)

v2(i− 1)

v3(i− 1)
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The Viterbi Algorithm: Recursion

1. Initialization (i = 0): vB(0) = 1

∀k 6=B : vk(0) = 0

2. Recursion (i = 1, . . . , L): for all l ∈ Q calculate

vl(i) = el(xi) ·max
k

(vk(i− 1)akl)

ptri(l) = arg max
k

(vk(i− 1)akl)

3. Termination:

P (X,Π∗) = max
k

(vk(L)akE)

π∗L = arg max
k

(vk(L)akE)

4. Traceback (i = L, . . . , 1): π∗i−1 = ptri(π
∗
i )
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The Viterbi Algorithm (cont’d)

• Problem: extensive multiplication of probabilities might result in
an underflow.

• Solution: logarithmic scores products become sums:

vl(i+ 1) = log(el(xi+1)) + max
k
{vk(i) + log(akl)}

• Complexity:

– Time: calculate the values of O(|Q| · L) cells of the matrix V ,
spending O(|Q|) operations per cell
 overall time complexity is O(|Q|2 · L).

– Space: we have to store matrices of size (|Q| × L)

 space complexity is O(|Q| · L).
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A dishonest casino (cont’d)

Experiment: 300 random rolls were generated from the dishonest
casino model. Most probable path was computed by way of the
Viterbi algorithm.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
23



The total probability of a sequence

• For discriminating between CpG/non-CpG islands with Markov
chains, for each of both chains we calculated

P (X) =
∏L+1

i=1
axi−1xi.

For a HMM, calculating P (X,Π) is easy, but what about P (X)?

• Must add the probabilities for all possible paths producing X:

P (X) =
∑
Π

P (X,Π)

INPUT: A hidden Markov modelM = (Σ, Q,Θ) and a sequence X
over alphabet Σ, for which the generating path Π = (π1, . . . , πL) is
unknown.
QUESTION: Calculate the total probability P (X).
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The total probability of a sequence (cont’d)

• Problem: number of possible paths increases exponentially
with the length of X.

• Possible approximation: first compute most probable path Π∗

by using the Viterbi algorithm, then evaluate

P (X,Π∗) = aπ∗0π
∗
1
·
L∏
i=1

eπ∗i(xi)aπ∗i π
∗
i+1

• Assumption: Π∗ is only path with significant probability.

• Approximation unnecessary, P (X) can be calculated by dy-
namical programming: replace maximization with summation 
forward algorithm.

• Interesting quantity: P (Π∗|X) = P (X,Π∗)
P (X) is a measure of

“correctness” of the most probable path Π∗.
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The forward algorithm

x1, . . . , xi−1 xi

l

f1(i− 1)

f2(i− 1)

f3(i− 1)

fl(i): Prob. of emitting prefix (x1, . . . xi) and reaching state πi = l

fl(i) = el(xi) ·
∑
k∈Q

fk(i− 1)akl
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The forward algorithm

fk(i): Joint probability of emitting the prefix (x1, . . . xi) and reaching
the state πi = k: fk(i) = P (x1, . . . , xi, πi = k).

1. Initialization (i = 0), i.e. empty prefix:

fB(0) = 1

∀k 6=B : fk(0) = 0

2. Recursion (i = 1, . . . , n): for all l ∈ Q calculate

fl(i) = el(xi) ·
∑
k

fk(i− 1)akl

3. Termination:
P (X) =

∑
k

fk(L)akE
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Posterior Decoding

• Viterbi: most probable path through the model.

• Forward: total probability of sequence X = sum over all paths.

• What about the state at a particular point i in a sequence
X = (x1, . . . , xi, . . . xL)?

• What is the probability that the observation xi came from the
state k given the observed sequence X?

• P (πi = k|X): posterior probability of state k at time i when the
sequence is known.
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Posterior Decoding (cont’d)

Problem: Posterior decoding
INPUT: Hidden Markov model M = (Σ, Q,Θ) and sequence X

over alphabet Σ, generating path Π = (π1, . . . , πL) is unknown.
QUESTION: For each 1 ≤ i ≤ L and k ∈ Q,

compute the probability P (πi = k|X).

• P (πi = k|X) = P (X,πi=k)
P (X) , X = (

prefix︷ ︸︸ ︷
x1, . . . , xi,

suffix︷ ︸︸ ︷
xi+1, . . . xL).

• Memory length is 1 dependency only on the last state

P (A,B) = P (A) ·P (B|A)

P (X,πi = k) = P (x1, . . . , xi, πi = k) ·P (xi+1, . . . , xL|x1, . . . , xi, πi = k)

= P (x1, . . . , xi, πi = k) ·P (xi+1, . . . , xL|πi = k)

= fk(i) ·bk(i)
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The Backward Algorithm

k

xi+1xi

1

2

3

b1(i+ 1)

b2(i+ 1)

b3(i+ 1)

xi+2, . . . , xL

bk(i): Probability of emitting suffix (xi+1, . . . xL) given πi = k.

bk(i) = P (xi+1, . . . , xL|πi = k)

=
∑
l∈Q

akl · el(xi+1) · bl(i+ 1).
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The Backward Algorithm

bk(i): Probability of emitting the suffix (xi+1, . . . xL) given πi = k:
bk(i) = P (xi+1, . . . , xL|πi = k).

1. Initialization (i = L), i.e. empty suffix:

∀k∈Q : bk(L) = akE

2. Recursion (i = L− 1, . . . , 1):

bk(i) =
∑
l∈Q

akl · el(xi+1) · bl(i+ 1)

3. Termination:
P (X) =

∑
l∈Q

aBl · el(x1) · bl(1)
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A dishonest casino (cont’d)

Posterior probability of being in the state corresponding to the
fair die:

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Shaded areas: loaded die was used.
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Uses for Posterior Decoding

• If many paths have almost the same probability as the most prob-
able one, we might want to consider other paths as well.

• E.g. the alternative path Π∗∗, comprised of state sequence {ki}
in which each state ki has the highest probability to emit xi at
time i:

Π∗∗ = arg max
k
{P (πi = k|X)}

• Π∗∗ is a concatenation of locally most probable states, but it
may not be particularly likely as a path through the whole model.

• Π∗∗ may even not be a legitimate path, since some transitions
may not be permitted (might have zero probabilities).
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Uses for Posterior Decoding (cont’d)

• Often we are interested in some derived property.
Consider function g(k)  an interesting property might be its
expectation under the posterior probability:

G(i|X) = EP (πi|X)[g] =
∑

k
P (πi = k|X)g(k)

• Example: g(k) = 1 for a subset S of states, and 0 for the rest
 G(i|X) = posterior probability that a state in S emitted xi.

• In the CpG island model, we may define

g(k) =

{
1 for k ∈ {A+, C+, G+, T+}
0 for k ∈ {A−, C−, G−, T−}

 G(i|X) is the posterior prob. that xi is in a CpG island.
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Parameter Estimation

• Recall: HMM is a tripletM = (Σ, Q,Θ).
Θ is a set of probabilities, comprised of

state transition probabilities alm for each l,m ∈ Q
emission probabilities el(b) for each l ∈ Q and b ∈ Σ.

• What can be done if Θ is unknown?

• Consider a set of n independent training sequences
X = {X1, . . . , Xn} of size L and the corresponding set of paths
Ψ = {Π1, · · · ,Πn}

• For all n sequences the total likelihood is

P (X ,Ψ|Θ) =

n∏
i=1

P (Xi,Πi|Θ) =

n∏
i=1

L∏
k=0

eπi
k
(xik)aπi

k
πi
k+1
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Parameter Estimation: Known state paths

• Idea: estimate Θ by maximizing the total likelihood, i.e. find
the model that best explains the observed data:

Θ̂ = arg max
Θ

P (X ,Ψ|Θ)

• Assume that paths of training sequences are known: Count

– El(b): total number of times the b-th observation symbol is
emitted from the l-th state,

– Alm: number of transitions from the m-th state to the l-th state.

• ML estimates are the observed frequencies:

êl(b) =
El(b)∑
b′El(b

′)
, âlm =

Alm∑
l′Al′m
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Parameter Estimation: General case

General case: the paths Ψ are unknown
 we cannot simply count the total numbers El(b) and Alm.

Expectation-Maximization (EM) Algorithm.
E-step: Compute expected counts:

El(b) =
∑
Ψ

P (Ψ|X ,Θ)EΨ
l (b)

Alm =
∑
Ψ

P (Ψ|X ,Θ)AΨ
lm

M-step:

êl(b) =
El(b)∑
b′ El(b′)

, âlm =
Alm∑
l′Al′m

Note that P (Ψ|X ,Θ) depends on current êl(b) and âlm iterate.
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Parameter Estimation: General case (cont’d)

E-step: All we need is the forward-/backward algorithm:

El(b) = expected number of times that letter b appears in state l

=
∑
j

1

P (Xj)

∑
i|xji=b

f jl (i)bjl (i)︸ ︷︷ ︸
P (Xj),f

j
l

and bj
l

from forward/backward alg.

Alm = expected number of state transitions from m to l

=
∑
j

1

P (Xj)

∑
i

f jl (i) · alm · em(xji+1) · bjm(i+ 1)

38



Identifying prokaryotic genes
A prokaryote is a cellular organism that lacks an envelope-enclosed
nucleus. Organisms with nuclei are called Eukaryota.

By Science Primer, https://commons.wikimedia.org/w/index.php?curid=2145991
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Identifying prokaryotic genes

Prokaryotes are divided into two domains: Bacteria and Archaea.

By Maulucioni y Dorid - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25888693
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Identifying prokaryotic genes
Genes of prokaryotes have a simple structure:
Start codon codons coding for amino acids stop codon.
Codons = nucleotide triplets, 61 for amino acids + 3 stop codons.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Identifying prokaryotic genes

• Finding gene candidates: basically just looking for stretches of
DNA with the correct structure.
Such candidate is an open reading frame (ORF).

• But there are many more ORFs than real genes.

• Idea: Encode the 64 codons by some characters,
 train HMM on these codon sequences.
Same architecture as was used for CpG islands:
“+” states for genes, “-” states for NORFs (non-coding ORFs).

• DNA from E. coli bacteria (Krogh, Mian & Haussler [1994]):
1100 genes and ≈ 30000 NORFs,
randomly divided into training and testset.
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Identifying prokaryotic genes

Histograms of the log-odds per nucleotide for all NORFs (grey) and genes
(black line).

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Chapter 2

Hidden Markov Models

Pair HMMs for Sequence Alignment

H L _ _ A E S K

V L S P A D _ K

M

qyj

δ

δ
1− 2δ

1− ε

ε

pxi,yj

1− ε

ε

X

Y

qxi

M

qyj

δ

δ
1− 2δ

1− ε

ε

pxi,yj

1− ε

ε

X

Y

qxi
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Pairwise alignment using HMMs

• The states of an HMM fulfill the Markov property:
Probability of transition depends only on the last state.

• CpG islands and casino example:
HMMs emit sequence of symbols (nucleotides or die rolls).

• We only observe the emitted sequences, the generating state
path is unknown  inference problems, e.g. estimate the
most probable generating path ( Viterbi algorithm).

• Knowing the path allows us to analyze the internal structure of
the string (localizing CpG islands, deciding if the die was fair...)
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Pair HMMs for string alignment

HMMs can be used for sequence alignment:
emission is not a single string, but a pair of aligned strings
 pair HMMs.

From a FSA to a pair HMM:

• Define emission probabilities for states:
Match state M emits an aligned pair of symbols xi♦yj

with probability pxiyj.
Insert state X emits xi against a gap with probability qxi.

• Define transition probabilities between the states.
Requirement: probabilities for all the transitions leaving a state
must sum to one.

• Add begin and end states to model the sequence length.
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FSAs and Pair HMMs

(+1,+0)

(+0,+1)

(+1,+1)

-e

-e

-d

IX

IY

-d

s(xi, yj)

s(xi, yj)

s(xi, yj) M M

qyj

δ

δ
1− 2δ

1− ε

ε

pxi,yj

1− ε

ε

X

Y

qxi

EndM

qyj

δ

δ

ε

pxi,yj

ε

X

Y

qxi

1− 2δ − τ

τ

τ

δ

τ

1− 2δ − τ

τBegin

δ

1− ε− τ

1− ε− τ
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Recall: General structure of Viterbi algorithm

l

xix1, . . . , xi−1

v1(i− 1)

v2(i− 1)

v3(i− 1)

vl(i): Probability of most probable path for prefix (x1, . . . , xi)

that ends in state πi = l ∈ Q.

vl(i) = el(xi) ·max
k∈Q

(vk(i− 1)akl)
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Pair HMMs: Generative models for alignments

H L _ _ A E S K

V L S P A D _ K

M

qyj

δ

δ
1− 2δ

1− ε

ε

pxi,yj

1− ε

ε

X

Y

qxi

M

qyj

δ

δ
1− 2δ

1− ε

ε

pxi,yj

1− ε

ε

X

Y

qxi

vM/X/Y (i, j) = probability of most probable path for
prefix alignment of (x1, . . . , xi) and (y1, . . . , yj)

that ends in state M/X/Y .
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Pair HMMs: Viterbi algorithm (cont’d)

Initialization: vM(0, 0) = 1, vM(0, j) = vM(i, 0) = 0.
Initialize vX(0, j) and vY (i, 0) (random model).

Recurrence: i = 1, . . . , n, j = 1, . . . ,m:

vM(i, j) = pxi,yj ·max


(1− 2δ − τ)vM(i− 1, j − 1)

(1− ε− τ)vX(i− 1, j − 1)

(1− ε− τ)vY (i− 1, j − 1)

EndM

qyj

δ

δ

ε

pxi,yj

ε

X

Y

qxi

1− 2δ − τ

τ

τ

δ

τ

1− 2δ − τ

τBegin

δ

1− ε− τ

1− ε− τ
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Pair HMMs: Viterbi algorithm (cont’d)

Initialization: vM(0, 0) = 1, vM(0, j) = vM(i, 0) = 0.
Initialize vX(0, j) and vY (i, 0) (random model).

Recurrence: i = 1, . . . , n, j = 1, . . . ,m:

vM(i, j) = pxi,yj·max


(1− 2δ − τ)vM(i− 1, j − 1)

(1− ε− τ)vX(i− 1, j − 1)

(1− ε− τ)vY (i− 1, j − 1)

vX(i, j) = qxi ·max

{
δvM(i− 1, j)

εvX(i− 1, j)

vY (i, j) = qyj ·max

{
δvM(i, j − 1)

εvY (i, j − 1)

M

M

X

M

1−2δ−τ

δ

ε

X

X

1−ε−τ

1−ε−τ
Y
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Pair HMMs: Viterbi algorithm (cont’d)

Termination:

vE = τ max
[
vM(n,m), vX(n,m), vY (n,m)

]
X

Y

E

τ

τ

τ

M

Traceback:

We keep traceback pointers as usual
 reconstruct the whole alignment from the pointers.
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The Viterbi – FSA Connection

These two models are obviously highly related...
...but what is the precise connecton? Is there a specific substitution
matrix and affine gap costs such that the FSA alignment is identical
with the Viterbi path?

(+1,+0)

(+0,+1)

(+1,+1)

-e

-e

-d

IX

IY

-d

s(xi, yj)

s(xi, yj)

s(xi, yj) M EndM

qyj

δ

δ

ε

pxi,yj

ε

X

Y

qxi

1− 2δ − τ

τ

τ

δ

τ

1− 2δ − τ

τBegin

δ

1− ε− τ

1− ε− τ
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The Viterbi – FSA Connection

Theorem: The most probable path through the pair HMM for global
alignment gives the optimal alignment associated with the substi-
tution matrix

s(xi, yj) = log
p(xi, yj)

qxiqyj
+ log

(1− 2δ − τ)

(1− η)2

with affine gap penalty γ(g) = −d− (g − 1)e with

d = − log
δ(1− ε− τ)

(1− η)(1− 2δ − τ)
,

e = − log
ε

1− η
.

Proof: exercises.
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A random model written as a Pair HMM

No match state  the states RX and RY emit two sequences in
turn, independently of each other.

Silent transitional state

Emitted symbols

EndBegin

1− η

η

η

η

xi yj

1− ηη

1− η

RX
qxi

RY
qyj

1− η
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A pair HMM for local alignment

ε
X
qxi

M

qyj

δ

δ
pxi,yj

ε
Y

1− 2δ − τ

τ

τ

δ

1− 2δ − τ

τ

1− ε− τ

1− ε− τ

qxi

qyj

η

η

1− η

1− η

1− η

1− η

η

RX2

RY2

End

Begin

qxi

qyj

η

η

1− η

1− η

1− η

1− η

RY1

RX1

η

δ

τ

η η

Global model flanked by two copies of the random model
 arbitrary start and stop of alignment.

Sequences in flanking regions are unaligned (random model).
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The full probability of two aligned sequences
• If the similarity is weak, it is hard to find the correct alignment.
• HMMs allow us to calculate the probability that two sequences

are related by any alignment:

P (X,Y ) =
∑

alignments Π

P (X,Y,Π)

• P (X,Y ) always higher than Viterbi-probability P (X,Y,Π∗)!
Can be significantly different when there are many comparable
alternative alignments.
• More realistic score: likelihood that two sequences are related

by some unspecified alignment as opposed to being unrelated:

score(X,Y ) =
P (X,Y |Match)

P (X,Y |Random)
=

∑
ΠP (X,Y,Π)

qxqy

• How to compute
∑

ΠP (X,Y,Π)? Forward algorithm.
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Recall: The forward algorithm
x1, . . . , xi−1 xi

l

f1(i− 1)

f2(i− 1)

f3(i− 1)

fl(i): Probability of emitting the prefix (x1, . . . xi)

and reaching the state πi = l.

fl(i) = el(xi) ·
∑

k∈Q
fk(i− 1)akl.

Here: denote by fM/X/Y (i, j) the combined probability of all prefix
alignments up to position i and j.
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The full probability: forward algorithm

fM(i, j) = pxi,yj

[
(1− 2δ − τ)fM(i− 1, j − 1)

+(1− ε− τ)fX(i− 1, j − 1)

+(1− ε− τ)fY (i− 1, j − 1)

]

fX(i, j) = qxi

[
δfM(i− 1, j) + εfX(i− 1, j)

]

fY (i, j) = qyj

[
δfM(i, j − 1) + εfY (i, j − 1)

]

M

M

X

M

1−2δ−τ

δ

ε

X

X

1−ε−τ

1−ε−τ
Y
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The full probability (cont’d)

P (X,Y ) = fE = τ
[
fM(n,m) + fX(n,m) + fY (n,m)

]
X

Y

E

τ

τ

τ

M

Important use of P (X,Y ): posterior distribution over alignments
Π given two sequences X,Y :

P (Π|X,Y ) =
P (X,Y,Π)

P (X,Y )
.

Example: set Π = Π∗, the Viterbi path:

P (Π∗|X,Y ): Posterior probability of observing the Viterbi path
= probability that the optimal scoring alignment is “correct”.
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The full probability (cont’d)

Globin example:

P (Π∗|X,Y ) = 4.6 · 10−6.

 Alarming observation if one was hoping that standard
alignment algorithms would find the “correct” alignment !

Explanation: there are many small variants of alignments with
nearly the same score.
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The posterior probability

• Degree of conservation along the sequence may vary depend-
ing on functional / structural constraints ⇒ some parts of the
alignment will be clear, other regions may be less certain.

• Local view: what about the local accuracy of an alignment?

• We are interested in a reliability measure for each part of an
alignment: probability of two characters (xi, yj) being aligned,
given the complete sequences:

P (xi♦yj|X,Y )

• How to compute?  backward algorithm.
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The backward algorithm

• The quantity we are interested in:

P (xi♦yj|X,Y ) =
P (xi♦yj, X, Y )

P (X,Y )
.

• The denominator: final result from forward algorithm:

P (X,Y ) = fE(n,m).

• Numerator: P (X,Y, xi♦yj) =

= P (x1,...,i, y1,...,j, xi♦yj︸ ︷︷ ︸
A

) ·P (xi+1,...,n, yj+1,...,m|x1,...,i, y1,...,j, xi♦yj︸ ︷︷ ︸
A

)

Markov
= P (x1,...,i, y1,...,j, xi♦yj) ·P (xi+1,...,n, yj+1,...,m|xi♦yj)
= fM(i, j) ·bM(i, j).

63



Recall: The backward algorithm

k

xi+1xi

1

2

3

b1(i+ 1)

b2(i+ 1)

b3(i+ 1)

xi+2, . . . , xL

bk(i): Probability of emitting suffix (xi+1, . . . xL) given πi = k.

bk(i) =
∑
l∈Q

akl · el(xi+1) · bl(i+ 1).

Here: bM/X/Y (i, j): Probability of suffix alignment starting at i + 1

and j + 1 given state πi ∈ {M,X, Y }.
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The backward algorithm: recursion

bM(i, j) = (1− 2δ − τ)pxi+1,yj+1
bM(i+ 1, j + 1)

+δ

[
qxi+1

bX(i+ 1, j) + qyj+1
bY (i, j + 1)

]
;

bX(i, j) =(1− ε− τ)pxi+1,yj+1
bM(i+ 1, j + 1)

+εqxi+1
bX(i+ 1, j);

bY (i, j) =(1− ε− τ)pxi+1,yj+1
bM(i+ 1, j + 1)

+εqyj+1
bY (i, j + 1).

X ε

X

M

1−ε−τ

M

1−2δ−τ

Xδ

M

Yδ
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Chapter 2

Hidden Markov Models

Profile HMMs

x
1

x
2

x
3

x
5

x
4

y y y y
54321

y

Pairwise alignment

e (b) e (b) e (b)
2 3 4

e (b)
5

Profile alignment

e (b)1

x x x x x
1 2 3 4 5

V E V
Y

Y

YN

Y

KV

V

F

N

N

AN
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Profile HMMs
Observation: highly similar sequences form “sequence families”.
How can test if a query sequence belongs to a family?

Assume we are given a multiple alignment of sequences, built
from structural information.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Gaps tend to line up with each other solid ungapped blocks.
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Profile HMMs
Consider these ungapped blocks first.

Definition: A profile P of length L is the set of probabilities ei(b)
of observing letter b ∈ Σ at the i-th position.

The probability of a new sequence X according to a given
profile P is

P (X|P) =

L∏
i=1

ei(xi).

E V

Y

YN

Y

K N

AN

A

N

E

AV

V

V

F

N Y

e1(x1)

x1

e2(x2)

x2 x3

e3(x3)

x4

e4(x4) e5(x5)

x5
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Position specific score matrices

• Typical question: does a new sequence X belong to the family
of sequences from which the profile was built?

• Align the sequence against the profile. Test the membership in
the family by evaluating the likelihood score

score(X|P) =

L∑
i=1

log
ei(xi)

qxi
.

• The values log ei(xi)qxi
behave like usual scores s(a, b), where the

second index is position i rather than amino acid b.
⇒ Position specific score matrix (PSSM).
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Position specific score matrices (cont’d)

• A PSSM is a trivial HMM:
Series of sequentially linked match states M1, . . . ,ML.

MLM2
... EndBegin M1

Emission probabilities are eMj
(b), transition probabilities are 1.

• No choice of transitions
 alignment of a new sequence against the profile is trivial.

• PSSM for an ungapped block captures only some information
 need to find a way to take account of gaps.

• Add insertion states I1, . . . , Il to the model. Assume that
emission probabilities of insert states equals random probability:
eIj(a) = qa (as in pair HMMs for seeing an unaligned symbol).
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Position specific score matrices (cont’d)

Mj+1Mj−1

I

M j

j

• Transitions: Mj → Ij (gap open), Ij → Ij (gap extension),
Ij →Mj+1 (next match).

• log-odd costs of insert: Sum of of logarithms of transition proba-
bilities and emission probabilities (assuming gap of length k)

transitions︷ ︸︸ ︷
log(aMjIj) + log(aIjMj+1

)︸ ︷︷ ︸
gap open

+ (k − 1) log(aIjIj)︸ ︷︷ ︸
gap extension

+

emission

log
eIj(x)

qx︸ ︷︷ ︸
=0
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PSSMs: Allowing Deletions

• Allow deletions (segments of the multiple alignment that are not
matched by any character in x): forward jump transitions.

• Problem: too many jump transitions required.

• Solution: Add deletion states Di, . . . , DL.
They cannot emit any symbol silent states.
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Deletions (cont’d)

Model with deletion states:

Mj−1
M j

D

Mj+1

j j+1DDj−1

But a price is paid for the reduction in the number of parameters:
fully connected model can have high transition probabilities from
1→ 5 and 2→ 4, but low ones from 1→ 4 and 2→ 5.

1 2 3 4 5

Not possible for the model with silent states.
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A full profile HMM model

M

Dj

j

I j

Begin End

x
1

x
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x
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x
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x
4

y y y y
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Profile HMM are generalized pair HMMS

Special case: multiple alignment consist of one sequence.
Then, the profile HMM is an unrolled version of a pair HMM.

M

x x x 4x321

1 3M

I

M 2

D

M4

Emitted query sequence

Profile HMM is effectively the model obtained by conditioning the
pair HMM on emitting the query sequence X as one of the aligned
sequence.
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Recall: General structure of Viterbi algorithm

l

xix1, . . . , xi−1

v1(i− 1)

v2(i− 1)

v3(i− 1)

vl(i): Probability of most probable path for prefix (x1, . . . , xi)
that ends in state πi = l ∈ Q:

vl(i) = el(xi) ·max
k∈Q

[vk(i− 1)akl]

Log-odds variant: Vl(i) = log el(xi)
qxi

+ maxk∈Q[Vk(i− 1) + log(akl)]

Log-likelihood score of best path for prefix that ends in state πi = l ∈ Q.
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Profile HMM: Viterbi algorithm

Recurrence: Predecessors of match state Mj are the three states
of the previous layer j − 1:

VMj (i) = log
eMj

(xi)

qxi
+ max


VMj−1(i− 1) + log(aMj−1,Mj

)

V Ij−1(i− 1) + log(aIj−1,Mj
)

V Dj−1(i− 1) + log(aDj−1,Mj
)

Mj+1Mj−1
M j

I j

Dj

I

D j−1

j−1
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Profile HMM: Viterbi algorithm

Predecessors of insertion state Ij are the three states of the same
layer j:

V Ij (i) =

=0, if eIj(xi)=qxi︷ ︸︸ ︷
log

eIj(xi)

qxi
+ max


VMj (i− 1) + log(aMj,Ij)

V Ij (i− 1) + log(aIj,Ij)

V Dj (i− 1) + log(aDj,Ij)

Mj+1Mj−1
M j

I j

Dj

I

D j−1

j−1
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Profile HMM: Viterbi algorithm

Predecessors of deletion state Dj are the three states of the layer
j − 1. Dj is a silent state→ no emission:

V Dj (i) = max


VMj−1(i) + log(aMj−1,Dj)

V Ij−1(i) + log(aIj−1,Dj)

V Dj−1(i) + log(aDj−1,Dj)

Mj+1Mj−1
M j

I j

Dj

I

D j−1

j−1
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Profile HMM: Viterbi algorithm

Complexity:

We have to calculate O(L ·m) values, while calculating each value
takes O(1) operations (since we only need to consider the scores
of at most three predecessors).

We therefore need O(L ·m) time and O(L ·m) space.
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Profile HMM: local alignment

Replace original Begin/End states with silent transitional states that
are connected to all match-states. Add two independent random
models alignment can start and stop everywhere.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Application example

Profile HMM was trained on 300 globin proteins, used for searching
other globin sequences in the SWISS-PROT database.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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