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Chapter 2

Hidden Markov Models

General Introduction
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Caveats of optimal alignment algorithms

e All pairs of sequences have an optimal alignment, whether the
sequences are related or not.

e Optimal alignment is not necessarily unique. Many possible
alignments may be statistically indistinguishable.

e There is, however, only one biologically relevant alignment,
the one that traces the evolutionary descent of the two se-
qguences.

e ...a more probabilistic treatment is desirable...



Hidden Markov Models

e Hidden Markov Models are very general
probabilistic models for sequences.

e Typical questions for a given sequence:

— Does a given (protein) sequence belong to a particular family
(of proteins) ?

— Assuming the protein does come from some family, what can
we say about its internal (secondary) structure ?

e HMMSs are powerful tools for probabilistic sequence alignment,
overcoming most of the shortcomings of classical algorithms.



Markov Chains

Definition: A Markov chain is a triplet (Q, P, A), where

@ Is a finite set of states.
Each state corresponds to a symbol in the alphabet 3;

P = P(x) is the initial state probabilities.

A Is the state transition probabilities,
denoted by a4 for each s,t € Q: as := P(x; = t|lx;_1 = ).

Central property of Markov chains: Probability of symbol z;
depends only on the value of the preceding symbol x;_1:

P(xi|z1, ..., xi-1) = P(xg|wi—1) = Ar,_1x;

M-chains are random processes with memory length 1.



Markov Chains

e Joint probabiliy of two RVs A and B factorizes as
P(A,B) = P(B|A)P(A).
o Total probability of sequence X = (z1,...,z1):

P(X)=P(xrlrr-1,...,21) Plxp-1|rp—2,...,21) ---

= P(xp|rp_1)- P(xp_1|lxp—2) -
L
= P(x1) H Qi jx;
i—2

e Silent states:
Begin state: o := B = P(z; = s) = ags
End state: ;.1 =& = P(€|lxr =1) = ase
L



A Markov chain for DNA sequences

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004



Example: CpG islands

e Cp(G denotes the dinucleotide CG:
.. .CATTCATCGCATTCTTTGGCAGGCGGAGGGAAGCCT. ..

e For chemical reasons, CpG is relatively rare in most DNA se-
quences (as compared to the product of independent probabili-
ties P(C) and P(G)).

e However, in particular short subsequences, called CpG islands,
the couple CG is more frequent.

e CpG islands are interesting, since they are known to appear in
more significant regions of the genome, such as around the
start regions of genes.



Example: CpG islands

CATTC CCTTCTCTCC AGGTGG TGGGA
GGTGTTTTGCT GGTTCTGTAAGAATAGGCCAGG
CAGCTTCC GGATG  CTCATCCCCTCT G
GGTTC  CTCCCAC C T GC GTT
C CCTG AGATGTTTTC A  GACAATGATTC
CACTCT G CCTCCCATGTTGATCCCAGCTCCT
CTG GG TCAGGACCCCTGGGCCC CCC

CTCCACTCAGTCAATCTTTTGTCCC  TATAAGG

GATTAT GGGTGGCTGGGGG GCTGATTC A
AATGCCCTTGGGGGTCACC  GGAGGGAACTC
GGCTC GCTTTGGCCAGCC  CACCCCTGGT
TGAGC GCC AGGGCCACCAGGGGG CT

ATGTTCCTGCAGCCCCC  CAGCAGCCCCACTCC
C GCTCACCCTA ATTGGCTGGC CCC AG
CTCTGTGCTGTGATTGGTCACAGCC TGTC T

GG C GGG GATA AGGTGA CA
GAGGCCCAGCT GGG GTGTCC C G
ACTG GG GAGTTT AGGGC  AAG

GGGCAGTGTGA GCAG GTCCTGGGAGG C

Cc T ~GAGCAGCTCCC TCCTC CA
GC TCAC C GC T C CCCTGGCC
TCC CACT CACTCCTGTC C  CCCAC

CCCACCTCCCACCT ATG GTGC GGCTGC

TG TGATGGGGCTG GAG G CCCTG G
CT G GC CTGCT CTGAGGTG T
GTGCC GCCCCC CcccC C

GCTCCTGTTGACC GTC CC T GTCTGC

AG GCTGAGGTAAGG G  GGGCTGGC
GTTGG C GT GGGTTGGGGAGGG
GGC CTTC GGGAGGAG GC GGCCGG

GGTC GG GGGTCTGAGGGGA

CTCTTAGTTTTGGGTGCATTTGTCTGGTCTTCCAAA
CTAGATTGAAAGCTCTGAAAAAAAAAACTATCTTGT
GTTTCTATCTGTTGAGCTCATAGTAGGTATCCAGGA
AGTAGTAGGGTTGACTGCATTGATTTGGGACTACAC
TGGGAGTTTTICTT  CCATCTCCCTTTAGTTTTCCT
TTTTTTCTTTCTTTCTTTTICTTTTITTITICTTTTITITITI
TTGAGATGT TCTTGCTCAGTCCCCCAGGCTGGA
GTGCAGTGGTG  ATCTTGGCTCACTGTAGCCTCC
ACCTCCCAGGTTCAAGCAATTCTACTGCCTTAGCCT
CC AGTAGCTGGGATTACAAGCACC CCACCAT
TCCTGGCTAATTTTTTTTTTTGTATTTTTAGTTGAGA
CAGGGTTTCACCATGTTGGTGATGCTGGTCTCAGA
CTCCTGGGGCCTAG ATCCCCCTGCCTCAGCCT
CCCAGAGTGTTAGGATTACAGGCATGAGCCACTGT
ACC GCCTCTCTCCAGTTTCCAGTTGGAATCCAA
GGGAAGTAAGTTTAAGATAAAGTTA  ATTTTGAAAT
CTTTGGATTCAGAAGAATTTGTCACCTTTAACACCT
AGAGTTGAA  TTCATACCTGGAGAGCCTTAACATT
AAGCCCTAGCCAGCCTCCAGCAAGTGGACATTGGT
CAGGTTTGGCAGGATT TCCCCTGAAGTGGACT
GAGAGCCACACCCTGGCCTGTCACCATACCCATCC
CCTATCCTTAGTGAAGCAAAACTCCTTTGTTCCCTT
CTCCTTCTCCTAGTGACAGGAAATATTGTGATCCTA
AAGAATGAAAATAGCTTGTCACCT TGGCCTCAG
GCCTCTTGACTTCAGG  GTTCTGTTTAATCAAGT
GACATCTTCC AGGCTCCCTGAATGTGGCAGATG
AAAGAGACTAGTTCAACCCTGACCTGAGGGGAAAG
CCTTTGTGAAGGGTCAGGAG

Left: CpG sites at 1/10 nucleotides, constituting a CpG island. The
sample is of a gene-promoter, the highlighted ATG consitutes the

start codon.

Right: CpG sites present at every 1/100 nucleotides, consituting a
more normal example of the genome, or a region of the genome

that is commonly methylated.

Wikipedia: CFCF, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=30029083



A Markov model for CpG islands

Problem: Identifying CpG islands.
INPUT: A short DNA sequence

X = (xl, e ,QJL), T; < {A, C, G,T}
QUESTION: Decide whether X is a CpG island.

e Use two different Markov chains: one for dealing with the CpG

islands (the “+” model), one for non CpG islands (the “-” model).

e Denote by a;';/ ~ the transition probabilities inside/outside CpG
islands.

+
B P(X|CpGisland)  ~—~L Yo; 12
e score(X) = log P(X[non CpGisland) — 2 i1 108 =

a, . ;
L;—1%4

High score ~- it is more likely that X is a CpG island.



Estimating the probabilities

Assume we are given a training sample of known sequences with
regions labeled as CpG/non-CpG islands.

Estimate transition probabilities by counting the number cjt/ — of
times letter ¢ followed letter s in 4/ — regions. ~» Maximum likelihood

+/-
a-i—/— Cst
st _|_/_
Dy Coy/
Result are two tables:
+ | A C G T - A C G T
F F F F = = = =
A aéA Aac QApag Qar Apaa Qac Qag QAT
C algA e o o a/CA
G afﬁA Qg
T |ary A A




Identifying CpG islands: Experimental results

In a set of human DNA sequences (in total ~ 60, 000 nucleotides),
48 putative C'pG islands have been identified

+ A C G T — A C G T

A 0.180 0.274 0.426 0.120 A 0.300 0.205 0.285 0.21
Cc 0.171 0.368 0.274 0.188 C 0.322 0.298 0.078 0.30:
G 0.161 0.339 0.375 0.125 G 0.248 0.2406 0.298 0.20:
T 0.079 0.355 0.384 0.182 T 0.177 0.239 0.292 0.29:

~ Two Markov-chains have been trained
~ Length-normalized scores reported (in bits) according to

1 P(X|CpG island) Zlog Ay

X)=—-1
score(X) 7,9 P(X|non CpG island) Az;_12;

10



Identifying CpG islands: Experimental results
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Histogram of length-normalized scores. CpG islands are shown with dark grey, non-CpG islands shown with light grey.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Locating CpG islands

Problem: Locating CpG islands in a DNA sequence.
INPUT: A long DNA sequence X = (x1,...,x1), x; € {A,C,G,T}.
QUESTION: Locate the CpG islands along X.

e Naive solution: extract sliding window of length [ < L from the
sequence: X* = (xp41,...,Tre;) Wherel <k <L —1.
Calculate score(X*) for each resulting subsequence.
Subsequences with positive score are potential CpG islands.

e Problem: No information about the length of the islands, but
algorithm assumes that islands are at least | nucleotides long.

— [ too large ~~ islands are short substrings, and the scores may
not be high enough for a clear distinction.

— [ too small ~ small windows do not provide enough information
to distinguish between islands / non-islands.

12



A unified model for locating CpG islands

Idea: combine the two Markov chains into a unified model, with a
small probability of switching from one chain to the other.

(Transitions within each set are not ShOWﬂ) Durbin et al., Cambridge University Press

https://doi.org/10.1017/CB0O9780511790492.004



Hidden Markov Models

Definition: A Hidden Markov Model (HMM) is a triplet
M= (X2,Q,0), where

Y) Is an alphabet of symbols;
(@ Is a finite set of states, capable of emitting symbols from >:;
O is a set of probabilities, comprised of

state transition probabilities ay; for each k,1 € Q:
Ar] — P(T('Z — l‘ﬂ'i_l — k)
emission probabilities ex(b) for each k € Q and b € X:

A path II = (74, ..., 7,) Is a sequence of states.

A path follows a simple Markov chain ~- probability of moving to
a given state depends only on previous state.

14



Hidden Markov Models

Probability that the sequence X was generated by model M using

the path II:
L
P(X, H) = awom : H 671'@-(337;)&71'@'71'@'4_17
i=1
with 7o = Begin and m,.1 = End.

r AACTGGCGAATTCAGTCGAGE(ET TAC

15



Example 1: An HMM for detecting CpG islands
State

AT CcF Gf Tt A~ O G T
R S
A C G T A C G T

Emitted Symbol

Degenerate emission probabilities:
P(x; = Alm; = AT/ ") =1,
P(z; = Alm; = {C,G, T} ") =0
analogous for other symbols.

Contrary to Markov chains: No longer a one-to-one correspon-
dence between states and the symbols. The path is hidden.

16



Example 2: Modeling a dishonest casino

e Setting: dealer in casino rolls a die.

e He uses a fair die most of the time, but occasionally he switches
to a loaded die: P(6) = 0.5, P({1,...,5}) =0.1.

e He switches from state “fair” (F) to state “loaded” (£) with prob-
ability ar, = 0.05. He switches back with probability a,» = 0.1.

0.95 0.9

Fair Loaded

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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The decoding problem

e We observe a sequence of emitted symbols X = (x1,...,z1).

e But we do not know the sequence of states Il = (=, ..., 7) that
emitted X ~» the path II is hidden.

e CpG islands:
knowing the path would allow us to locate the islands:
all parts that pass through the “+” states are CpG islands.

Problem: The decoding problem.
INPUT: A hidden Markov model M = (3, @, ©) and a sequence X
over alphabet X, for which the generating path II = (7y,...,7) is
unknown.

QUESTION: Find the most probable generating path II* for X,
i.e. the path IT* = arg maxq P(X, II).




The Viterbi Algorithm

Notation:

For k € Q and 0 < ¢ < L, denote by vx(i) the probability of the

most probable path for the prefix (x4, ..., z;) that ends in state &:
orli) = fhax,, Plon,.. @ 1D

Arrange these values in a matrix V' with V,; = v (7).

19



The Viterbi Algorithm: Main idea

e Assume that we know (for all k) vi(i — 1) = probability of most
likely path ending in state k& with observation x;_;.

o Then v;(i) = e;(x;) - maxpeq(vi(i — 1)ag)

20



The Viterbi Algorithm: Recursion

1. Initialization (¢ = 0): v(0) =1
Vk;,glg . Uk(O) =0

2. Recursion (: =1,...,L): forall [ € () calculate
Ul(i) = el(:z:'i) . m]?X(ka(i — 1)akl)
ptri(l) = arg max(”uk(i — 1)akl)

k

3. Termination:

P(X,IT") = m]?X(vk(L)akg)

7'('2 — arg m]?X(Uk(L)CLkg)

4. Traceback (i = L,...,1): m}_, = ptr,(x})

21



The Viterbi Algorithm (cont'd)

e Problem: extensive multiplication of probabilities might result in
an underflow.

e Solution: logarithmic scores ~~ products become sums:

vi(i +1) = log(ei(wi+1)) + max {vg(i) + log(ar) }

e Complexity:

— Time: calculate the values of O(|Q| - L) cells of the matrix V,
spending O(|Q|) operations per cell
~ overall time complexity is O(|Q|? - L).

— Space: we have to store matrices of size (|Q| x L)
~ space complexity is O(|Q| - L).

22



A dishonest casino (cont’d)

Experiment: 300 random rolls were generated from the dishonest

casino model. Most probable path was computed by way of the
Viterbi algorithm.

Rolls 315116246446644245311321631164152133625144543631656626566666
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLL
Rolls 651166453132651245636664631636663162326455236266666625151631
Die LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLFFFLLLLLLLLLLLLLLFFFFFFFFF
Viterbi LLLLLLFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLLFFFFFFFF
Rolls 222555441666566563564324364131513465146353411126414626253356
Die FFFFFFFFLLLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFLL
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFL
Rolls 366163666466232534413661661163252562462255265252266435353336
Die LLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFEF
Yiterbi LLLLLLLLLLLLFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFE
Rolls 233121625364414432335163243633665562466662632666612355245242
Die FFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLLLLFFFFFFFFEFE
Viterbi FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFLLLLLLLLLLLLLLLLLLLFFFFFFEFFFEFE

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CB0O9780511790492.004
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The total probability of a sequence

e For discriminating between CpG/non-CpG islands with Markov
chains, for each of both chains we calculated

L+1

P(X) — Hz‘:l Ay qa;-
For a HMM, calculating P(X,1I) is easy, but what about P(X)?

e Must add the probabilities for all possible paths producing X:

P(X)=> P(X,1I)

INPUT: A hidden Markov model M = (X, @, ©) and a sequence X
over alphabet ¥, for which the generating path II = (7q,...,7) IS

unknown.
QUESTION: Calculate the total probability P(X).




The total probability of a sequence (cont’d)

e Problem: number of possible paths increases exponentially
with the length of X.

e Possible approximation: first compute most probable path II*
by using the Viterbi algorithm, then evaluate

P(X,II%)

ZUZ aﬂ-z z—i—l

||::]h

e Assumption: II* is only path with significant probability.

e Approximation unnecessary, P(X) can be calculated by dy-
namical programming: replace maximization with summation ~~
forward algorithm.

e Interesting quantity: P(IT*|.X) = ng)?) ) is a measure of

“correctness” of the most probable path I1I*.

25



The forward algorithm

1,y Tid aé
i 5

f1(¢): Prob. of emitting prefix (x4, ...z;) and reaching state r; = [

fi@) = ei(ws) - Y fuli = 1)a

ke@

26



The forward algorithm

fx(7): Joint probability of emitting the prefix (z1, ... z;) and reaching
the state T, = k- fk(Z) — P(Il, vy Ly Ty = k‘)

1. Initialization (i = 0), i.e. empty prefix:

f8(0) =1
Vk;,glg : fk(()) =0

2. Recursion (: =1,...,n): forall [ € @ calculate

fuli) = ei(x:) - Y fuli — Dag
k
3. Termination:

27



Posterior Decoding

e Viterbi: most probable path through the model.
e Forward: total probability of sequence X = sum over all paths.

e What about the state at a particular point : in a sequence
X =(x1,...,%4...21)7

e What is the probability that the observation x; came from the
state k£ given the observed sequence X?

e P(m; = k|X): posterior probability of state k at time ¢ when the
sequence is known.

28



Posterior Decoding (cont’d)

Problem: Posterior decoding
INPUT: Hidden Markov model M = (X,Q,0) and sequence X
over alphabet 3, generating path Il = (74, ..., 7) is unknown.
QUESTION: Foreach1 <i:< Land k € Q,
compute the probability P(m; = k| X).

PUX ik prefix suffix
° P(ﬂ'z = k‘X) — PXmi= ), X = (‘5131,...,$i‘,‘$i+1,...$L').

P(X)
e Memory length is 1 ~» dependency only on the last state

P(A,B) = P(A) P(B|A)
P(X,ﬂ'zzk) :P(Il,,llf@,ﬂ'@:k) P(

:P(Ilj...jllfi,ﬂ'i: ) 'P(ﬂfi_|_1,...,afL’7T¢:k)

ZIZ‘Z'_|_1,...,ZIZ‘L’$1,...,ZIZ,L',7TZ' = ]f)

29



The Backward Algorithm

{

S = S

bi (1)

): Probability of emitting suffix (z;.,...z) given 7; = k.

= P(Tit1,...,xL|m = k)

= Zakl cey(Tigr) - bi(i 4+ 1).

le@

30



The Backward Algorithm

bi.(7): Probability of emitting the suffix (x;11,...x1) given m; = k:
b(1) = P(Zit1,...,xL|m = k).

1. Initialization (¢ = L), i.e. empty suffix:

vke@ . bk(L) — aArg

2. Recursion (1 =L —1,...,1):

br(i) = ap - er(wip1) - by + 1)

le@

3. Termination:

P(X) =) ap - ex1)-by(1)

leq

31



A dishonest casino (cont’d)

Posterior probability of being in the state corresponding to the
fair die:

e e 5 =
*x:; ...... -313;":?:.
e T EE R
{;:;"‘ix. i pria S G
e B G N T e S
_h_w"‘”ﬁxx s T R e
— kx'\"ﬁx:@_x '{ E: L Fren
| - R £ S
o — _ x“'ﬁ-’w.‘p* ______ s o
bﬁ‘-ﬁ‘:.n:.x:,c coeemeniey W omceeess 0 EEEeRSEEE EEEes i
:E At e o S
.,I - x;“*‘wm SR B i
= " e ey, B
S i i
a . A
T o o
% = s
..:-:'3 i o R
w.;x 22 B J s :
o R S B Wi g | e
fs g s R S l i ] | Foar s

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Shaded areas: loaded die was used.
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Uses for Posterior Decoding

¢ If many paths have almost the same probability as the most prob-
able one, we might want to consider other paths as well.

e E.g. the alternative path IT**, comprised of state sequence {k;}
in which each state &; has the highest probability to emit x; at
time i:

[I"* = arg mkaX{P(m =k|X)}

e II** is a concatenation of locally most probable states, but it
may not be particularly likely as a path through the whole model.

e II** may even not be a legitimate path, since some transitions
may not be permitted (might have zero probabilities).

33



Uses for Posterior Decoding (cont’d)

e Often we are interested in some derived property.
Consider function g(k) ~» an interesting property might be its
expectation under the posterior probability:

G(i|X) = Ep(ryx)lgl = ) Plmi = k|X)g(k)

e Example: g(k) = 1 for a subset S of states, and 0 for the rest
~ (G (i| X') = posterior probability that a state in .S emitted ;.

e In the CpG island model, we may define

gy [LTorke (At ot 6n T
T Votork e {a-,c-, G-, T}

G(i|X) is the posterior prob. that z; is in a CpG island.

34



Parameter Estimation

e Recall: HMM is a triplet M = (X, Q, ©).
O is a set of probabilities, comprised of

state transition probabilities «a;,,, for each I,m € @
emission probabilities ¢;(b) foreach I € Q and b € 3.

e What can be done if ® is unknown?

e Consider a set of n independent training sequences
X ={Xy,...,X,} of size L and the corresponding set of paths
VU = {Hh"' 7H7’L}

e For all n sequences the total likelihood is

n

P(x,9|0) = | [ P(x:, 1L|0) = [ [ ] ] eni (@h)ani i
1=1 1=1 k=0

35



Parameter Estimation: Known state paths

e Idea: estimate © by maximizing the total likelihood, i.e. find
the model that best explains the observed data:

A

O = argmgxP(X, U|O)

e Assume that paths of training sequences are known: Count

— Ei(b): total number of times the b-th observation symbol is
emitted from the [-th state,
— A;,,: number of transitions from the m-th state to the [-th state.

e ML estimates are the observed frequencies:

__BO) L, Aw
Y E0) T Yy A

er(b)

36



Parameter Estimation: General case

General case: the paths ¥ are unknown
~» We cannot simply count the total numbers E;(b) and A;,,.

Expectation-Maximization (EM) Algorithm.
E-step: Compute expected counts:

Ei(b) = Y P(U|X,0) B (b

Ay =Y P(U|X,0)Ap,
)\

M-step:
E;(b) R Ay,

p— ) am:
SyE®) T S A,

Note that P(¥|X', ©) depends on current ¢;(b) and a;.,,, ~ iterate.

ey(b)

37



Parameter Estimation: General case (cont’d)

E-step: All we need is the forward-/backward algorithm:

E;(b) = expected number of times that letter b appears in state [

J ’l,|£13 —b
\ . - J/

P(X7), fij and bg from forward/backward alg.

A, = expected number of state transitions from m to [

Z Zfz Qi - em (T Z—H) b’ J (1 4+ 1)

38



Identifying prokaryotic genes

A prokaryote is a cellular organism that lacks an envelope-enclosed
nucleus. Organisms with nuclei are called Eukaryota.

Eukaryote Prokaryote
l\lfler;\granel- Mitochondrion
enclosed nucleus Nucleoid Capsule
Nucleolus , . Ribosomes {some prokaryotes)
( Flagellum

Cell Wall

Cell Membrane .
(in some eukaryotes)

By Science Primer, https://commons.wikimedia.org/w/index.php?curid=2145991

39



Identifying prokaryotic genes

Prokaryotes are divided into two domains: Bacteria and Archaea.

Fung/ N\'\m’_alia
Eukaryota ¢« ol <™

Prokaryota |

By Maulucioni y Dorid - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=25888693

40



Identifying prokaryotic genes
Genes of prokaryotes have a simple structure:
Start codon ~~ codons coding for amino acids ~~ stop codon.

Codons = nucleotide triplets, 61 for amino acids + 3 stop codons.

genes

DNA sequence

_______
-

v
-

-
~ ~ -
e Y Y Y
.........
___________________________

l codons
G <
! \t  /
start codons
codon sCAATGAACGTATCACAGTAACGCC
NV
codons stop

Figure 3.10 The organisation of genes in prokaryotes.
Durbin et al., Cambridge University Press. https://doi.org/10.1017/CB0O9780511790492.004

41



Identifying prokaryotic genes

e Finding gene candidates: basically just looking for stretches of
DNA with the correct structure.
Such candidate is an open reading frame (ORF).

e But there are many more ORFs than real genes.

e |dea: Encode the 64 codons by some characters,
~ train HMM on these codon sequences.
Same architecture as was used for C'pG islands:
“+” states for genes, “-” states for NORFs (non-coding ORFs).

e DNA from E. coli bacteria (Krogh, Mian & Haussler [1994]):
1100 genes and ~ 30000 NORFs,
randomly divided into training and testset.

42



Identifying prokaryotic genes

80 -

40 - .
I

0 - bl

1.0 0.5 0.0 0.5

Bits per nucleotide

1.0

Histograms of the log-odds per nucleotide for all NORFs (grey) and genes

(black line).

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CB0O9780511790492.004
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Chapter 2
Hidden Markov Models

Pair HMMs for Sequence Alignment
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Pairwise alignment using HMMs

e The states of an HMM fulfill the Markov property:
Probability of transition depends only on the last state.

e CpG islands and casino example:
HMMs emit sequence of symbols (nucleotides or die rolls).

e We only observe the emitted sequences, the generating state
path is unknown ~- Inference problems, e.g. estimate the
most probable generating path (~~ Viterbi algorithm).

e Knowing the path allows us to analyze the internal structure of
the string (localizing CpG islands, deciding if the die was fair...)

45



Pair HMMs for string alignment

HMMs can be used for sequence alighment:
emission is not a single string, but a pair of aligned strings
~ pair HMMs.

From a FSA to a pair HMM:

e Define emission probabilities for states:
Match state 1/ emits an aligned pair of symbols z;0y;
with probability p.,, ..
Insert state X emits x; against a gap with probability g....

e Define transition probabilities between the states.
Requirement: probabilities for all the transitions leaving a state
must sum to one.

e Add begin and end states to model the sequence length.
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FSAs and Pair HMMs
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Recall: General structure of Viterbi algorithm

Liye-eyLj-1 €T;
A
I
I
I
Ul(i — 1) : '
’Ug(i — 1)
Ug(i — 1)

vi(2): Probability of most probable path for prefix (xz4,...,x;)
that ends in state 7, = [ € Q).

vi(1) = e)(x;) - Igleaéc(vk(i — 1)ag)



Pair HMMs: Generative models for alignments

vM/X/Y (3, 5) = probability of most probable path for
prefix alignment of (z4,...,z;) and (y1,...,y;)
that ends in state M/ /X/Y.
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Pair HMMs: Viterbi algorithm (cont’d)

Initialization: v (0,0) = 1, v™(0, j) = v™(4,0) = 0.
Initialize v (0, j) and vY (4,0) (random model).

Recurrence: i =1,....n,7=1,...,m:

(1—-26 —7)oM(i—1,5-1)
X —1,7—1)

vM(z',j) = Pu;y; Maxq (1 —e—7)v
(1—€—T)v

>.<
N/~
NI
|
p—t
<.
|
p—t
—
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Pair HMMs: Viterbi algorithm (cont’d)

Initialization: v (0,0) = 1, v™(0, j) = v™(4,0) = 0.
Initialize v (0, j) and vY (4,0) (random model).

Recurrence: i =1,....n,7=1,...,m:

(1—-26 —1)oM(@Gi—1,5—1)

vM(z',j) = Pu;y,max ¢ (1 —e— (i —1,5—1)
1—e—7)o¥(i—1,57—1)
(
ovM (i —1,7)
X /. - 9
v (1,5) = qz, - MaX < | |
\EUX(Z_laj)
(SoM (i, 5 —1)
VT y
v (2,]) = @y, - Max |
N C
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Pair HMMs: Viterbi algorithm (cont’d)

Termination:
@®‘\@
v® = 7 max [?}M(TL, m), UX(TL, m), UY(“» m)} ®/
Traceback:

We keep traceback pointers as usual
~ reconstruct the whole alignment from the pointers.
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The Viterbi — FSA Connection

These two models are obviously highly related...

...but what is the precise connecton? Is there a specific substitution
matrix and affine gap costs such that the FSA alignment is identical
with the Viterbi path?
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The Viterbi — FSA Connection

Theorem: The most probable path through the pair HMM for global

alignment gives the optimal alignment associated with the substi-
tution matrix

(24, y5) log (1—26 —7)

s(xi,y;) = logp
’ QmZQyJ (1 T 77)2

with affine gap penalty v(g) = —d — (g — 1)e with

0(1 —e—1)
(1—-n)(1-26—71)

€

d = — log

e = —log

1—-n

Proof: exercises.
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A random model written as a Pair HMIM

No match state ~~ the states RX and RY emit two sequences in
turn, independently of each other.

Silent transitional state
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A pair HMM for local alighment

1—n T 1—n
QO (G ‘ofiNey
Begin 7 \\ 1-20—7 T
@ l—e—T7 a ¢
5
1 —n

Global model flanked by two copies of the random model
~» arbitrary start and stop of alignment.

Sequences in flanking regions are unaligned (random model).
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The full probability of two alighed sequences

e If the similarity is weak, it is hard to find the correct alignment.

e HMMs allow us to calculate the probability that two sequences
are related by any alignment:

P(X,Y)= )  P(X,Y 1)

alignments I1

e P(X,Y) always higher than Viterbi-probability P(X,Y, II*)!
Can be significantly different when there are many comparable
alternative alignments.
e More realistic score: likelihood that two sequences are related
by some unspecified alignment as opposed to being unrelated:
P(X,Y|Match) Y, P(X,Y,II)

X,Y) = o
score(X,Y) P(X,Y|Random) Qxdy

e How to compute ) ; P(X,Y,II)? Forward algorithm.
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Recall: The forward algorithm

T1, - Ti a;
i 5

f1(i): Probability of emitting the prefix (z4,...x;)
and reaching the state =, = I.
fi(2) = eg(x;) - ZREQ fr(t — D)ag.

Here: denote by fM/X/Y (4, j) the combined probability of all prefix
alignments up to position ¢ and j.
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The full probability: forward algorithm

fM(Zaj) :pxz,yj[ (1 o 25_7—)fM(Z o 17] o 1)
+(1—e—7)f(i—1,j—1)

—I—(l—E—T)fY(i—l,j—l)]

FXG0) = 0 011 = 1)+ ef¥(i = 1,5)

f13,5) = ay, [5f (i, = 1) +ef* (@ ]—1)]

-

1-20-71

%
1-e—1

( f
A J
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The full probability (cont’d)

P(X,Y) :fg:7-[fM(n7m)_I'fX(n?m)_l_fY(n?m)}

o
ol

(D——@®

Important use of P(X,Y): posterior distribution over alignments
IT given two sequences X, Y:

P(X,Y,1I)
P(X,Y)

PII|X,Y) =

Example: set II = II*, the Viterbi path:

P(IT*| X, Y): Posterior probability of observing the Viterbi path
= probability that the optimal scoring alignment is “correct”.
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The full probability (cont’d)

Globin example:

HBA_HUMAN GSAQVKGHGKKVADALTNAVAHV---D--DMPNALSALSDLHAHKI,
++ ++++H+ KV + +A ++ +L+ L+++H+ K
LGB2_LUPLU NNPELQAHAGKVFKLVYEAATQLQVTGVVVTDATLKNLGSVHVSKG

P(IT*|X,Y) = 4.6 -107°.

~ Alarming observation if one was hoping that standard
alignment algorithms would find the “correct” alignment !

Explanation: there are many small variants of alignments with
nearly the same score.
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The posterior probability

e Degree of conservation along the sequence may vary depend-
ing on functional / structural constraints = some parts of the
alignment will be clear, other regions may be less certain.

e Local view: what about the local accuracy of an alignment?

e We are interested in a reliability measure for each part of an
alignment: probability of two characters (x;,y;) being aligned,
given the complete sequences:

e How to compute? ~~ backward algorithm.
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The backward algorithm

e [he quantity we are interested In:

e The denominator: final result from forward algorithm:

P(X,Y) = f*(n,m).

e Numerator: P(X,Y, z;0y;) =

= P(x1,...,Y1,....5: TiQYj) “P(Tiv1, .. n, Yjr1,...m|T1,. i Y1,....55 TiQYj)

A A

Markov

= P(z1,. 0,91, TiQY;) P(@it1,...n Yj+1,...m|TiQY;)
= M(i,7) oM (4, 5).
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Recall: The backward algorithm

i Lij+1 Lijt2y .-, X

-- =5
| g

bi(7): Probability of emitting suffix (z;.1,...2;) given 7, = k.

bk(l) = Zakl - 61(567;+1) - bl(Z -+ 1).

le@

Here: b™/X/Y (5, 5): Probability of suffix alignment starting at i + 1
and j 4+ 1 given state m; € {M, X, Y }.
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The backward algorithm: recursion

b™M (i, 5) = (1 — 26 — T)pwiﬂ,yjﬂbM(z‘ +1,5+1)

—1_5 Q$Z+1bX(Z + 173) -+ Qyj+1by(i7j + 1)] ; il_ZS_T

b (4,5) =(1 — € = T)puyyy o B (G 4+ 1,5 + 1)

l-e—7
AR O

bY (3,5) =(1 — e — T)pxiﬂ,yjﬂbM(z‘ +1,57+1)
—|—eqyj+1by(i,j + 1)'
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Chapter 2
Hidden Markov Models

Profile HMMs

Pairwise alignment Profile alignment

Xy Xy X3 — Xy Xsg X X X3 - o

N1 =X Y3Y4 )5 e(b) — e(b) e(b) ¢(b) e(b)
\'} E (|- || -]V
\'} KI||-||NJ|Y
\' Y ||[-||N]|Y
F N | |A|N|Y




Profile HMMs

Observation: highly similar sequences form “sequence families”.
How can test if a query sequence belongs to a family?

Assume we are given a multiple alignment of sequences, built
from structural information.

Helix AAAARDDALDADANAAND BEEBEEBEBEEBEEBBEEEBCCCCCCCCCCC
HBA_HUMAN —-=-====—=-- VLSPADKTNVKAAWGKVGA--HAGEYGAEALERMFLSFPTTKTYFPHF
HBB_ HUMAN —-—-—-=—-—-—- VHLTPEEKSAVTALWGKV----NVDEVGGEALGRLLVVYPWTQRFFESF
MYG PHYCA -—-—=-===-=——=- VLSEGEWQLVLHVWAKVEA--DVAGHGODILIRLFKSHPETLEKFDRFE
GLB3_CHITP ----—-————- LSADQISTVQASFDKVEG--—---- DPVGILYAVFKADPSIMAKFTQF
GLB5_PETMA PIVDTGSVAPLSAAEKTKIRSAWAPVYS--TYETSGVDILVKFFTSTPAAQEFFPKF
LGB2_LUPLU -------- GALTESQAALVEKSSWEEFNA--NIPKHTHRFFILVLETAPAAKDLFS-F
BBl GLYDI ' ========= GLSAAQROVIAATWKDIAGADNGAGVGKDCLIKFLSAHPOMAAVEG-F
Consensus Ls.... v aWkv. 3 Qi far ] L L ] = F -F
Helix DDDDDDDEEEEEEEEEEEEEEEEEEEEE FFFFFFEFFEFEEE

HBA_ HUMAN -DLS----- HGSAQVEGHGEEKVADALTNAVAHV---D--DMPNALSALSDLHAHEKL-
HBE_HUMAN GDLSTPDAVMGNPKVKAHGKEKVLGAFSDGLAHL---D--NLKGTFATLSELHCDKL-
MYG_PHYCA KHLEKTEAEMKASEDLKKHGVTVLTALGAILKK----K-GHHEAELKPLAQSHATKH-

GLB3_CHITP AG-KDLESIKGTAPFETHANRIVGFFSKIIGEL--P---NIEADVNTFVASHKPRG-
GLES5_ PETMA KGLTTADQLKKSADVRWHAERIINAVNDAVASM--DDTEKMSMKLRDLSGKHAKSE -
LGBZ2_LUPLU LK-GTSEVPQNNPELQAHAGKVFKLVYEAAIQLQVTGVVVTDATLKNLGSVHVSKG-
GLB1_GLYDI SG----AS---DPGVAALGAKVLAQIGVAVSHL--GDEGKMVAQMEKAVGVRHKCGYGN
Consensus .t .. . V..Hg kv. a A TS d b o] Loyt H

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CB0O9780511790492.004

Gaps tend to line up with each other ~~ solid ungapped blocks.
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Profile HMMs

Consider these ungapped blocks first.

Definition: A profile P of length L is the set of probabilities e;(b)
of observing letter b € X at the i-th position.

The probability of a new sequence X according to a given

profile P is
L
P(X|P) =]] e

’L:

[

> > m>
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Position specific score matrices

o Typical question: does a new sequence X belong to the family
of sequences from which the profile was built?

e Align the sequence against the profile. Test the membership Iin
the family by evaluating the likelihood score

e The values log =t=% ez(’”@) behave like usual scores s(a,b), where the

second index is posmon i rather than amino acid b.
= Position specific score matrix (PSSM).
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Position specific score matrices (cont'd)

e A PSSMiis a trivial HMM:
Series of sequentially linked match states M, ..., M.

Begin —»| My |—»| M, |—%» = —/»| M_ > End

Emission probabilities are eMj(b), transition probabilities are 1.

¢ No choice of transitions
~ alignment of a new sequence against the profile is trivial.

e PSSM for an ungapped block captures only some information
~~ need to find a way to take account of gaps.

e Add insertion states I/;,....I; to the model. Assume that
emission probabilities of insert states equals random probability:
er;(a) = qq (as in pair HMMs for seeing an unaligned symbol).
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Position specific score matrices (cont'd)

f

e Mj =M,

e Transitions: M; — I, (gap open), I, — I; (gap extension),
Ij — Mj_|_1 (neXt matCh).

e log-odd costs of insert: Sum of of logarithms of transition proba-
bilities and emission probabilities (assuming gap of length k)

" emission
transmons
er.(z)

Tog(aM I; ) + log(ay. Mg+1) + Sk —1) log(afjsz + log
gap open gap extension ~~ —
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PSSMs: Allowing Deletions

e Allow deletions (segments of the multiple alignment that are not
matched by any character in z): forward jump transitions.

N

e Problem: too many jump transitions required.

e Solution: Add deletion states D,,..., Dy.
They cannot emit any symbol ~+ silent states.
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Deletions (cont’d)

Model with deletion states:

Mj_i|—={ Mj —=M;.s

But a price is paid for the reduction in the number of parameters:
fully connected model can have high transition probabilities from
1 —5and 2 — 4, but low ones from1 — 4 and 2 — 5.

Not possible for the model with silent states.
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A full profile HMM model

‘Q

“

$IE0Ne
A AN

Begin |—» — MJ — —1 End
Pairwise alighment Profile alignment
Y1 X2 X3 = % X5 T 2 B - X %
N =Y, Y334 Y5 a(b) - e(b) e(b) ¢(b) e(b)
\' E |[|-||-||V
\' KI||-||N|Y
\' Y |[|-||N||Y
F N |[|A|N|Y
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Profile HMM are generalized pair HMMS

Special case: multiple alignment consist of one sequence.
Then, the profile HMM is an unrolled version of a pair HMM.

Emitted query sequence

X X X E— X
‘1 T2 A3 A4

My - | M| M3 | My

Profile HMM is effectively the model obtained by conditioning the
pair HMM on emitting the query sequence X as one of the aligned
sequence.
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Recall: General structure of Viterbi algorithm

1, i a?
R 5
va(i — 1) >@

v;(7): Probability of most probable path for prefix (x4, ..., z;)
that ends in state 7, = [ € Q):

vi(2) = eg(xy) - rgleaéc[vk(i — Day]

Log-odds variant: V(i) = log el( ) 4 maxieq|Vi(t — 1) + log(ag:)]
Log-likelihood score of best path for prefix that ends in state m; =1 € Q.

76



Profile HMM: Viterbi algorithm

Recurrence: Predecessors of match state M, are the three states
of the previous layer j — 1:

e, (i) Viti(i = 1) +log(ans, ., ;)
ViH (i) =log— —— +max q VIL,(i = 1) +log(az, ;)
VP, (i —1)+loglap, , u,)
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Profile HMM: Viterbi algorithm

Predecessors of insertion state I; are the three states of the same
layer j:

=0, if GIZEQ%'):CI:%

( .

‘/}M(Z — 1) + 1Og(an,1j)
+ max < V}I(z — 1) + log(ar;,1;)
\VjD(i — 1)+ log(apj,jj)

Mj —={Mjs
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Profile HMM: Viterbi algorithm

Predecessors of deletion state D; are the three states of the layer
7 — 1. D, is a silent state — no emission:

Vj]\fl (Z) -+ 10g(an—1aDj)
VjD(Z‘) = max V;-I_l(i) + log(afj—lij)
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Profile HMM: Viterbi algorithm
Complexity:

We have to calculate O(L - m) values, while calculating each value
takes O(1) operations (since we only need to consider the scores
of at most three predecessors).

We therefore need O(L - m) time and O(L - m) space.

80



Profile HMM: local alignment

Replace original Begin/End states with silent transitional states that
are connected to all match-states. Add two independent random
models ~~ alignment can start and stop everywhere.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004
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Application example

Profile HMM was trained on 300 globin proteins, used for searching
other globin sequences in the SWISS-PROT database.

LL/length

0 T T I T I 500 T I 1 I
non-globins - non-globins -
training data  © 400 training data -

1T other globins + other globins +

300
-2 F
8 !
v 200}t o,
© :
3| ? % i
g 100} -43
ey
g S -
Sy -100 | '
-6 N | ':h _.l; ; i . - L _200 i I 1 L I
0 50 100 150 200 250 300 0 50 100 150 200 250 300

protein length protein length

Figure 5.5 7o the left the length-normalized LL score is shown as a function
of sequence length. The right plot shows the same for the log-odds score.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CB0O9780511790492.004
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