Chapter 1

Linear Systems of Equations

Introduction



Linear Systems of Equations: Example

e Consider an open economy with two very basic industries:
goods and services.

e To produce €1 of their products (~ internal demand),

— the goods industry must spend €0.40 on goods and €0.20 on
services

— the services industry must spend €0.30 on goods and €0.30 on
services

e Assume also that during a period of one week, the economy has an
external demand of €75,000 in goods and €50,000 in services.

e Question: How much should each sector produce to meet both
internal and external demand?



Formulating the equations

e Let 1 be the Euro value of goods produced
and x5 the Euro value of services produced.

e The total Euro value of goods consumed is 0.424 :I;O.SZIZ‘%—I— 75000.

internal external

e The total Euro value of services consumed is 0.2z7 + 0.3z + 50000.

e |If we assume that production equals consumption, then we get

r1 = 0.4x1 + 0.3 + 75000 [ 06 —0.3 ] [ T ] [ 75000 ]
@ p—

o = 0.221 4+ 0.325 + 50000 —-0.2 0.7 To 50000

e The solution is x1 = 187500, x5 = 125000. Can be checked easily...



Formal solution

e Main inside: triangular systems can be easily solved by substitution
~ transform system to (upper) triangular.

e Do all operations on augmented matrix A b].

0.6 —=0.3 75000 N 0.6 —0.3 75000 N 0.6 —0.3 75000
—-0.2 0.7 50000 —0.6 2.1 150000 0 1.8 225000

= 1.8z2 = 225000 = x5 = 125000 = x; = 187500.

e Elimination step: subtract a multiple of eq. 2 from eq. 1.
~+ Gaussian elimination



Formal solution

Instead of substituting, we could have continued with the elimination:

0.6 —0.3 75000 N 3.6 —1.8 450000 N 3.6 0 675000
0 1.8 225000 0 1.8 225000 0 1.8 225000

~» Gauss-Jordan elimination
Geometric interpretation: have transformed original equations into a
new space in which they are aligned with the coordinate axis:

000000000000000000000000000000000000



Row and column view
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Some examples and concepts

The solution set for two equations in three variables is usually a line.

This is an example of an underdetermined system.
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Vector spaces and subspaces

A subspace of a vector space is a nonempty subset that satisfies the

Reqwrements for a vector space:

“Linear combinations stay in the subspace”

(i) If we add any vectors @ and y in the subspace,
x + y is Iin the subspace.

(ii) If we multiply any vector x in the subspace by any scalar c,
cx is in the subspace.

Rule (ii) with ¢ = 0 ~~ Every subspace contains the zero vector.

The smallest subspace Z contains only the zero vector.
Why? Rules (i) and (ii) are satisfied:
O + O is in this one-point space, and so are all multiples cO.

The largest subspace is the whole of the original space.



The column space of a matrix
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Column view (right): [ _82 ] T+ [ _gi ] - [ 7.2 ]

The column space C'(A) contains all linear combinations of the columns

of A,,,«n ~> subspace of R™.

The system Ax = b is solvable iff b is in the column space of A.
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Nullspace

A system with right-hand side b = 0 always allows the solution & = 0,
but there may be infinitely many other solutions.

The solutions to Ax = 0 form the nullspace of A.

The nullspace N(A) of a matrix A consists of all vectors x such that
Ax = 0. It is a subspace of R":

(i) If Az =0 and Ax’ = 0, then A(x + x’) = 0.
(ii) If Az =0 then A(cx) = cAx = 0.

For an invertible matrix A:

e N(A) contains only £ = 0 (multiply Az =0 by A™1).
e The column space is the whole space.
(Ax = b has a solution for every b)

e The columns of A are independent.
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Nullspace

Singular matrix example:
1 2
A= .

Consider Ax = 0: Any pair that fulfills x1 + 229 = 0 is a solution.
This line is the one-dimensional nullspace N(A).

Choose one point on this line as a “special” solution
~~ all points on the line are multiples.

Let x,, be a particular solution and x,, € N(A):
The solutions to all linear equations have the form x = z, + x,,.

Proof: Az, = b and Ax,, = 0 produce A(x, + x,) =b.
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Inconsistent equations and linear dependency

The equations 3x + 2y = 6 and 3x + 2y = 12 are inconsistent:

b is not in the C(A) ~» no solution exists!

xr—2y=—1,3x+ 5y =38, and 4x + 3y = 7 are linearly dependent:
b € C'(A) ~ solution exists, but two equations are sufficient.
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Linear Dependence

The vectors {vy,vo,...,v,},v; € V, are linearly dependent, if there
exist a finite number of distinct vectors v, vs, ..., v,
and scalars aq,aq,...,a, not all zero, such that

a1V1 + a2V2 + - - + apv = 0.

Linear dependence:
Not all of the scalars are zero ~~ at least one is non-zero (say a1):

—a2 —ag
V1= —Vg+ -+ —7g.
51 51

Thus, v1 is a linear combination of the remaining vectors.
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Linear Dependence Example

Matrix form: Az = b

9
5 H — |8
3 | LY 7

Row vectors of A are linearly dependent

) 15l = o

1
3
4
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Linear Independence

The vectors {v1,vo,...,v,} are linearly independent if the equation

a1v1 + agvo + - -+ an,v, =0

‘can only be satisfied by a; =0fori=1,...,n.

e This implies that no vector in the set can be represented as a
linear combination of the remaining vectors in the set.

e In other words: A set of vectors is linearly independent if the only
representations of 0 as a linear combination of the vectors is the
trivial representation in which all scalars a; are zero.

e Any set of n > m vectors in R™ must be linearly dependent.
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Span and Basis

A set of vectors spans a space if their linear combinations fill the space.

Special case: the columns of a matrix A span its column space C'(A).
They might be independent ~ basis of C'(A).

A basis for a vector space is a sequence of vectors such that:
(i) the basis vectors are linearly independent, and
(ii) they span the space.

Immediate consequence: There is one and only one way to write an
element of the space as a combination of the basis vectors.

The dimension of a space is the number of vectors in every basis.
The dimension of C'(A) is called the (column-)rank of A.
The dimension of N(A) is called the nullity of A.
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Nullspace and Independence

Example: The columns of this triangular matrix are linearly independent:

A=

O O W
S = =
DO Ot DO

Why? Solving Ax = 0 ~» look for combination of the columns that produces O:

3 4 2 0
ci| Ol 4+cl| 4| F+cs| 5| =1|0
0 0 2 | 0

Independence: show that ¢y, cg, c3 are all forced to be zero.
Last equation ~» c3 = 0. Next equation gives co = 0, substituting into 1st eq.: ¢; = 0.

The nullspace of A contains only the zero vector ¢; = ¢5 = ¢3 = 0.

The columns of A are independent exactly when N(A) = {0}.
Then, the dimension of the column space (the rank) is n.
We say that the matrix has full rank.
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The invertible case: Gauss-Jordan elimination

Assume A is invertible ~ a solution is guaranteed to exist: £ = A™!b.
Sometimes we also want to find the inverse itself.
Then Gauss-Jordan elimination is the method of choice.

e PRO

— produces both the solution(s), for (multiple) b;, and the inverse A~
— numerically stable if pivoting is used ~~ will be discussed later...
— straightforward, understandable method

e CON

— all right hand sides b; must be known before the elimination starts.
— three times slower than alternatives when inverse is not required
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The invertible case: Gauss-Jordan elimination

e Augmented matrix A" = [A4,by,...,b;,],]

e |dea:
Define B = |by,...,b;] X =|z1,...,x;]
A, B, I| = A YA B I =[IXA™Y]

e Example:
1 3 —2] 5 13 -2510 0
A=135 6|, B=|7l=[ABI=135 6 7010
2 4 3 8 24 3 800 1
100 —15 2 1T _7
=[,X,A =010 8 -2 -I 3
001 2 -3 — 1




Gauss-Jordan: Simplest Form

Main idea: Cycle through columns of A (~» pivot column) and select
entry on diagonal (~~ pivot element).

Then normalize pivot row and introduce zeros below and above.

Pivot column: 1, pivot element = 1. Divide pivot row by pivot element

13 25100
35 6 7010
2 4 3 800 1

For all other rows: (i) store element in pivot column,
(ii) subtract pivot row multiplied with this element

1 3 -2 5 1 00
0 —4 12 -8 -3 1 0
0 -2 7 -2 -2 0 1

Proceed to pivot column 2 with pivot element = -4
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Gauss-Jordan: Simplest Form

Proceed to pivot column 2 with pivot element = -4

1 0 7 -1 -125 075 0
1 -3 2 07 =025 0
o 1 2 =05 -05 1

o O =

After elimination in column 3 with pivot = 1
[ 0 —15 225 425 7]
o &8 =07 —-1.7 3
1 2 —-05 =05 1

o O =
S = O

Now we have transformed A to the identity matrix 1.

This is a special case of the reduced row Echelon form (more on this later).

The solution vector is the 4th column x = (—15,8,2)".

Note that we have overwritten the original b ~» no need to allocate further memory.

The inverse A~! is the right 3 x 3 block.



Gauss-Jordan elimination

Elementary operations (they do not change the solution):

1. Replace a row by a linear combination of itself and any other row(s).
2. Interchange two rows.

3. Interchange two columns and corresponding rows of x.

Basic G-J elimination uses only operation #1 but...
Elimination fails mathematically when a zero pivot is encountered
~~ pivoting is essential to avoid total failure of the algorithm.

Example: Try Ax = b with

2 4 -2 -2 =
1 2 4 -3
-3 -3 8 -2
-1 1 6 -3

SN EEN G QTN
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The need for pivoting

e Elimination fails mathematically when a zero pivot is encountered

e and fails numerically with a too-close-to-zero pivot (we will see why
in a minute...)

e The fix is partial pivoting

— use operation #2 to place a desirable pivot entry in the current
row
— usually sufficient for stability

e Using operation #3 as well gives full pivoting

26



Linear systems: numerical issues

If a system is too close to linear dependence

e an algorithm may fail altogether to get a solution

e round off errors can produce apparent linear dependence at some

point in the solution process

~~ accumulated roundoff errors
can dominate in the solution

~» an algorithm may still work
but produce nonsense.

vy

The lines cross
somewhere
in here...

=y
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When is sophistication necessary?

e Sophisticated methods can detect and correct numerical pathologies

e Rough guide for a “not-too-singular’” n x n system:

— n < 20...50 single precision
— n < 200...300 double precision
— n = 1000 OK if equations are sparse
(special techniques take advantage of sparsity)

e Close-to-singular can be a problem even for very small systems

e But...what is the underlying reason for these numerical problems?
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Floating Point Numbers: float, double

e float similar to scientific notation
+ D.DDDD x10E

— D.DDDD has leading mantissa digit = 0
— D.DDDD has fixed number of mantissa digits.
— E Is signed integer.

e Precision varies: precision of 1.000 x 1072 is 100 times higher than
precision of 1.000 x 10°.

e The bigger the number, the less precise:
1.000 x 10* + 1.000 x 10° = 1.000 x 10% !!
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Simple Data Types: float, double (2)

Technical Realization (IEEE Standard 754)

e 32 bit ( float) or 64 bit ( double)

e float:

1 bit sign (s € {0,1})
8 bit exponent (e € {0,1,...,255}) (like before, but basis 2!)
23 bit mantissa (m € {0,1,...,2% —1})

S | EEEEEEEE | MMMMMMMMMMMMMMMMMMMMMMM

e double: 1 bit sign, 11 bit exponent, 52 bit mantissa

| S | EEEEEEEEEEE | MmMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMMM




Floating Point Arithmetic: Problems

Fixed number of mantissa bits = limited precision:
If a> b= atb = a.

Iterated addition of small numbers (like a=a+b with a > b ) can
lead to a huge error: at some point, a does not increase anymore,
independent of the number of additions.

double is better, but needs two times more memory.

Machine epsilon (informal definition): The smallest number ¢,, which
when added to 1 gives something different than 1.

Float (23 mantissa bits): €, ~ 272> ~ 1077,

Double (52 mantissa bits): €, ~ 27°% ~ 10716,
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Elementary matrices: Row-switching transformations

Switches row ¢ and row j. Example:

1 00 0 0 OO0 ail1 ai2 ai; ai2
O 1 O O O O O as21 aA929 as21 aA929
O O O O 1 O 0 as31 daAs9 as1 as2
R35A =10 0 0O1 0 0 O 41 Qg2 — Q41 Q42
0O 01 0 000 as1 as52 asz1 as2
O 0 0 0 0 120 Ag1 Ag2 Ag1 Ae2
_O 0 00 O O 1_ _CL71 a72_ _CL71 a72_

The inverse of this matrix is itself: Ri_j1 = Ry



Elementary matrices: Row-multiplying transformations

Multiplies all elements on row ¢ by m # 0.

1
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Elementary matrices: Row-addition transformations

Subtracts row j multiplied by m from row 1.

1
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Row operations

e Elementary row operations correspond to left-multiplication by ele-
mentary matrices:

A-x=0>b
(+Rg-Ry-R1-A)-x=---R3-Ry-Ry- b
(I,)-x=---Rg-Ry-Ry-b
r=---Ry -Ro-Ry-b

e x can be built-up in stages since the R matrices are multiplied in the
order of acquisition.

e Inverse matrix A~! and solution = can be built up in the storage
locations of A and b respectively.
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Column operations

Elementary column operations correspond to right-multiplication:

transform rows of A?, then transpose: (RA")" = AR' = AC ~ C = R".

Note that (AB)" = B*A®.

A-x =

A.Cl.cl—l.a;:

A-C-Cy-Cyt-Citx=

(A-Cl-Cg-Cg---)-(---051-02_1-01_1)-:13:

(In)-(---C?jl-C;l-Cfl)-m:
r=01-Cy-Cs----b

The C matrices must be stored until the last step:
they are applied to b in the reverse order of acquisition.
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Gaussian Elimination with Backsubstitution

e Like Gauss-Jordan, but (i) don’t normalize pivot row,
and (ii) introduce zeros only in rows below the current pivot element.

e Example: ass is current pivot element
~+ use pivot row to zero only ass, a9, . ..

e Suppose we use partial pivoting (never change columns)

~+ Original system Ax = b transformed to U ¢
upper triangular system Ux = c. di
. . d
~+ Pivots d1, . .., d,, on diagonal of U. NFP
d ¢ =
: oL d
e Solve with backsubstitution. &
dz

e Triangular systems are

computationally and numerically straightforward.
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Gaussian Elimination with Backsubstitution

Axr =0>b
RlACB = Rlb
£°°°R2'R1)4aj:£°°°R2'R1)IZ
U b4
U X C
di
dp
ds
d ¢ =
ds
de
dy
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The invertible case: Summary

e b is in the column space of A,,«,, the columns of A are a basis of R"
(so C(A) = R"™), the rank of A is n.

o G-J: A — I by multiplication with elementary row matrices:
(--Rs-Ry-Ry)-A=1=Rg.

Rg =rref(A) is the reduced row Echelon matrix,
and Ax =b —- Rgx=d < = (---R3s- Ry R1)b.

e A invertible ~ Rp = I ~» columns are standard basis of R™.
e Gaussian elim.: Zeros only below diagonal: Ax =b — Ux = c.

e Representation of floating-point numbers ~» numerical problems
~+ round-off errors ~» nonsense results possible.

e Solution: Partial (rows) and full pivoting (columns).
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The singular case

Recall: Let «, be a particular solution and x,, € N(A).

The solutions to all linear equations have the form x = x, + x,,.

How to find x, and x,,? ~» Elimination. Start with the nullspace.

Example: Asy4: 4 columns, but how many pivots?

_ )
8
10

1
A= 12
3

S = DN
o O DN

Initial observations:

- 2nd column is a multiple of first one

- 1st and 3rd column are linearly independent.

~» We expect to find pivots for column 1 and 3.
- 3rd row is linear combination of other rows.

42



The singular case

122 2 [1 2922 [1 229
A=1246 8| =00 2 4| =100 2 4| =U
3 6 8 10 00 2 4 0000
U is called the Echelon (staircase) form of A.

Note that elimination uses only elementary operations that do not change
the solutions, so Ax = 0 exactly when Ux = 0.

U Gives us important information about A:

e 2 pivots, associated with columns 1, 3
~» pivot columns (not combinations of earlier columns.)

e 2 free columns (these are combinations of earlier columns)
~~ can assign xs, x4 to arbitrary values.
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The Reduced Row Echelon Form

ldea: Simplify U further: Elimination also above the pivots.

1
U= 10
0

A, U and Rg all have 2 independent columns:
pivcol(A) = piveol(U) = piveol(Rg) = (1,3) ~» same rank 2.

S O N

S OO

—2
4
0

1
0
0

OO N

S o O

—2
4
0

1
0
0

S O N

S = O

—2

2
0

Obviously, the rank equals the number of pivots! This is equivalent to
the algebraic definition rank = dim(C(A)), but maybe more intuitive.

Pivot cols: independent, span the column space ~~ basis of C'(A).
Pivot rows: independent, span row space ~ basis of C(A?).
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The special solutions

Solutions to Ax = 0 and Rgx = 0 can be obtained by setting the free
variables to arbitrary values and solving for the pivot variables.

“Special”’ solutions are linear independent:
set one free variable equal to 1, and all other free variables to O.

12 0 —2 il 5’311 5’61
Rgx =10 0 1 2 ; =0. si=| |, s2=|
3 3 3

000 of|" ; |

Set 1st free variable z9 =1, with 24 =0 ~ 21 +2 = 0,23 = 0.
Pivot variables are 71 = —2,23 =0 ~ s1 = (—2,1,0,0)".

2nd special solution has to =0, 24 =1~ 21 —2=0,23+2 =0
~r SS9 — (2,0, —2, 1)t
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The nullspace matrix

The nullspace matrix /N contains the two special solutions in its columns,
so AN = 0.

1 2 0 —2 _12 (2)
Rp=[001 2|, N=|_
000 0 v

The linear combinations of these two columns give all vectors in the
nullspace ~» basis of null-space ~» complete solution to Ax = 0.

Consider the dimensions: n = 4,r = 2. One special solution for every
free variable. r columns have pivots ~» n — r = 2 free variables:

Ax = 0 has r pivots and n — r free variables. The nullspace matrix
N contains the n — r special solutions, and AN = RgN = 0.
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General form

General form: Suppose that the fist » columns are the pivot columns:

Ry — [[ F] r pivot rows

O Olm—1r zero rows

The upper left block is the r x r identity matrix.
There are n — r free columns
~+ upper right block F' has dimension 7 x (n — r)

Nullspace matrix:

N — —F| r pivot variables
| I |n—1r free variables

From this definition, we directly see that RgN = I(—F) + FI = 0.
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The Complete Solution

e So far: Ax = 0 converted by elimination to Rgx =0
~+ solution x is in the nullspace of A.

e Now: b nonzero ~~ consider column-augmented matrix |Ab].
We will reduce Ax = b to Rpx = d.

e Example:
130 2 1 130 2 1
001 4lz=1{6] = [0 0 1 4 6| =[AY]
1 3 1 6 7 1 3 1 6
130 2 1] 130 2 1]
Elimination: |0 0 1 4 = |0 0 1 4 = |Rgd]
001 4 0000




The Complete Solution

e Particular solution x,: set free variables z9 = 4 =0
~ x, = (1,0,06,0)". By definition, x, solves Ax, = b.

e The n — r special solutions x,, solve Ax,, = 0.

e [he complete solution is

1 -3 —2
=Ty + Ty = 0 + X9 L + X4 0

0 0 —4

0 0 1

49



Chapter 1

Linear Systems of Equations

Linear Algebra Il: The Fundamental Theorem

50



The Four Fundamental Subspaces

Assume A is (m X n).

1.

The column space is C(A), a subspace of R™.
It is spanned by the columns of A or Rg.
Its dimension is the rank r = #(independent columns) = #(pivots).

. The row space is C(A"), a subspace of R™. It is spanned by the rows

of A or Rg. There is one nonzero row in Rg for every pivot
~» dimension is also 7.

. The nullspace is N(A), a subspace of R".

It is spanned by the n — r special solutions (one for every free variable),
they are independent ~~ they form a basis
~ dimension of N(A) (“nullity”) is n — r.

. The left nullspace is N(A"), a subspace of R™.

It contains all vectors y such that Ay = 0. Its dimension is m — r.
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The Fundamental Theorem of Linear Algebra (1)
1.), 2.) and 3.) are part one of the

'Fundamental Theorem of Linear Algebra.
For any m X n matrix A:

e Column space and row space both have dimension 7.
In other words: column rank = row rank = rank.

e Rank + Nullity = r + (n —r) = n.

4.) additionally defines the “left nullspace”: it contains any left-side row
vectors ¢y’ that are mapped to the zero (row-)vector: y*A = 0.
A! := B is a (n X m) matrix

«  dim(C(B)) + dim(N(B)) = m.
——— N—_—,|—

r m-—r

~ Rank + “Left Nullity” = m.
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The Fundamental Theorem of Linear Algebra (11)

Part two of the Fundamental Theorem of Linear Algebra concerns orthog-
onal relations between the subspaces. Two definitions:

Two vectors v, w € V are perpendicular if their scalar product is zero.
The orthogonal complement V- of a subspace V' contains every vector
‘that is perpendicular to V.

The nullspace is the orthogonal complement of the row space.

Proof: Every x perpendicular to the rows satisfies Ax = 0.

Reverse is also true: If v is orthogonal to N(A), it must be in the row
space. Otherwise we could add v as an extra independent row of the
matrix (thereby increasing the rank) without changing the nullspace

~+ row space would grow, contradicting » + dim(N(A)) = n.
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The Fundamental Theorem of Linear Algebra (11)

Same reasoning holds true for the left nullspace:

'Part two of the Fundamental Theorem of Linear Algebra:

e N(A) is the orthogonal complement of C'(A*) (in R™).

e N(A?) is the orthogonal complement of C'(A4) (in R™).

Immediate consequences:
Every £ € R"™ can be split into & = @ + Tnulispace-

Thus, the action of A on « is as follows:
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The 4 subspaces

column space
C(A)
multiples of (1, 3)

nullspace N(AT)
Tmul‘tiples of (3,—1)

_,!

row space C(A') | nullspace N (A) a1 2
multiples of (1,2) | multiples of (2, —1) - [3 6

Figure 2.5: The four fundamental subspaces (lines) for the singular matrix A.

Fig. 2.5 in Gilbert Strang: Linear Algebra and Its Applications
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Invertible part of a matrix

Every vector in C'(A) comes from one and only one vector in the row
space. Every vector in C'(A") comes from one and only one vector in
'the column space.

Proof (first assertion):

(i) Az, = Az, = A, —x)=0 = d:=x,—x,. € N(A).
(i) x¢. € C(AY),x,. € C(A") = § € C(AY).

But N(A) and C'(A") are orthogonal = § = 0.

Conclusion: From the row space to the column space, A is invertible.
In other words: There is a r x r invertible matrix “hidden” inside A.

This will be explored later in this course in the context of the
pseudoinverse and the SVD.
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Further Methods for Linear Systems

e Direct solution methods

— Gauss-Jordan elimination with pivoting
— Matrix factorization (LU, Cholesky)
— Predictable number of steps
e lterative solution methods
— Jacobi, Newton etc.
— converge in as many steps as necessary

¢ Combination

— direct solution, then improved by iterations
— useful for close-to-singular systems
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Factorization methods

e Disadvantage of Gaussian elimination:
all righthand sides b; must be known in advance.

e LU decomposition keeps track of the steps in Gaussian elimination
~+ The result can be applied to any future b required.

e A is decomposed or factorized as A = LU:

— L lower triangular,
— U upper triangular.

e Example: For a 3 x 3 matrix, this becomes:

a1 Q12 Q13 [vi 0 O U11 U12 U13
a21 Q92 a23| = |[log log O 0  ugs Uoj

a31 Qs2 G33 31 l39 33 0 0 |uss



LU factorization

e A= LU, L lower triangular, U upper triangular.

o Ax = b becomes LUx = b. Define ¢ = Ux.
Lec = b solved by forward-substitution, followed by
Ux = c solved by back-substitution.

e [he two interim systems are trivial to solve since both are triangular.
e Work effort goes into the factorization steps to get L and U.

e U can be computed by Gaussian elimination,
L records the information necessary to undo the elimination steps.
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LU factorization: the book-keeping

e Steps in Gaussian elimination involve pre-multiplication by elementary
R-matrices ~~» These are trivially invertible.

e Entries for L are the inverses (i.e. negatives) of the multipliers in the
row transformation for each step: R;;(m) Subtracts row j multiplied
by m from row i. Inverse: R;;(m)~! = R;;(—m).

-6 0 O 86 08
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LU factorization via Gaussian elimination

e LU is not unique:

— Decomposition is multiplicative
~~ factors can be re-arranged between L and U.

e LU may not exist at all, if there is a zero pivot. Pivoting:

— Can factorize as A = P~'LU = P'LU.
— P records the effects of row permutations, so PA = LU.
Need to keep track of permutations in P.

e’ 1 0
t
. 1 2345 i O
Permutation m = = Pr=|les| = |0 1
1 4 2 5 3 }
ex 0 0
e’ 0 0

_O O O O

o O O = O

O = O O O




Crout’s algorithm

e Alternative method to find the L and U matrices
e Write out A = LU with unknowns for the non-zero elements of L, U.

e Equate entries in the n X n matrix equation
~+ n? equations in n? + n unknowns.

e Underdetermined ~~ n unknowns are arbitrary
(shows that the LU decomposition is not unique)
~+ choose the diagonal entries [;; = 1.

e Crout’s algorithm:

— re-write the n? equations in a carefully chosen order so that elements
of L and U can be found one-by-one.
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1 0
o1 1
l31 32

Multiplying out gives:

Uil

lo1u11

[31u11

U2

o112 + U2
[31u12 + [30U29
u13

lo1u13 + u23

[31u13 + l32u23 + 33

Crout’s algorithm

Uil
0
0

aii

asi
ai2

a2

ais

a23

Uui2
U22

uis ailxz ailz2 a3
U233 = |G21 Aa22 423
Uu33 | | a31 432 433

Red indicates where an element is used for
the first time.

Only one red entry in each equation!
Crout’'s method fills in the combined matrix

Uil Ui12 Ui4

U22 U23 U4
31 l32 u33 wus34
lar la2 laz uag

by columns from left to right, and from top
to bottom.
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A small example

4 3 . 1 0 U111 U112
6 3| |lor 1| | 0 g
Solve the linear equations:

’LL11:4
lo1-u11 =6
U12:3

lo1 - U192 + u22 =3

s 2o —1s

4 3
Substituti ields:
ubstitution yields [6 3]
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Positive Definite Matrices and the Cholesky Decomposition
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Positive definite matrices

An n X n symmetric real matrix A is positive-definite if £'Ax > 0
for all vectors x # 0.

Simple tests for positive definiteness?

e A positive definite matrix A has all positive entries on the main
diagonal (use x*Ax > 0 with vectors (1,0, ...,0)*, (0,1,0,...,0) etc.)

e Ais diagonally dominant if |a;| > » ;. |a;].

e A diagonally dominant matrix is positive definite if it is symmetric and
has all main diagonal entries positive. Follows from the Gershgorin
circle theorem (details will follow...). Note that the converse is false.

There are many applications of pos. def. matrices:

e Linear regression models (~> chapter 2).

e Solution of partial differential equations ~~ heat conduction,
mass diffusion, wave equation etc.
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Example: Heat equation

e u =u(x,t) is temperature as a function of space and time.
This function will change over time as heat spreads throughout space.

o U = % is the rate of change of temperature at a point over time.

2,, . . o
® Uy, i= % Is the second spatial derivative of temperature.

e Heat equation: u; «x u,,. The rate of change of temperature
over time is proportional to the local difference of temperature.
Proportionality constant: diffusivity of the (isotropic) medium.

(m) _

e Discretization u ;

u(x;,tmy) at grid points z; and time points

Tj:i=7- h and ¢, :=m- T
spatial step size temporal step size

e Assume h = 7 =1, and also diffusivity = 1.



Example: Heat equation

e Approximate derivative on grid (~~ finite differences):

fle+h) - flz)
A .

O

e Second order (central difference approximation):

z+h)—f(x x)—f(x—h
f(-l-})L f(z)  f(z) ifz( ) f(:lj—|—h)—2f(£€)-|—f(£l?—h)

F() ~ -

h h?

e Approximate equation u; = u,, by (we assumed step size =1)

(m—+1) (m) _  (m+1) (m—+1) (m—41)
uj Ty =y = 2uy gy

rate of change over time local temperature difference

J/
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Example: Heat equation

e Solve this implicit scheme for u(™+1);

(1—1—2)u§.m+1)—u§TT1)—u§TT1) = u§-m>, fory=1,....,n—1, and m > 0.

o With A = tri—diagonal with (aj,j_l, Qg g, CLj,j_|_1) = (—1, 2, —1)Z

0 0
I+Au™Y =10 0 -1 3 —1 0] ulm+D) = (™)
0 0

e (I 4+ A) is diagonal dominant and symmetric, and has positive diagonal
entries ~» positive definite! It is also sparse ~~ efficient elimination
possible: per column only 1 zero needs to be produced below the pivot.
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Cholesky LU decomposition

e The Cholesky LU factorization of a pos. def. matrix A is A = LL°.
e Use it to solve a pos. def. system Ax = b.

e Cholesky algorithm: Partition matrices in A = LL! as

(CLH 061) _ (ln 0 ) (ln l%l) _ ( l%l llllgl )
a2 Ao lo1 Loo 0 Lk liilar o1l + LooLlb,
Recursion:

—step 1: 11 = /a1, Il = iazl-
— step 2: compute Loy from S := Agy — lgllél = LooLs.

This is a Cholesky factorization of 5, _1)x(n—1)-
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Cholesky: Proof

Proof that the algorithm works for positive definite A, «,, by induction:

1. If A is positive definite then a1 > 0,

A 111 = \/011 and l21 — i&gl are well-defined.

2. If A is positive definite, then
S = AQQ — lgllgl = A22 — %ﬂazlagl IS positive definite.

Proof: take any (n — 1) vector v # 0 and w = —(1/aq1)ab;v € R.

tQ,, o (@ as) (w) _ t w
S v)(a21 Am) <v>—(w U)A(v>>o.

e Induction step: Algorithm works for n = k if it works for n = k — 1.

e Base case: It obviously works for n = 1; therefore it works for all n.
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Iterative improvement

e Floating point arithmetic limits the precision of calculated solutions.

e For large systems and “close-to-singular” small systems, precision is
generally far worse than machine precision ¢,,.

— Direct methods accumulate roundoff errors.
— Loss of some significant digits isn't unusual even for well-behaved
systems.

e Iterative improvement: Start with direct solution method (Gauss,
LU, Cholesky etc.), followed by some post-iterations.
It will get your solution back to machine precision efficiently.
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Iterative improvement

e Suppose x is the (unknown) exact solution of Ax = b and x + dx is
a calculated (inexact) solution with unknown error dx.

e Substitute calculated solution in original equation:
A(x + dx) = b+ db, (1)

e Subtract Ax (or b) from both sides:

Adx = db. (2)
e Eqn. (1)) gives:
ob=A (x+dx) -0 (3)
S

calculated solution

e Right hand side of eqn. (3) is known
~ get 0b and use this in ([2)) to solve for dx.
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Iterative improvement

1
Q

lterative improvement: first guess & + dx is multiplied by A to produce b + 0b.

Known vector b is subtracted ~~ b.

Inversion gives dx and subtraction gives an improved solution x.

LU factorization of A can be used to solve Aéx = LUdx = b to get

Repeat until ||6x| ~ €.

@

A%

Ox.
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Iterative methods: Jacobi

e Assume that all diagonal entries of A are nonzero.
e Write A=D+L+U

where D =

e So A =b ~~

ail 0
0 aoo
0 0

afnn

and L+U =

(L+D+U)x=b.

e [he solution is then obtained iteratively via

Dx=b—(L+U)x.

7




Iterative methods: Jacobi

e [he solution is obtained iteratively via

Dx=b— (L+U)x. (4)

e Given x ;) obtain x(; 1) by solving (4) with & = x;):
(%) (i+1) (4)

T(itr1) = —D_l(L + U):B(Z) + D7 1b.

e Define J = D! (L + U) as the iteration matrix.
~ L(i41) = —J:B(Q;) + D~ 1b.
e From (4): D"'b=2+D Y (L+U)z=x+ Jx
= T(41) = —Jxy +x+ Jx.
° (Z + 1)—th error term: €(;41) = L(j+1) — L = —J(CE(Q;) — CIZ) = —Je(i).

e Convergence guaranteed if J is “contracting”.
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Calculating the error, revisited

e Errorin (i + 1)-th iteration: €(;41) = —Je€().
® E(i+1) — —J(—JE(Z_l)) — J2€(i_1) = = (—1)i+1ji+1€(0).
e So if J* — 0 (zero matrix) for ¢ — oo then €;) — 0.

e The key to understanding this condition is the
eigenvalue decomposition J = VAV ™! (details next section)

— the columns of V' consist of eigenvectors of J and
— A is a diagonal matrix of eigenvalues of J.

o Then J2= VAV 'WAV ! = VA2V !~ J' = VAPV

If all the eigenvalues of J have magnitude < 1,
then A™ — 0 and consequently J” — 0 ~» convergence.

e A diagonally dominant ~~ Jacobi method converges.
Follows from the Gershgorin circle theorem.
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Eigenvalues and eigenvectors

e Consider a square matrix A. A vector v for which Av = A\v for some
(possibly complex) scalar A is an eigenvector of A,
and A is the associated eigenvalue.

e The eigenvectors span the nullspace of (A — \I):
They are the solutions of (A — AI)v = 0.

e A non-zero solution v # 0 exists if and only if the matrix (A — \I)
Is not invertible:
otherwise we could invert (A — A\I') and get the unique solution
v=(A—-MX)"10=0, i.e. only the zero solution.

e Equivalently we have non-zero eigenvectors
if and only if the rank of (A — A\I) < n.

e Equivalently we want: det(A — A\I) = 0. Why?
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Determinants

e The determinant of a square matrix is a single number.
It contains a lot of information about the matrix.

e But is is not a “simple” function...
Explicit formulas are complicated, but its properties are simple.

Three rules completely determine the number det(A):
1. The determinant of the identity matrix is 1: det(l) = |I| = 1.

2. The determinant changes sign when two rows are exchanged.

3. The determinant is a linear function in each row separately
(all other rows stay fixed): 2d-example for first row

tatb_tab

¢c d|l  le d
a+a b+b| Ja b_l_a’ b’
C d | le d c d
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Determinants
Further rules can be deduced:

4. If two rows of A are equal, then det(A) = 0.
Rule 2: Exchange of the equal rows ~~ det(A) changes sign.
But matrix stays the same, so det cannot change ~~ det(A) = 0.

5. Subtracting a multiple of one row from another row leaves the
same determinant.

a—lc b—Ild| |a b—l c d
C d e d c d
N——

=0 (rule 4)

Usual elimination steps do not affect the determinant!

6. If A has a row of zeros, then det(A) = 0.
Add some other row to zero row ~» det(A) is unchanged (rule 5).

But now there are two identical rows ~~ det(A) = 0 by rule 4.
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Determinants

7. If A is triangular then det(A) = ||, a-
Suppose the diagonal entries are nonzero. Then elimination can remove
all the off-diagonal entries, without changing det(A) (rule 5).
Factoring out the diagonal elements gives
det(A) = 11, aii - det(I) =]], ai; (rules 3 and 1).
Zero diagonal entry ~~ elimination produces a zero row.
Rule 5: elimination steps do not change det(A).
Rule 6: zero row ~» det(A) = 0.

8. If A is singular, then det(A) = 0. If A is invertible, det(A) # 0.
A singular: Elimination ~~» zero row in U ~» det(A) = det(U) = 0.
A nonsingular: Elimination puts the nonzero pivots di,...,d, on the

diagonal. Sign depends on whether the number of row exchanges is
even or odd: det(A) = xdet(U) = £ ][, d; # 0.
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Determinants

9. The determinant of AB is the product det(A) - det(B).
Proof sketch: When |B| # 0, consider ratio D(A) := |AB|/|B|.
Check that this ratio has properties
1: A= 1T implies D(A) =1,

2: exchange of two rows of A gives a sign reversal of D(A),
3: linearity in each row

~» D(A) must be the determinant of A: D(A) = |A| = |AB|/|B|.

10. Formula for 2 x 2 case:

A Rl A | P

A\ N\ _J/

det=1 det=ad—bc
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Eigenvalues and eigenvectors

o det(A — AI) = 0 is the characteristic polynomial of A.

— it's a polynomial of degree n for A, ),
— Iits solutions give all the eigenvalues \;.
a— A b
c d— A\
e Once we know all the A1, Ao, ..., \,, we take each one in turn and find
the corresponding eigenvectors v; by solving the linear system

Example: =(a—A)(d—)\) —bc=0.

e All eigenvectors fulfill Av; = A\v;. In matrix form: AV = VA,

where v; is the ¢-th column of V and A is the diagonal matrix
A1
A =
An
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Eigenvalues, pivots and determinants

e Suppose that A\{,... Ay are eigenvalues of A. Then the )\; are the roots
of the characteristic polynomial, and this polynomial of degree n always

separates into n factors involving the (possibly complex) eigenvalues
(fundamental theorem of algebra), i.e.

det(A—A) = (A — N —A) - (A — A).

e Holds for every A ~» can set A = 0:

det(A) = ][ A\

e We already showed that det(A) = £det(U) = £]], d;, so
Determinant = + (product of pivots) = product of eigenvalues.
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Diagonalization

e Not all linear operators can be represented by diagonal matrices with
respect to some basis.

e A square matrix A for which there is some (invertible) P so that
P~'AP = D is a diagonal matrix is called diagonalizable.

Theorem. Suppose that A(,xn) has n linearly independent eigen-
vectors vy, ..., V,, arranged as columns in the matrix V.. Then

A1
VTIAV = A =

An

Proof. Av;, = \v; = AV =VA = V1AV =A [ ]
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Diagonalization

Theorem. Figenvectors corresponding to distinct (all different) eigen-
values are linearly independent.

Proof. Suppose civ1 + covy = 0.

Then A(Cl’vl + 62’02) = cl)\lvl -+ 02)\2’02 = 0.
Also As(c1v1 + cov2) = c1 A1 + coAovs = 0.
Subtraction gives:

()\1 — )\2)01’01 =0 = ¢1 =0, since v, 75 0 and )\ 7& Ao.
Similarly, ¢ = 0. Thus, no other combination c;v; + covy = 0, and the

eigenvectors must be independent. Proof directly extends to any number
of eigenvectors. [
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Orthogonal Diagonalization

e If P is also orthogonal (PP' = I), A is orthogonally diagonalizable.
e Columns of P = linearly independent eigenvectors of A.

e Diagonal entries of D are the corresponding eigenvalues.

Theorem. If a matriz s orthogonally diagonalizable, then it is sym-
metric

Proof. We assume that P!AP = D holds, with P* = P~
Thus, A = PDP" and A = (PDP!)" = PDP' = A. N
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Orthogonal Diagonalization

Theorem. Eigenvectors of a symmetric matriz corresponding to differ-
ent eigenvalues are orthogonal.

Proof. Let A = A have eigenvectors v1 and vy for eigenvalues A\ # .
(Avq)'wy = vi(Avy) = \vivy = Mavivs.
Since A1 # A2, we must have vivs = 0. ]

More general version (without explicit proof): Spectral Theorem
Theorem. Suppose the n x n matrix A is symmetric.
Then it has n orthogonal eigenvectors with real eigenvalues.

A square matrix A is orthogonally diagonalizable
if and only if it is symmetric.
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Matrix Powers

e Consider a square matrix A with eigenvector decomposition
A(an) = VAV L

e What are the eigenvectors of A% = AA?

Substitution gives: A% = VAV VAV = VA2V
So A? has the same eigenvectors and squared eigenvalues.

e General form: A = VA"V L,

e When does A* — 0 (zero matrix)?
All |)\;| < 1 (cf. convergence analysis of Jacobi iterations).

e Are there other interesting applications of matrix powers? Yes, many!
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Matrix Powers: Fibonacci numbers

e The Fibonacci sequence 0,1,1,2,3,5,8,13,... comes from
Frio = Fipi1 + Fy.

e Assume you want to compute Figg. Can it be done directly?
Yes, with the help of matrix powers...

o Define uy = [F;H] and the transition matrix A = E (1)]
k

1 1
e [he rule Fle2 Frt1 1+ B IS UpL] = [ ] U

Friy1 = Fia L0

1
o After 100 steps we reach w199 = A%, with ug = [O]
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Matrix Powers: Fibonacci numbers

1. Find eigenvectors v, vy and associated eigenvalues of A.

2. Express ug as combination of eigenvectors:
Ug = C1V1 + CV9 ~> C = V_l’u,o.

3. Now APy = VAV~ Luy = VA¢. Thus, multiply each eigen-
vector v; with A\1° and add up the results with weights c;.

In our case:

1—X 1
1 -
wA=14101w =5 51618, A =150~ —0.618.

A—M:[ ]wdet(A—)\I):)\z—)\—léo

(A— A =0 ~ v, = hl] vy = [Af]
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Matrix Powers: Fibonacci numbers
Weights: c; = 1/()\1 — )\2), Co = —1/()\1 — )\2)
)\%OO 100

’Ul—>\2 V2
A1—A2

After 100 steps: U100 = Cl)\%oo’vl —+ CQ)\%OO'UQ =

e We want F'pp = second component of w1gp.
Second components of eigenvectors are 1, and A\ — Ay = V5. Thus,

100 100
AN 1| (1415 1= VB\ | Ly
100 — )\1_)\2 —\/5 9 5 ~ . .

e Note: \5/(\1 — X\2) < 1/2 and result must be an integer,

k Kk k
so I}, = % must be the nearest integer to \}5 (”2*/5) :

e The ratio Fl’f.,‘gl approaches the golden ratio %5 ~ 1.618 for large k.
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Matrix Powers: Markov matrices

e A matrix is a Markov matrix iff the following holds:
1. Every entry is non-negative, 2. Every column adds to 1.

e A Markov matrix is called column-stochastic:
entries in every column can be interpreted as probabilities.

e Suppose A is Markovian, and start with probability vector wuy.

e Observation: if we make a sequence of update steps, ur = A*uy,
we will approach a steady state for k — oo, and this steady state
does not depend on the starting vector u!

e Asymptotic loss of memory: Markov chain "forgets” where it
started. The question is why...
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Matrix Powers: Markov matrices

e Intuition: Since the eigenvalues of A are raised to larger and larger
powers, a non-trivial steady state can only occur for A = 1.
The steady state equation Au., = u,, then makes u, an
eigenvector of A with eigenvalue A = 1.

Theorem. A positive Markov matriz (entries a;; > 0) has one eigen-
value A\1 = 1, all other eigenvalues have || < 1.

We will not formally prove this theorem here. But the existence of A\; =1
easily follows from this observation:

e Consider A = [21 31] A is column-stochastic, so every column of
2 g2

A— 1] adds to 1 — 1 = 0 ~» the row vectors add up to zero,
(p1 — 1,q1)" + (p2,q2 — 1)t = (0,0)%, so they are linearly dependent
~ det(A—11) =0~ A =1 is an eigenvalue of A.
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Matrix Powers: Markov matrices

e A2 is also a Markov matrix:

A2_ | PItDPn pat @
P1p2 + P292  P2g2 + C]%

Note that this matrix is also column-stochastic: Sum of first column is

P% + p2q1 + p1p2 + p2q2 = P1(p1 + p2) + p2(q1 + q2) = p1 +p2 = 1.

e By induction, all matrices A* are Markov matrices!
~+ they all have the eigenvalue A = 1.

e This argument holds true for any n X n Markov matrix A.
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Markov matrices: Rental cars example

Rental cars in Denver. Every month, 80% of the Denver cars stay in
Denver, 20% leave. 5% of outside cars come in, 95% stay outside.
Fraction of cars in Denver starts at 1/50 = 0.02 ~ ug = (0.02,0.98)".

02 o [oo] = o

MIESHEIRTRIE 1 = [0.2 0.95] [0.98] ~ 0.935

k-th month: w, = AFug = VARV 1y

Eigenvalues and eigenvectors:
0.2 0.2 —1 —1
Alosf =tos]- [ =0 [

| 0.02 0.2 —1
Weights: ug = c1v1 + covg = [0.98] =1 [O.S] +0.18 [ 1 ]
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Markov matrices: Rental cars example

0.2

After k months: u; = AFug = VAFe=1F-1 [O q

] +(0.75)%.0.18 [_11]
0.2
0.8
i.e. in the limit, 20% of the cars are in Denver and 80% outside.

Thus, the eigenvector v, = [ ] with Ay = 1 is the steady state,

Initial vector ug is asymptotically irrelevant.
Other eigenvector v, disappears because |)\;| < 1.

Magnitude of Ay controls the speed of convergence to the steady state.
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Markov matrices: Google example

ldea: for n websites, columns in A, «, contain pairwise transition
probabilities from one website to all other ones, computed from the
number of links between the sites.

Then find u,, by a random walk that follows links (i.e. random surfing).
This steady state vector gives the limit fraction of time at each site.
The ranking of sites is then based on u..

According to Google, the Markov matrix A has 2.7 - 10° rows and cols.
Probably the largest eigenvalue problem ever solved!
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Applications to Differential Equations

Main Idea: Convert constant-coefficient DEs into linear algebra.

e One equation: 2 = \u has solutions u(t) = ce*.
e Initial conditions: Choose ¢ = u(0) (since €’ = 1).
e 1. equations: % = Aw, starting from u(0) at ¢t = 0.

e Equations are linear:
If w(t) and v(t) are solutions ~~ cu(t) + dv(t) is solution.

e Here, A is a constant matrix
~» compute eigen-vectors and -values satisfying Av = A\v.

e Substitute u(t) = e*v into 2% = Au:

s Nt = AeMy & Av = ).

104



First Order Equations

e All components of this special solution u(t) = e*v share the same

time-dependent scalar e*’.

e Real eigenvalues: A > 0 ~~ solution grows, A\ < 0 ~- solution decays.

e Complex eigenvalues: Real part describes growth/decay, imaginary
part w gives oscillation like a sine wave: ¢! = cos(wt) + i sin(wt).

e Complete solution is linear combination of special solutions for each
(v, A)-pair. Coefficients are determined by initial conditions.

e Recipe (assuming no repeated eigenvalues ~~ n eigenvectors):

— Write u(0) as combination of eigenvectors civ; + - - - + ¢, v,
— Multiply v; by et
— Solution is u(t) = cieMtvy + - - - + cpe’tv,.
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Second Order Equations

e Mechanics is dominated by

M 4 + by + ky =0

acceleration damping restoring force

Linear second-order equation with constant coefficients m, b, k.

e Assume m = 1. define u = (y,9)". The two egs.

dy . dy .
E— andg— ky by

d d |y 0 1] |y
S — A Ay — —_—
T H [—k —b] [y]

e Reduction to first-order system!

convert to
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Second Order Equations

o Determinant [A — M| = A2+ b\ +k =0
~+ two distinct eigenvalues A1, Ao
~ two eigenvectors. Here: v1 = (1, \1)% vo = (1, Ao)".

e Solution:
u(t) = creMtvg + cpe*?tv,.
First component: y(t) (position),
Second component: g(t) (velocity).
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The exponential of a matrix

If there are n independent eigenvectors: Complete solution is
linear combination of special solutions for each (v, \)-pair.
More general & compact version?

. : : (n)
Taylor series of function f(z)is >~ fT,(a)(x —a)”, where £(")(q)
is the n-th derivative of f at point a.
Exponential function, a =0: e* =1+ + %xQ + %x3 + .-

Substitute square matrix At for x:
At 1 2, 1 3
e :I+At—|-§(z4t) —|—6(At) + .-

d 2 1 3, At
—e"=A4+At+-At"+---=A
te t 5 t €

~+ we immediately see that u = e*u(0) solves Lu = Au.
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The exponential of a matrix

Simple case: n indep. eigenvectors ~ A is diagonalizable ~~ A = VAV~
._I+VAV‘%+-(VAV]ﬂ

—V'I+Aﬁ+(Aﬂ |Vt

€>\1t

Substitute in general form of solution:

u(t) = eu(0) = Vel V1lu(0)

=c, since Ve=u

= cleAltvl + -+ cneA”tfvn.
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The exponential of a matrix

What if there are not enough eigenvectors? Example:

d d |y 0 1] |y
Zu=Au o~ — |7 =
T U [—1 2] U

det(A—XI) = \*—2X+1 = (A—1)? = 0 ~» repeated e.value \; = Xy =1
~+ only one eigenvector ~» diagonalization not possible.

ldea: Use Taylor series directly. Series ends after linear term!

\

1
@At p— elte(A_I)t — et[l—|— (A—I)t—|—§(z4—])2t2—|—0‘|‘]

0

u(t) = eMu(0) = € [l + [_1 1] t] u(0)

—1 1

First component: y(t) = €' y(0) — te* y(0) + te* 4(0).
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Singular value decomposition

e Remember matrix diagonalization: V~"tAV = A. Three problems:

— A must be square.
— There are not always enough eigenvectors.
— Only for symmetric matrices, the v; are orthogonal.

e The SVD solves these problems, but at an additional price: we now
have two sets of singular vectors u; and v;.
Denoting by o; the singular values, they are related as:

A’UZ' = 0o;U; and Atui = 0;0;.

o If r is the rank of A, there will be r positive singular values, say
01,...,0, > 0. All remaining ones will be zero.
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Calculating the SVD

e Combine the two equations that define a pair u, v:
At (Av) = Al(ou) = o(A'u) = o(ov) = o*v.

o So A'Av = o%v.
Singular values: square roots of the eigenvalues of A'A (note that
A'A is positive semi-definite).
Singular vectors v: eigenvectors of A'A.

e We can always choose orthonormal eigenvectors: Orthonormal basis
always exists, because A*A is symmetric ~ orthogonally diagonalizable.

e Given v;,0;, compute u; according to u; = O',L-_lA’UZ', 1=1,...,7r.

e Arrange singular values on diagonal of a matrix S and singular vectors
as the columns of orthogonal matrices U and V.

e Then we have AV =US and AU =V S.
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Calculating the SVD: starting with U

e So far: Start with eigenvector decomposition of A*A ~+ V and S,
then compute u; = leAvi.

e Can also start with AA* ~ U and S
AA'w = Aov = 0(Av) = o(ou) = o°u.

Singular values are also the square roots of the eigenvalues of AA?,
and the eigenvectors of AA? are the columns of U.

e Then vizai_lAtui, v =1,...,7.

e BUT: Don't mix the two methods. Problem: Eigenvectors only
determined up to the direction: if v is eigenvector of A'A, then also
—wv isone: A'Av =) v = A'A(—v) = \(—v).

So if you compute both u; and v; as eigenvectors of AA! and A'A,
the signs can be arbitrary ~» not necessarily a correct SVD.
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Singular value decomposition

Orthogonality implies AV =US ~» AVVi=A =USV?".

Economy version of the singular value decomposition (SVD) of A:
Uismxr, Sisrxr, Visn xXr.

t
09 — v —
A:USVtZ U1 U ... Uy 2

What about the remaining n — r vectors v; and the m — r vectors u;
with o; = 0?7 They span the nullspaces of A and A?:

Av; =0, forj>r
Atuj:O, for 3 > r
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Singular value decomposition

Full singular value decomposition (SVD) of A:
Uismxm, Sismxmn, Visn Xn.

o 1 _
09 — ’U’i —
A
_ - o, :
I | | 0 R
U, U2 ... Uy Upy1 ... Um "
I e R T O T
: : 0
0 0 0 0 0 :
: - vt -
0 0 0 0 0| )
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SVD and bases for the 4 subspaces

A’Uj = 0;Uy, forj S T. Atuj = 04Uy, forj § T.

Av; =0, for j > r. A'u; =0,  forj>r.

e Columns of V with o; > 0 are an orthonormal basis for C(A").
Diagonal elements in S scale the columns in V: Aty = V.StU'y,
so the columns of V' with nonzero ¢ span the row space.

e Last n — r columns of VV are an orthonormal basis for N(A).

e Columns of U with o, > 0 are an orthonormal basis for C(A).
Diagonal elements in S scale the columns in U: Ax = USV'x, so the
columns of U with nonzero o span the column space.

e Last m — r columns of U are an orthonormal basis for N(A?").
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SVD and bases for the 4 subspaces

dimr
row space

Av; = oju;

AVr - Gr ur

AVn=0

left nullspace
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SVD and linear systems
Assume A is a n X n matrix. With the SVD decomposition:

Axr =0>b
USVie =0
SVie =U'

Sz =d, where z

Written in blocks this is

01
02

Solution: z; = di/aiv

— V'x and d = U'b.

<1 dy
<2 do
O-’I” Z’l” d’l”
Opr41— 0 Rr4+1 dr—i—l
on="0 Zn d,
= 1,...,r. What about the remaining entries?
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SVD and linear systems

Recall: b must be in C'(A) (otherwise no solution exists),

last . — r columns of U form basis of orthogonal complement N (A?").
Right hand side is

—_ ul —_ ) )
t
t
—  u — d
d="U'b = b=
o ur+1 o 0
t )
ur—|—2 T :
: 0
. L
- Uy

Forr+1 <7 <n: 0-z =0 ~» can choose them arbitrarily.
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Pseudoinverse

Alternative formalism for SVD solution:

e Write ST to denote the matrix obtained by replacing each o}, in St by

I. O
. . | o |1Ir
its reciprocal, so TS5 [O O]
e [hen compute:
USVig =
SVie = U
Sz =U'

AT is the pseudoinverse of A: it maps b € C(A) back to x € C(AY).

121



SVD and linear systems

Homogeneous equations:

e Zero right hand side: b =0

e Columns of V with o; = 0 are an orthonormal basis for the N(A).

e Solved immediately by SVD:
Any column of V' whose corresponding o; = 0 yields a solution.

General case:

e Consider arbitrary b. Two cases: does b lie in C(A) or not?

e If YES, there exists a solution x; in fact more than one,
since any vector in the nullspace can be added to «.

e SVD solution & = AT b is the “purest” solution: the one with smallest
length ||x||?>. Why? x € C(A?), any nonzero component in the
orthogonal nullspace would only increase the length.
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General case

Consider arbitrary b. Two cases: does b lie in C(A) or not?
NO: If b is not in C'(A), there is no solution.

But: can compute compromise solution: Among all possible x, it will
minimize the sum of squared errors between left- and right hand side
~+ |least-squares methods.
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SVD and Zeroing

The SVD can solve further numerical problems:

e Zero a small singular value if g; is (too) close to zero.

e This forces a zero coefficient instead of a random large coefficient
that would scale a vector “close to" the nullspace:

dl dr
r=Vz=v1—+ -+, —FV112p11+ -+ Vn2n
Jl J’l" ~ v~ o
N ~~ - nullspace
rowspace

e Rule of thumb: if the ratio 0;/01 < €, then zero the entry in
the pseudo-inverse matrix, since the value is probably corrupted by
roundoff anyway.
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Chapter 1

Linear Systems of Equations

The condition number
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Conditioning

e Conditioning is a measure of the sensitivity to perturbations, due to
measurement error, statistical fluctuations in the data analysis process,

or caused by roundoff errors.
These perturbations might affect the numerical values in b and/or A.

e Conditioning describes how this problem error Ab, AA will affect the
solution error Ax.

e A function of the problem itself, independent of the algorithm used.
(In practice, however, this separation between the problem and the
algorithm might be less clear as it seems...Example: In elimination, the
values in A change after every elimination step.)
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Vector and matrix norms

e How to compare closeness of two vectors & and x + Ax?

Look at relative quantities like B2 5 o A2 5
|| |z+Ax|

e Vector norm properties:
(i) ||| > 0, V& #£ 0
(i) laz| = |al||z|
(i) lz +y|l < [lz| + [yl
e The vector p-norms (¢, norms) are defined by

8
S
|
YR
\gE
&
N
S
—
N
i~
N
3

e ||x||2 is the usual Euclidean norm. What about matrix norms?
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Vector and matrix norms

e y = Ax transforms vector x into y

~+ A rotates and/or stretches x.

e Consider the effect of A on a unit vector x
(i.e. « so that ||x||2 =1).

e The “largest” Ax value is a measure of the
geometric effect of the transformation A. "

e The 2-norm is || Al|2 = max| z|,=1 |[AZ|2.

e Also called the spectral norm of A,
because ||A||2 = \/max();) where )\; is an eigenvalue of A‘A
(See handout on matrix norms).
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Vector and matrix norms

e [wo other useful and easier-to-calculate matrix norms:
o ||All; = max; Y ", |a;;| column sum norm.
¢ ||Alloo = max; Y7 [a;;| row sum norm.

e | A|| satisfies vector norm properties PLUS
|AB| < | A[|[B] and, in particular, || Az|| < [|Al||z]|
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Sensitivity to perturbations

e Original system is Ax = b. Assume that right hand side is changed to
b + Ab because of roundoff or measurement error.

e Then the solution is changed to x + Ax.
Goal: Estimate the change in the solution from

Subtract Ax = b from A(x + Ax) = b+ Ab
to find A(Ax) = Ab & Ax=A"1'Ab

the change Ab.

Az =A""Ab = |[|Az| < [|[A7]]|Ab|

Az = b = |[o]] < [|A]l]
Multiplication and division of both sides by (||b
|Az| 1 1Ab]

< [[A[[l]A™]]| 5=
|| Ib]|

-~

k(A)

z||

[llzl]) gives
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Sensitivity to perturbations

e Error can also be in the matrix: we have A + A A instead of the true

matrix A.

e Subtract Ax = b from (A+ AA)(x + Ax)=0b
& Az =-A"1(AA)(z+Ax)

to find A(Ax) = —(AA)(x+ Ax)

|Az| < AT AAlllz + Az
|Az| 1A
< [|[ANA™ ===
|l + Az| ~— Al
k(A)

e Conclusion: Errors can be in the matrix or in the r.h.s.

This problem error is amplified into the solution error Ax.

Rel. solution error is bounded by k(A) times rel. problem error.
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Condition number

o k(A) = ||A||||[A™1]] is called the condition number of A.
o 1 <k(A) <.
e An ill-conditioned problem has a large condition number.

e Small residual does not guarantee accuracy for ill-conditioned problems:
2 is a numerical solution to A = b, and Ax = x — .
Define residual r to represent the error r = b — Az = b — b= Ab:

|Az|

||

< k(A2

e k(A) is a mathematical property of the coefficient matrix A.

e In exact math a singular matrix has k(A) = co. k(A) indicates how
close a matrix is to being numerically singular.
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Condition number

e k(A) can be measured with any matrix p-norm.

o Spectral norm ||A|j2 = v/ Amax(A'A) = Tumax(A)

For an invertible matrix M we have:
Mv=X = v= M "1v = M 1v=)x"1o,

so M ~! has the same eigenvectors but inverse eigenvalues, and

— O-maX
HA 1”2 — \/)‘min(AtA) — Umin(A) ~ k(A) — :

Omin

e Can be generalized to singular/rectangular matrices: k(A) = || A]|||AT|]
= ratio of largest and smallest positive singular value.
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