Chapter 3

Multiple Sequence Alignments

Q5E940_BOVIN ---------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--PAL RLAO_HUMAN ----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE RLA0_MOUSE ----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMS LRGK-AVVLMGKNTMMRKAIRGHLENN--PALE RLAO RAT -----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE RLA0_CHICK ----------MPREDRATWKSNYFMKIIQLLDDYPKCFVVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE RLAO_RANSY ----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQQIRMSLRGK-AVVLMGKNTMMRKAIRGHLENN--SALE
Q7ZUG3_BRARE ----------MPREDRATWKSNYFLKIIQLLDDYPKCFIVGADNVGSKQMQTIRLSLRGK-AVVLMGKNTMMRKAIRGHLENN--PALE RLA0 ICTPU -----------MPREDRATWKSNYFLKIIQLLNDYPKCFIVGADNVGSKQMQTIRLSLRGK-AIVLMGKNTMMRKAIRGHLENN--PALE RLA0 ${ }^{-}$DROME RLAO ${ }^{-}$DICDI Q54LP0 ${ }^{-}$DICDI RLAO_PLAF8 RLA0 SULAC RLA0 SULTO -AO- SULSO RLAO_AERPE RLA0 ${ }^{-}$PYRAE RLA0_METAC RLA0 METMA RLA0 ARCFU RLA0 - METKA RLAO-METTH RLAO METTL RLA0 METVA RLA0 ${ }^{-}$METJA RLAO - PYRAB ---------- MVRENKAAWKAOYFTKVVELFDEFPKCFIVGADNVGSKOMONIRTS LRGL-AVVLMGKNTMMRKATRGHLENN--POLE ----------MSGAG-SKRKKLFIEKATKLFTTYDKMIVAEADFVGSSQLQKIRKS IRGI-GAVLMGKKTMIRKVIRDLADSK--PELD ----------MSGAG-SKRKNVFIEKATKLFTTYDKMIV AE ADFVGSSQLQKIRKSIRGI-GAVLMGKKTMIRKVIRDLADSK--PELD ---------MAKLSKQQKKQMYIEKLSSLIQQYSKILIVHVDNVGSNQMASVRKSLRGK-ATILMGKNTRIRTALKKNLQAV--PQIE -----MIGLAVTTTKKIAKWKVDEVAELTEKLKTHKTIIIANIEGFPADKLHEIRKKLRGK-ADIKVTKNNLFNIALKNAG-----YDTK - - - MRIMAVITQERKIAKWKIE EVKELEQKLREYHTIIIANIEGFPADKLHDIRKKMRGM-AEIKVTKNTLFGIAAKNAG-----LDVS - - - MKRLALALKQRKVASWKLEEVKELTELIKNSNT ILIGNLEGFPADKLHEIRKKLRGK-ATIKVTKNTLFKIAAKNAG-----IDIE MSVVSLVGQMYKREKPIPEWKTLMLRELEELFSKHRVVLFADLTGTPTFVVQRVRKKLWKK-YPMMVAKKRIILRAMKAAGLE ---LDDN -MMLAIGKRRYVRT RQYP ARKVKIVSEATELLQKYPYVFLFDLHGLSSRILHEYRYRLRRY-GVIKIIKPTLFKIAFTKVYGG---IPAE -----MAEERHHTEHIPQWKKDEIENIKELIQSHKVFGMVGIEGILATKMQKIRRDLKDV-AVLKVSRNTLTERALNQLG-----ETIP ------MAEERHHT EHIPQWKKDEIENIKELIQSHKVFGMVRIEGILATKIQKIRRDLKDV-AVLKVSRNTLTERALNQLG-----ESIP ------MAAVRGS ---PPEYKVRAVEEIKRMISSKPVVAIVSFRNVPAGQMQKIRREFRGK-AEIKVVKNTLLERALDALG-----GDYL MAVKAKGQPPSGYEPKVAEWKRREVKELKELMDEYENVGLVDLEGIPAPQLQEIRAKLRERDTIIRMSRNTLMRIALEEKLDER--PELE -------MITAESEHKIAPWKIE EVNKLKELLKNGQIVALVDMMEVPARQLQEIRDKIR-GTMTLKMSRNTLIERAIKEVAEETGNPEFA RLAO PYRHO ----MAHVAEWKKKEVEELANLIKSYPVIALVDVSSMPAYPLSQMRRL IRENGGLLRVSRNTLIE LAIKKAAQE LGKPELE RLAO_PYRFU -------------MAHVAEWKKKEVEELANLIKSYPVVALVDVSSMPAYPLSQMRRLIRENNGLLRVSRNTLIELAIKKVAQELGKPELE RLA0_PYRKO -------------MAHVAEWKKKEVEELANIIKSYPVIALVDVAGVPAYPLSKMRDKLR-GKALLRVSRNTLIELAIKRAAQELGQPELE RLAO HALMA -----MSAESERKTETIPEWKQEEVDAIVEMIESYESVGVVNIAGIPSRQLQDMRRDLHGT-AELRVSRNTLLERALDDVD-----DGLE RLAO-HALVO -----MSESEVRQTEVIPQWKREEVDELVDFIESYESVGVVGVAGIPSRQLQSMRRELHGS-AAVRMSRNTLVNRALDEVN-----DGFE RLAO_HALSA ----MSAEEQRTTEEVPEWKRQEVAELVDLLETYDSVGVVNVTGIPSKQLQDMRRGLHGQ-AALRMSRNTLLVRALEEAG-----DGLD RLAO_THEAC -------------MKEVSQQKKELVNEITQRIKASRSVAIVDTAGIRTRQIQDIRGKNRGK-INLKVIKKTLLFKALENLGD----EKLS RLA0 THEVO -------------MRKINPKKKE IVSELAQDITKSKAVAIVDIKGVRTRQMQDIRAKNRDK-VKIKVVKKTLLFKALDSIND----EKLT RLAO PICTO ------------MTEPAQWKIDFVKNLENEINSRKVAAIVSIKGLRNNEFQKIRNSIRDK-ARIKVSRARLLRLAIENTGK----NNIV

By Miguel Andrade at English Wikipedia, https://commons.wikimedia.org/w/index.php?curid=3930704

Multiple alignment algorithms

Definition. A multiple alignment of sequences X^{1}, \ldots, X^{n} is a series of gapped sequences $\tilde{X}^{1}, \ldots, \tilde{X}^{n}$ such that
(i) \tilde{X}^{i} is an extension of X^{i} obtained by insertions of spaces;
(ii) $\left|\tilde{X}^{1}\right|=\left|\tilde{X}^{2}\right|=\cdots=\left|\tilde{X}^{n}\right|$.

Why are we interested in multiple alignments?

- A multiple alignment carries more information than a pairwise one, as a protein can be matched against a family of proteins instead of only against another one.
- Multiple similarity of (protein) sequences suggests
- a common structure,
- a common function,
- a common evolutionary source.

The alignment hyper-cube

Best multiple alignment of r sequences:
Best path through r-dimensional hyper-cube D.

$$
\begin{array}{lllllll}
V & S & N & - & S & & \\
- & S & N & A & - & & \\
- & - & - & A & S & & \\
1 & 1 & 1 & 0 & 1 & & \\
0 & 1 & \varepsilon_{1} \\
0 & 0 & 0 & 1 & 1 & & \lambda \\
\hline
\end{array}
$$

Alignment path for three example sequences.

Dynamic Programming Solution

- Best multiple alignment of r sequences: Best path through r-dimensional hyper-cube.
- Define $S\left(j_{1}, j_{2}, \ldots, j_{r}\right)$ as as the best score for aligning the prefixes of lengths $j_{1}, j_{2}, \ldots, j_{r}$ of the sequences $X^{1}, X^{2}, \ldots, X^{r}$.
- We define $S(0,0, \ldots, 0)=0$, and we calculate

$$
\left.\begin{array}{rl}
S\left(j_{1}, j_{2}, \ldots, j_{r}\right)=\max _{\left(\epsilon_{1}, \ldots, \epsilon_{r}\right): \epsilon_{i} \in\{0,1\}, \epsilon \neq 0} & {[}
\end{array} S\left(j_{1}-\epsilon_{1}, j_{2}-\epsilon_{2}, \ldots, j_{r}-\epsilon_{r}\right)\right] \text {. }
$$

where s is the scoring function (example $s(a, b, 0)$: joint score for aligning characters a, b and a gap) and
$\boldsymbol{\epsilon}=\left(\epsilon_{1}, \ldots, \epsilon_{r}\right)$ is a binary vector that indicates the directions of the alignment progress in the hyper-cube.

Dynamic Programming Solution: Complexity

- The size of the hyper-cube is $O\left(\prod_{j=1}^{r} n_{j}\right)\left(n_{j}=\right.$ length of $\left.x_{j}\right)$.
- Computation of each entry considers $2^{r}-1$ other entries. Example: 000, 001, 010, 011, 100, 101, 110, 111
- If $n_{1}=n_{2}=\cdots=n_{r}=n$, the space complexity is of $O\left(n^{r}\right)$ and the time complexity is of $O\left(2^{r} n^{r}\right)$.

Scoring Metrics

- A scoring scheme should take into account that...

1. some positions are more conserved than others \rightsquigarrow position specific scoring;
2. the sequences are not independent, but are related by a phylogenetic tree.

- Ideal scoring: Complete probabilistic model of evolution \leadsto Probability of a multiple alignment is composed of the probabilities of all evolutionary events necessary to produce the alignment.
- In practice, we do not have such a model
\leadsto simplifying assumptions: Two main concepts:

1. Position specific, but ignoring the phylogenetic tree;
2. explicit tree model, but position independent.

Multiple alignments by Profile HMM training

- Suppose we have successfully trained a profile HMM from a set of labeled sequences.
How can we use this HMM to derive the multiple alignment of n sequences?
- Answer: align all n sequences to the profile using the Viterbi algorithm \rightsquigarrow most probable state paths for all sequences.
- Characters aligned to the same match state are aligned in columns.
- Multiple alignments from HMMs are approximations of type one:
- Score is position specific,
- but sequences are treated as independent objects.

Computing the multiple alignment: example

Multiple Alignment

$$
\begin{aligned}
& \begin{array}{llll}
x_{1}^{1} & x_{2}^{1} & x_{3}^{1} & x_{4}^{1} \\
\hline x_{1}^{2} & x_{2}^{2} & x_{3}^{2} & x_{4}^{2} \\
x_{5}^{2} & x_{6}^{2} \\
\hline
\end{array} \\
& \hline
\end{aligned}
$$

Computing the multiple alignment: Real example

$$
\begin{aligned}
& \text { FPHF-DLS-----HGSAQ } \\
& \text { FESFGDLSTPDAVMGNPK } \\
& \text { FDRFKHLKTEAEMKASED } \\
& \text { FTQFAG-KDLESIKGTAP } \\
& \text { FPKFKGLTTADQLKKSAD } \\
& \text { FS-FLK-GTSEVPQNNPE } \\
& \text { FG-FSG----AS---DPG }
\end{aligned}
$$

Figure 6.4 A model (top) estimated from an alignment (bottom). The characters in the shaded area of the alignment were treated as inserts.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Computing the multiple alignment: Real example

FPHF-Dls.....HGSAQ FESFGDlstpdavMGNPK FDRFKHlkteaemKASED FTQFAGkdlesi.KGTAP FPKFKGlttadqlKKSAD FS-FLKgtsevp. QNNPE FG-FSGas.....--DPG

Figure 6.6 Left: the alignment of the seven sequences is shown with lowercase letters meaning inserts. The dots are just space-filling characters to make the matches line up correctly. Right: the alignment is shown after a new sequence was added to the set. The new sequence is shown at the top, and because it has more inserts more space-filling dots were added.

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Multiple Alignments by Profile HMM training

- For parameter estimation in Profile HMMs, aligned training sequences are often unavailable
\rightsquigarrow usually we only have a sample of unaligned sequences, the state paths are unknown.
- Idea: Use EM algorithm for iterative parameter optimization (Baum-Welch algorithm).
- Recall: for the EM algorithm, we need the forward and backward probabilities in the E-step for calculating
- $E_{b l}$ (the expected emission counts) and
- $A_{l^{\prime} l}$ (expected transition counts).

Simpler Multiple Alignment Algorithms

- Alternative to the probabilistic HMM formulation: Sum of Pairs score:
Sum of scores between all pairs of sequences.
- The SP score for a column m_{j} of the multiple alignment is

$$
S\left(m_{j}\right)=\sum_{k<l} \underbrace{s\left(m_{j}^{k}, m_{j}^{l}\right)}_{\text {from scoring matrix }}
$$

- SP scores lack a probabilistic justification:

Correct log-odds score for 3-way alignment would be

$$
s(a, b, c)=\log \frac{p_{a b c}}{q_{a} q_{b} q_{c}} \neq \underbrace{\log \frac{p_{a b}}{q_{a} q_{b}}+\log \frac{p_{b c}}{q_{b} q_{c}}+\log \frac{p_{a c}}{q_{a} q_{c}}}_{\mathrm{SP} \text { score }}
$$

Approximation Algorithms for MSA

- Even for SP scores, MSA has exponential time complexity.
- Denote by $D(S, T)$ the minimum cost of aligning S with T.
- Let $\sigma(x, y)$ be our cost function, i.e. the cost of aligning the character x with the character y, for $x, y \in \Sigma \cup\{-\}$.
- Here we minimize costs σ instead of maximizing scores s. Example transformation: $\sigma(x, y)=\exp (-\lambda s(x, y))$.
- We assume that $\sigma(-,-)=0, \sigma(x, y)=\sigma(y, x)$, and that the triangle inequality holds: $\sigma(x, y) \leq \sigma(x, z)+\sigma(z, y)$

Problem: The SP alignment problem.
INPUT: A set of sequences $\mathcal{S}=\left\{S_{1}, \ldots, S_{k}\right\}$.
QUESTION: Compute a global multiple alignment \mathcal{M} with minimum SP-costs, given the above assumptions on $\sigma(\cdot, \cdot)$.

The Center Star Method for Alignment

Approximation algorithm for calculating the optimal multiple alignment under the SP metric with approximation ratio of two.

- Center string: String that minimizes $\sum_{S_{j} \in \mathcal{S}} D\left(S_{c}, S_{j}\right)$.
- Center star: A star tree of k nodes, center node labeled S_{c}, each of the $k-1$ remaining nodes labeled by $\mathcal{S} \backslash\left\{S_{c}\right\}$.

Type-2 approximation: explicit (star-)tree model, but position independent scoring.

The Center Star Algorithm

1. Find $S_{t} \in \mathcal{S}$ minimizing $\sum_{i \neq t} D\left(S_{i}, S_{t}\right)$ and let $\mathcal{M}=\left\{S_{t}\right\}$

2. Add sequences in $\mathcal{S} \backslash\left\{S_{t}\right\}$ to \mathcal{M} one by one so that the pairwise alignment of every newly added sequence with S_{t} is optimal. Add spaces, when needed, to all pre-aligned sequences.

The Center Star Algorithm

Pair：

Given：
ATTGCCATT
ATGGCCATT
ATCCAATTTT
ATCTTCTT
ATTGCCGATT

ATGGCCATT ATTGCCATT

ATC－CAATTTT ATTGCCATT－－

ATCTTC－TT ATTGCCATT

ATTGCCGATT ATTGCC－ATT

Alignment：

ATTGCCATT
ATGGCCATT

ATTGCCATT－－
ATGGCCATT－－ ATC－CAATTTT

ATTGCCATT－－ ATGGCCATT－－ ATC－CAATTTT ATCTTC－TTー－

ATTGCC－ATT－－
ATGGCC－ATT－－
ATC－CA－ATTTT
ATCTTC－－TTー－
ATTGCCGATTー－

The Center Star Algorithm: Analysis

- \mathcal{M} : Multiple alignment produced by the center-star algorithm.
- $d(i, j)$: Cost of the resulting pairwise alignment of S_{i} and S_{j}, induced by \mathcal{M}.
Note that

- SP-costs of center-star alignment: $\sigma(\mathcal{M})=\sum_{i=1}^{k} \sum_{j=1, j \neq i}^{k} d(i, j)$
- \mathcal{M}^{*} : Optimal SP-alignment of all strings in \mathcal{S} with $\operatorname{costs} \sigma\left(\mathcal{M}^{*}\right)$.

Theorem 1.

$$
\frac{\sigma(\mathcal{M})}{\sigma\left(\mathcal{M}^{*}\right)}=\leq \frac{2(k-1)}{k} \leq 2
$$

Theorem 2. The running time of the center star algorithm for k strings with length $\leq n$ is $O\left(k^{2} \cdot n^{2}\right)$.

Proofs: see exercises.

Progressive alignment heuristics

Idea: Use a binary "guide tree" instead of a star tree
(Guide tree defines a model of evolution)
Leaves: sequences, inner nodes: alignments (sequence-sequence, sequence-profile, or profile-profile).

myoglobin
\longleftarrow haemoglobins

Durbin et al., Cambridge University Press. https://doi.org/10.1017/CBO9780511790492.004

Progressive alignment: ClustalW

ClustalW is a software package for multiple alignment (implementing an algorithm of Thompson, Higgins, Gibson 1994).

1. Calculate all pairwise alignment scores, convert to pairwise distances.
2. Use Neighbor-Joining algorithm to build a tree from the distances.
3. Align sequence - sequence, sequence - profile, profile - profile.

This algorithm makes use of many ad-hoc rules such as weighting, different matrix scores
 and special gap scores.

