Chapter 1

Linear Systems of Equations

Introduction

Linear Systems of Equations: Example

- Consider an open economy with two very basic industries:
 goods and services.
- To produce €1 of their products (~ internal demand),
 - the **goods** industry must spend €0.40 on goods and €0.20 on services
 - the services industry must spend €0.30 on goods and €0.30 on services
- Assume also that during a period of one week, the economy has an external demand of €75,000 in goods and €50,000 in services.
- Question: How much should each sector produce to meet both internal and external demand?

Formulating the equations

- Let x_1 be the Euro value of goods produced and x_2 the Euro value of services produced.
- The total Euro value of **goods consumed** is $0.4x_1 + 0.3x_2 + 75000$.
- The total Euro value of **services consumed** is $0.2x_1 + 0.3x_2 + 50000$.
- If we assume that production equals consumption, then we get

$$x_1 = 0.4x_1 + 0.3x_2 + 75000 x_2 = 0.2x_1 + 0.3x_2 + 50000$$
 \Leftrightarrow $\begin{bmatrix} 0.6 & -0.3 \\ -0.2 & 0.7 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 75000 \\ 50000 \end{bmatrix}$

• The **solution** is $x_1 = 187500$, $x_2 = 125000$. Can be checked easily...

Formal solution

- Main inside: triangular systems can be easily solved by substitution
 transform system to (upper) triangular.
- Do all operations on **augmented matrix** $\begin{bmatrix} A & b \end{bmatrix}$.

$$\begin{bmatrix} 0.6 & -0.3 & 75000 \\ -0.2 & 0.7 & 50000 \end{bmatrix} \Rightarrow \begin{bmatrix} 0.6 & -0.3 & 75000 \\ -0.6 & 2.1 & 150000 \end{bmatrix} \Rightarrow \begin{bmatrix} 0.6 & -0.3 & 75000 \\ 0 & 1.8 & 225000 \end{bmatrix}$$

$$\Rightarrow 1.8x_2 = 225000 \Rightarrow x_2 = 125000 \Rightarrow x_1 = 187500.$$

- Elimination step: subtract a multiple of eq. 2 from eq. 1.
 - **→** Gaussian elimination

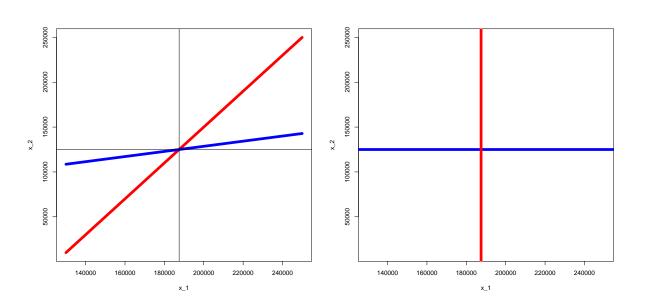
Formal solution

Instead of substituting, we could have continued with the elimination:

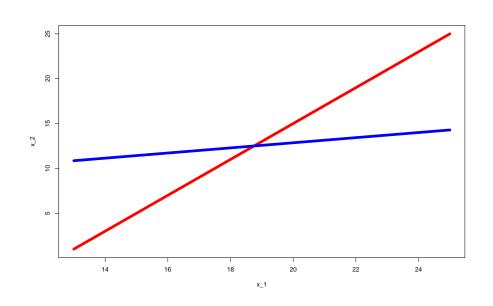
$$\begin{bmatrix} 0.6 & -0.3 & 75000 \\ 0 & 1.8 & 225000 \end{bmatrix} \Rightarrow \begin{bmatrix} 3.6 & -1.8 & 450000 \\ 0 & 1.8 & 225000 \end{bmatrix} \Rightarrow \begin{bmatrix} 3.6 & 0 & 675000 \\ 0 & 1.8 & 225000 \end{bmatrix}$$

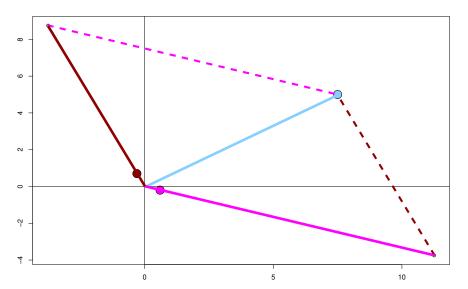
→ Gauss-Jordan elimination

Geometric interpretation: have transformed original equations into a new space in which they are aligned with the coordinate axis:



Row and column view

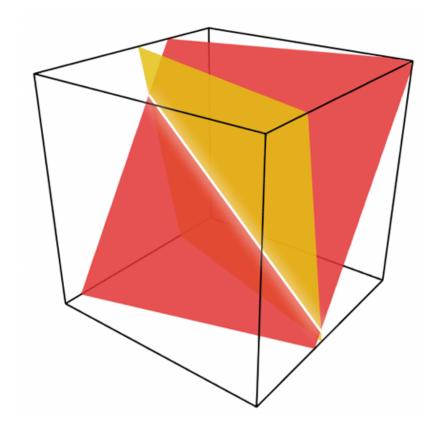




$$\begin{array}{c}
0.6x_1 - 0.3x_2 = 7.5 \\
-0.2x_1 + 0.7x_2 = 5
\end{array} \Leftrightarrow \begin{bmatrix}
0.6 & -0.3 \\
-0.2 & 0.7
\end{bmatrix} \begin{bmatrix}
x_1 \\
x_2
\end{bmatrix} = \begin{bmatrix}
7.5 \\
5
\end{bmatrix}$$

Column view (right):
$$\begin{bmatrix} 0.6 \\ -0.2 \end{bmatrix} x_1 + \begin{bmatrix} -0.3 \\ 0.7 \end{bmatrix} x_2 = \begin{bmatrix} 7.5 \\ 5 \end{bmatrix}$$

Some examples and concepts



The solution set for two equations in three variables is usually a line.

This is an example of an underdetermined system.

Chapter 1

Linear Systems of Equations

Linear Algebra I

Vector spaces and subspaces

A **subspace** of a vector space is a **nonempty subset** that satisfies the

Requirements for a vector space:

"Linear combinations stay in the subspace"

- (i) If we add any vectors $m{x}$ and $m{y}$ in the subspace, $m{x}+m{y}$ is in the subspace.
- (ii) If we multiply any vector x in the subspace by **any scalar** c, cx is in the subspace.

Rule (ii) with $c = 0 \rightsquigarrow$ Every subspace contains the zero vector.

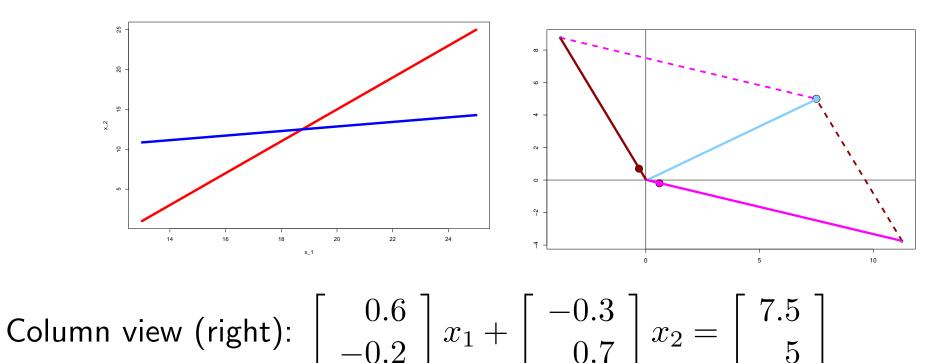
The smallest subspace Z contains only the zero vector.

Why? Rules (i) and (ii) are satisfied:

 $\mathbf{0} + \mathbf{0}$ is in this one-point space, and so are all multiples $c\mathbf{0}$.

The largest subspace is the whole of the original space.

The column space of a matrix



The **column space** C(A) contains all linear combinations of the columns of $A_{m \times n} \leadsto \text{subspace of } \mathbb{R}^m$.

The system Ax = b is solvable iff b is in the column space of A.

Nullspace

A system with right-hand side b=0 always allows the solution x=0, but there may be **infinitely many other solutions.**

The solutions to Ax = 0 form the nullspace of A.

The **nullspace** N(A) of a matrix A consists of all vectors \boldsymbol{x} such that $A\boldsymbol{x}=\mathbf{0}$. It is a subspace of \mathbb{R}^n :

- (i) If Ax = 0 and Ax' = 0, then A(x + x') = 0.
- (ii) If Ax = 0 then A(cx) = cAx = 0.

For an invertible matrix A:

- N(A) contains only x = 0 (multiply Ax = 0 by A^{-1}).
- The column space is the whole space. (Ax = b has a solution for every b)
- ullet The columns of A are independent.

Nullspace

Singular matrix example:

$$A = \left[\begin{array}{cc} 1 & 2 \\ 3 & 6 \end{array} \right].$$

Consider Ax = 0: Any pair that fulfills $x_1 + 2x_2 = 0$ is a solution. This line is the **one-dimensional nullspace** N(A).

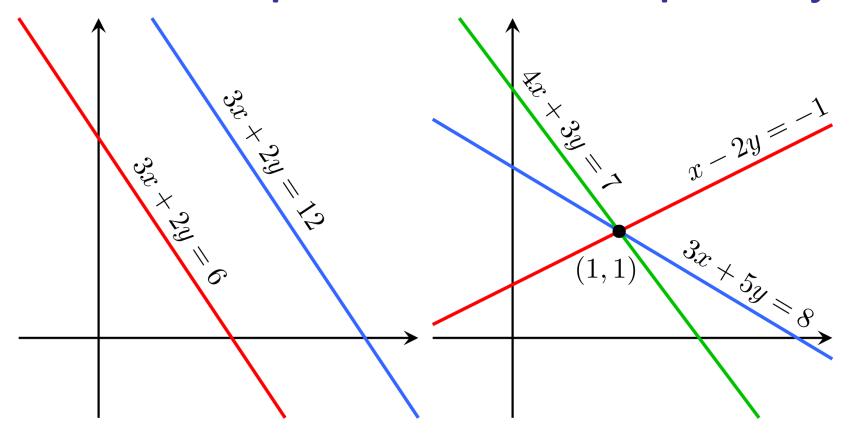
Choose one point on this line as a "special" solution \rightsquigarrow all points on the line are multiples.

Let x_p be a particular solution and $x_n \in N(A)$:

The solutions to all linear equations have the form $oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n$.

Proof: $A\boldsymbol{x}_p = \boldsymbol{b}$ and $A\boldsymbol{x}_n = \boldsymbol{0}$ produce $A(\boldsymbol{x}_p + \boldsymbol{x}_n) = \boldsymbol{b}$.

Inconsistent equations and linear dependency



The equations 3x + 2y = 6 and 3x + 2y = 12 are **inconsistent**: \boldsymbol{b} is **not** in the $C(A) \leadsto$ no solution exists!

x-2y=-1, 3x+5y=8, and 4x+3y=7 are **linearly dependent**: $\mathbf{b} \in C(A) \leadsto$ solution exists, but two equations are sufficient.

Linear Dependence

The vectors $\{v_1, v_2, \dots, v_n\}, v_i \in V$, are **linearly dependent**, if there exist a finite number of **distinct vectors** v_1, v_2, \dots, v_k and scalars a_1, a_2, \dots, a_k , **not all zero**, such that

$$a_1\boldsymbol{v}_1 + a_2\boldsymbol{v}_2 + \dots + a_k\boldsymbol{v}_k = \boldsymbol{0}.$$

Linear dependence:

Not all of the scalars are zero \rightsquigarrow at least one is non-zero (say a_1):

$$\boldsymbol{v}_1 = \frac{-a_2}{a_1} \boldsymbol{v}_2 + \dots + \frac{-a_k}{a_1} \boldsymbol{v}_k.$$

Thus, v_1 is a linear combination of the remaining vectors.

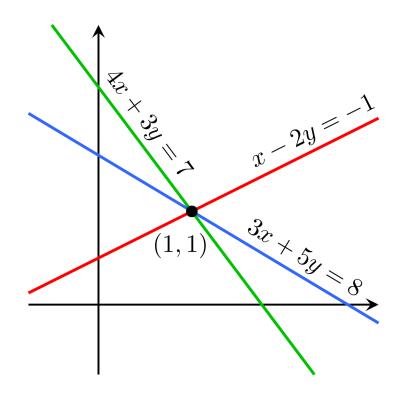
Linear Dependence Example

Matrix form: Ax = b

$$\begin{bmatrix} 1 & -2 \\ 3 & 5 \\ 4 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} -1 \\ 8 \\ 7 \end{bmatrix}$$

Row vectors of A are linearly dependent

$$\begin{bmatrix} 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 3 \\ 5 \end{bmatrix} - \begin{bmatrix} 4 \\ 3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$



Linear Independence

The vectors $\{v_1, v_2, \dots, v_n\}$ are **linearly independent** if the equation

$$a_1 \mathbf{v}_1 + a_2 \mathbf{v}_2 + \dots + a_n \mathbf{v}_n = \mathbf{0}$$

can **only** be satisfied by $a_i = 0$ for i = 1, ..., n.

- This implies that **no vector in the set can be represented as a linear combination of the remaining vectors** in the set.
- In other words: A set of vectors is linearly independent if the only representations of $\mathbf{0}$ as a linear combination of the vectors is the **trivial representation** in which all scalars a_i are zero.
- Any set of n > m vectors in \mathbb{R}^m must be linearly dependent.

Span and Basis

A set of vectors spans a space if their linear combinations fill the space.

Special case: the columns of a matrix A span its **column space** C(A). They might be **independent** \leadsto **basis of** C(A).

- A basis for a vector space is a sequence of vectors such that:
- (i) the basis vectors are linearly independent, and
- (ii) they span the space.

Immediate consequence: There is **one and only one way** to write an element of the space as a combination of the basis vectors.

The dimension of a space is the number of vectors in every basis.

The dimension of C(A) is called the (column-)rank of A.

The dimension of N(A) is called the **nullity** of A.

Nullspace and Independence

Example: The columns of this triangular matrix are linearly independent:

$$A = \left[\begin{array}{ccc|c} 3 & 4 & 2 \\ 0 & 1 & 5 \\ 0 & 0 & 2 \end{array} \right].$$

Why? Solving $Ax = 0 \rightsquigarrow look$ for combination of the columns that produces 0:

$$c_1 \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} + c_2 \begin{bmatrix} 4 \\ 4 \\ 0 \end{bmatrix} + c_3 \begin{bmatrix} 2 \\ 5 \\ 2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$$

Independence: show that c_1, c_2, c_3 are all forced to be zero.

Last equation $\rightsquigarrow c_3 = 0$. Next equation gives $c_2 = 0$, substituting into 1st eq.: $c_1 = 0$. The nullspace of A contains only the zero vector $c_1 = c_2 = c_3 = 0$.

The columns of A are independent exactly when $N(A) = \{0\}$.

Then, the dimension of the column space (the rank) is n. We say that the matrix has **full rank**.

Chapter 1

Linear Systems of Equations

Gauss-Jordan Elimination

The invertible case: Gauss-Jordan elimination

Assume A is invertible \rightsquigarrow a solution is guaranteed to exist: $\mathbf{x} = A^{-1}\mathbf{b}$. Sometimes we also want to find the inverse itself.

Then Gauss-Jordan elimination is the method of choice.

PRO

- produces both the solution(s), for (multiple) b_j , and the inverse A^{-1}
- numerically stable if **pivoting** is used → will be discussed later...
- straightforward, understandable method

CON

- all right hand sides b_i must be known before the elimination starts.
- three times slower than alternatives when inverse is not required

The invertible case: Gauss-Jordan elimination

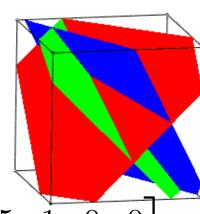
- Augmented matrix $A' = [A, \boldsymbol{b}_1, \dots, \boldsymbol{b}_j, I_n]$
- Idea:

Define
$$B = [b_1, ..., b_j]$$
 $X = [x_1, ..., x_j]$ $[A, B, I] \Rightarrow A^{-1}[A, B, I] = [IXA^{-1}].$

• Example:

$$A = \begin{bmatrix} 1 & 3 & -2 \\ 3 & 5 & 6 \\ 2 & 4 & 3 \end{bmatrix}, \quad B = \begin{bmatrix} 5 \\ 7 \\ 8 \end{bmatrix} \Rightarrow [A, B, I] = \begin{bmatrix} 1 & 3 & -2 & 5 & 1 & 0 & 0 \\ 3 & 5 & 6 & 7 & 0 & 1 & 0 \\ 2 & 4 & 3 & 8 & 0 & 0 & 1 \end{bmatrix}$$

$$\Rightarrow [I, X, A^{-1}] = \begin{bmatrix} 1 & 0 & 0 & -15 & \frac{9}{4} & \frac{17}{4} & -7 \\ 0 & 1 & 0 & 8 & -\frac{3}{4} & -\frac{7}{4} & 3 \\ 0 & 0 & 1 & 2 & -\frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix}$$



Gauss-Jordan: Simplest Form

Main idea: Cycle through columns of A (\rightsquigarrow pivot column) and select entry on diagonal (\rightsquigarrow pivot element).

Then normalize pivot row and introduce zeros below and above.

Pivot column: 1, pivot element = 1. Divide pivot row by pivot element

$$\begin{bmatrix} 1 & 3 & -2 & 5 & 1 & 0 & 0 \\ 3 & 5 & 6 & 7 & 0 & 1 & 0 \\ 2 & 4 & 3 & 8 & 0 & 0 & 1 \end{bmatrix}$$

For all other rows: (i) store element in pivot column, (ii) subtract pivot row multiplied with this element

$$\begin{bmatrix} 1 & 3 & -2 & 5 & 1 & 0 & 0 \\ 0 & -4 & 12 & -8 & -3 & 1 & 0 \\ 0 & -2 & 7 & -2 & -2 & 0 & 1 \end{bmatrix}$$

Proceed to pivot column 2 with pivot element = -4

Gauss-Jordan: Simplest Form

Proceed to pivot column 2 with pivot element = -4

$$\begin{bmatrix} 1 & 0 & 7 & -1 & -1.25 & 0.75 & 0 \\ 0 & 1 & -3 & 2 & 0.75 & -0.25 & 0 \\ 0 & 0 & 1 & 2 & -0.5 & -0.5 & 1 \end{bmatrix}$$

After elimination in column 3 with pivot = 1

$$\begin{bmatrix} 1 & 0 & 0 & -15 & 2.25 & 4.25 & -7 \\ 0 & 1 & 0 & 8 & -0.75 & -1.75 & 3 \\ 0 & 0 & 1 & 2 & -0.5 & -0.5 & 1 \end{bmatrix}$$

Now we have transformed A to the identity matrix I.

This is a special case of the **reduced row Echelon form** (more on this later).

The **solution vector** is the 4th column $x = (-15, 8, 2)^t$.

Note that we have overwritten the original $b \leadsto$ no need to allocate further memory.

The **inverse** A^{-1} is the right 3×3 block.

Gauss-Jordan elimination

Elementary operations (they do not change the solution):

- 1. Replace a row by a linear combination of itself and any other row(s).
- 2. Interchange two rows.
- 3. Interchange two columns and corresponding rows of x.

Basic G-J elimination uses only operation #1 but...

Elimination **fails mathematically** when a **zero pivot** is encountered \rightsquigarrow pivoting is essential to avoid **total failure** of the algorithm.

Example: Try Ax = b with

$$A = \begin{bmatrix} 2 & 4 & -2 & -2 \\ 1 & 2 & 4 & -3 \\ -3 & -3 & 8 & -2 \\ -1 & 1 & 6 & -3 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} -4 \\ 5 \\ 7 \\ 7 \end{bmatrix}$$

Chapter 1

Linear Systems of Equations

Linear Systems: Numerical Issues

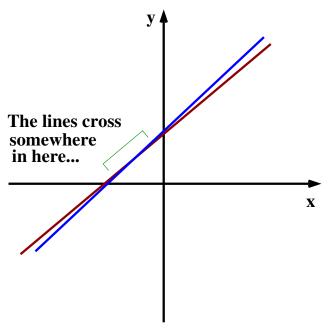
The need for pivoting

- Elimination fails mathematically when a zero pivot is encountered
- and fails numerically with a too-close-to-zero pivot (we will see why in a minute...)
- The fix is partial pivoting
 - use operation #2 to place a desirable pivot entry in the current row
 - usually sufficient for stability
- Using operation #3 as well gives full pivoting

Linear systems: numerical issues

If a system is too close to linear dependence

- an algorithm may fail altogether to get a solution
- round off errors can produce apparent linear dependence at some point in the solution process
 - → accumulated roundoff errors
 can dominate in the solution
 → an algorithm may still work
 but produce nonsense.



When is sophistication necessary?

- Sophisticated methods can detect and correct numerical pathologies
- Rough guide for a "not-too-singular" $n \times n$ system:
 - -n < 20...50 single precision
 - -n < 200...300 **double** precision
 - n = 1000 OK if equations are **sparse** (special techniques take advantage of sparsity)
- Close-to-singular can be a problem even for very small systems
- But...what is the underlying reason for these numerical problems?

Floating Point Numbers: float, double

- float similar to scientific notation
 - \pm D.DDDD $\times 10^{E}$
 - D.DDDD has leading mantissa digit $\neq 0$
 - D.DDDD has fixed number of mantissa digits.
 - E is signed integer.
- **Precision varies:** precision of 1.000×10^{-2} is 100 times higher than precision of 1.000×10^{0} .
- The **bigger the number**, the **less precise**:

$$1.000 \times 10^4 + 1.000 \times 10^0 = 1.000 \times 10^4$$
 !!!

Simple Data Types: float, double (2)

Technical Realization (IEEE Standard 754)

- 32 bit (float) or 64 bit (double)
- float:

```
1 bit sign\ (s\in\{0,1\})
8 bit exponent\ (e\in\{0,1,\ldots,255\}) (like before, but basis 2!)
23 bit mantissa\ (m\in\{0,1,\ldots,2^{23}-1\})
```

• double: 1 bit sign, 11 bit exponent, 52 bit mantissa

Floating Point Arithmetic: Problems

Fixed number of mantissa bits ⇒ limited precision:

```
If a \gg b \Rightarrow a+b = a.
```

- Iterated addition of small numbers (like a=a+b with a >> b) can lead to a huge error: at some point, a does not increase anymore, independent of the number of additions.
- double is better, but needs two times more memory.
- Machine epsilon (informal definition): The smallest number ϵ_m which when added to 1 gives something different than 1.

```
Float (23 mantissa bits): \epsilon_m \approx 2^{-23} \approx 10^{-7},
```

Double (52 mantissa bits): $\epsilon_m \approx 2^{-52} \approx 10^{-16}$.

Chapter 1

Linear Systems of Equations

Elementary Matrices

Elementary matrices: Row-switching transformations

Switches row i and row j. Example:

$$R_{35}A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \mathbf{0} & \mathbf{1} & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{31} & a_{32} \\ a_{41} & a_{42} \\ a_{51} & a_{52} \\ a_{41} & a_{42} \\ a_{51} & a_{52} \\ a_{61} & a_{62} \\ a_{71} & a_{72} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \\ a_{51} & a_{52} \\ a_{31} & a_{32} \\ a_{61} & a_{62} \\ a_{71} & a_{72} \end{bmatrix}$$

The inverse of this matrix is itself: $R_{ij}^{-1} = R_{ij}$

Elementary matrices: Row-multiplying transformations

Multiplies all elements on row i by $m \neq 0$.

The inverse of this matrix is: $R_i(m)^{-1} = R_i(1/m)$.

Elementary matrices: Row-addition transformations

Subtracts row j multiplied by m from row i.

$$R_{ij}(m) = \begin{bmatrix} 1 & & & & \\ & \ddots & & \\ & & 1 & & \\ & & -m & 1 & \\ & & & \ddots & \\ & & & & 1 \end{bmatrix}$$

The inverse of this matrix is: $R_{ij}(m)^{-1} = R_{ij}(-m)$.

Row operations

• Elementary row operations correspond to **left-multiplication** by elementary matrices:

$$A \cdot \boldsymbol{x} = \boldsymbol{b}$$
 $(\cdots R_3 \cdot R_2 \cdot R_1 \cdot A) \cdot \boldsymbol{x} = \cdots R_3 \cdot R_2 \cdot R_1 \cdot \boldsymbol{b}$
 $(I_n) \cdot \boldsymbol{x} = \cdots R_3 \cdot R_2 \cdot R_1 \cdot \boldsymbol{b}$
 $\boldsymbol{x} = \cdots R_3 \cdot R_2 \cdot R_1 \cdot \boldsymbol{b}$

- ullet x can be built-up in stages since the R matrices are multiplied in the order of acquisition.
- Inverse matrix A^{-1} and solution x can be built up in the storage locations of A and b respectively.

Column operations

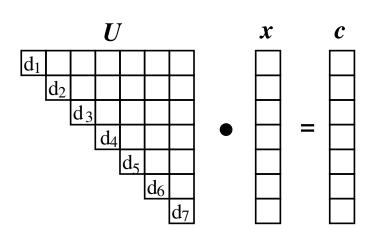
Elementary column operations correspond to **right-multiplication**: transform rows of A^t , then transpose: $(RA^t)^t = AR^t = AC \rightsquigarrow C = R^t$. Note that $(AB)^t = B^tA^t$.

$$A \cdot \boldsymbol{x} = \boldsymbol{b}$$
 $A \cdot C_1 \cdot C_1^{-1} \cdot \boldsymbol{x} = \boldsymbol{b}$
 $A \cdot C_1 \cdot C_2 \cdot C_2^{-1} \cdot C_1^{-1} \cdot \boldsymbol{x} = \boldsymbol{b}$
 $(A \cdot C_1 \cdot C_2 \cdot C_3 \cdot \cdots) \cdot (\cdots C_3^{-1} \cdot C_2^{-1} \cdot C_1^{-1}) \cdot \boldsymbol{x} = \boldsymbol{b}$
 $(I_n) \cdot (\cdots C_3^{-1} \cdot C_2^{-1} \cdot C_1^{-1}) \cdot \boldsymbol{x} = \boldsymbol{b}$
 $\boldsymbol{x} = C_1 \cdot C_2 \cdot C_3 \cdot \cdots \boldsymbol{b}$

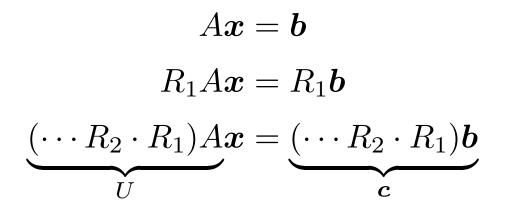
The C matrices must be **stored until the last step**: they are applied to \boldsymbol{b} in the **reverse order of acquisition**.

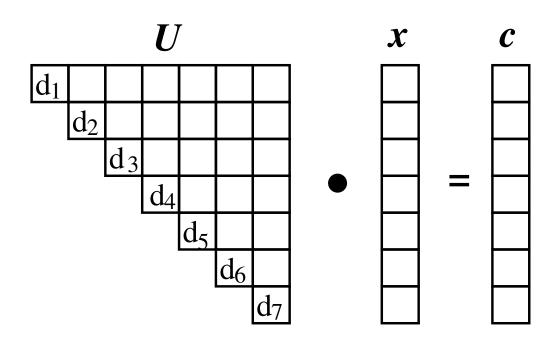
Gaussian Elimination with Backsubstitution

- Like Gauss-Jordan, but (i) don't normalize pivot row, and (ii) introduce zeros only in rows **below the current pivot element.**
- Example: a_{22} is current **pivot** element \rightsquigarrow use pivot row to zero only a_{32}, a_{42}, \ldots
- Suppose we use partial pivoting (never change columns)
 - \leadsto Original system Ax = b transformed to upper triangular system Ux = c.
 - \rightsquigarrow Pivots d_1, \ldots, d_n on diagonal of U.
- Solve with **backsubstitution**.
- Triangular systems are computationally and numerically straightforward.



Gaussian Elimination with Backsubstitution





The invertible case: Summary

- **b** is in the column space of $A_{n\times n}$, the columns of A are a basis of \mathbb{R}^n (so $C(A) = \mathbb{R}^n$), the rank of A is n.
- \bullet G-J: $A \to I$ by multiplication with elementary row matrices:

$$(\cdots R_3 \cdot R_2 \cdot R_1) \cdot A = I = R_E.$$

 $R_E = rref(A)$ is the **reduced row Echelon matrix**, and $A\mathbf{x} = \mathbf{b} \to R_E \mathbf{x} = \mathbf{d} \Leftrightarrow \mathbf{x} = (\cdots R_3 \cdot R_2 \cdot R_1)\mathbf{b}$.

- A invertible $\leadsto R_E = I \leadsto$ columns are standard basis of \mathbb{R}^n .
- Gaussian elim.: Zeros only below diagonal: $Ax = b \rightarrow Ux = c$.
- Representation of floating-point numbers → numerical problems
 → round-off errors → nonsense results possible.
- Solution: Partial (rows) and full pivoting (columns).

Chapter 1

Linear Systems of Equations

Singular Systems

The singular case

Recall: Let x_p be a particular solution and $x_n \in N(A)$.

The solutions to all linear equations have the form $oldsymbol{x} = oldsymbol{x}_p + oldsymbol{x}_n$.

How to find x_p and x_n ? \leadsto Elimination. Start with the nullspace.

Example: $A_{3\times 4}$: 4 columns, but how many pivots?

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix}$$

Initial observations:

- 2nd column is a multiple of first one
- 1st and 3rd column are linearly independent.
- \rightsquigarrow We expect to find pivots for column 1 and 3.
- 3rd row is linear combination of other rows.

The singular case

$$A = \begin{bmatrix} 1 & 2 & 2 & 2 \\ 2 & 4 & 6 & 8 \\ 3 & 6 & 8 & 10 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & \mathbf{0} & 2 & 4 \\ 0 & \mathbf{0} & 2 & 4 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 2 & 2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & \mathbf{0} \end{bmatrix} = U$$

U is called the **Echelon** (staircase) form of A.

Note that elimination uses only elementary operations that do not change the solutions, so Ax = 0 exactly when Ux = 0.

U Gives us important information about A:

- 2 pivots, associated with columns 1, 3
 → pivot columns (not combinations of earlier columns.)
- 2 free columns (these are combinations of earlier columns) \rightsquigarrow can assign x_2, x_4 to arbitrary values.

The Reduced Row Echelon Form

Idea: Simplify U further: Elimination also above the pivots.

$$U = \begin{bmatrix} 1 & 2 & 2 & -2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 2 & 4 \\ 0 & 0 & 0 & 0 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 2 & 0 & -2 \\ 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} = R_E.$$

A, U and R_E all have 2 independent columns:

$$pivcol(A) = pivcol(U) = pivcol(R_E) = (1,3) \implies \text{same rank 2}.$$

Obviously, the **rank equals the number of pivots!** This is equivalent to the algebraic definition $\operatorname{rank} = \dim(C(A))$, but maybe more intuitive.

Pivot cols: independent, span the column space \leadsto basis of C(A). Pivot rows: independent, span row space \leadsto basis of $C(A^t)$.

The special solutions

Solutions to Ax = 0 and $R_Ex = 0$ can be obtained by setting the free variables to arbitrary values and solving for the pivot variables.

"Special" solutions are linear independent:

set one free variable equal to 1, and all other free variables to 0.

$$R_{E} oldsymbol{x} = egin{bmatrix} 1 & 2 & 0 & -2 \ 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 0 \end{bmatrix} egin{bmatrix} x_1 \ x_2 \ x_3 \ x_4 \end{bmatrix} = oldsymbol{0}. \quad s_1 = egin{bmatrix} x_1 \ 1 \ x_3 \ 0 \end{bmatrix}, \quad s_2 = egin{bmatrix} x_1 \ 0 \ x_3 \ 1 \end{bmatrix}$$

Set 1st free variable $x_2 = 1$, with $x_4 = 0 \rightsquigarrow x_1 + 2 = 0, x_3 = 0$. Pivot variables are $x_1 = -2, x_3 = 0 \rightsquigarrow s_1 = (-2, 1, 0, 0)^t$.

2nd special solution has $x_2 = 0, x_4 = 1 \rightsquigarrow x_1 - 2 = 0, x_3 + 2 = 0 \rightsquigarrow s_2 = (2, 0, -2, 1)^t$.

The nullspace matrix

The nullspace matrix N contains the two special solutions in its columns, so AN=0.

$$R_E = egin{bmatrix} 1 & 2 & 0 & -2 \ 0 & 0 & 1 & 2 \ 0 & 0 & 0 & 0 \end{bmatrix}, \quad N = egin{bmatrix} -2 & 2 \ 1 & 0 \ 0 & -2 \ 0 & 1 \end{bmatrix}$$

The linear combinations of these two columns give all vectors in the nullspace \rightsquigarrow basis of null-space \rightsquigarrow complete solution to Ax = 0.

Consider the dimensions: n=4, r=2. One special solution for every free variable. r columns have pivots $\leadsto n-r=2$ free variables:

Ax = 0 has r pivots and n - r free variables. The nullspace matrix N contains the n - r special solutions, and $AN = R_E N = 0$.

General form

General form: Suppose that the fist r columns are the pivot columns:

$$R_E = \begin{bmatrix} I & F \\ 0 & 0 \end{bmatrix} \frac{r}{m-r}$$
 pivot rows

The upper left block is the $r \times r$ identity matrix.

There are n-r free columns

 \leadsto upper right block F has dimension $r \times (n-r)$

Nullspace matrix:

$$N = \begin{bmatrix} -F \\ I \end{bmatrix} \frac{r}{n-r}$$
 pivot variables

From this definition, we directly see that $R_E N = I(-F) + FI = 0$.

The Complete Solution

- So far: Ax = 0 converted by elimination to $R_Ex = 0$ \rightsquigarrow solution x is in the nullspace of A.
- Now: \boldsymbol{b} nonzero \rightsquigarrow consider column-augmented matrix $[A\boldsymbol{b}]$. We will reduce $A\boldsymbol{x} = \boldsymbol{b}$ to $R_E\boldsymbol{x} = \boldsymbol{d}$.
- Example:

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1 \\ 6 \\ 7 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 1 & 3 & 1 & 6 & 7 \end{bmatrix} = [A\boldsymbol{b}]$$

Elimination:
$$\begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 0 & 0 & 1 & 4 & 6 \end{bmatrix} \Rightarrow \begin{bmatrix} 1 & 3 & 0 & 2 & 1 \\ 0 & 0 & 1 & 4 & 6 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix} = [R_E \mathbf{d}]$$

The Complete Solution

- Particular solution x_p : set free variables $x_2 = x_4 = 0$ $\rightsquigarrow x_p = (1, 0, 6, 0)^t$. By definition, x_p solves $Ax_p = b$.
- The n-r special solutions x_n solve $Ax_n = 0$.
- The complete solution is

$$m{x} = m{x}_p + m{x}_n = egin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \end{bmatrix} + x_2 egin{bmatrix} -3 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_4 egin{bmatrix} -2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

Chapter 1

Linear Systems of Equations

Linear Algebra II: The Fundamental Theorem

The Four Fundamental Subspaces

Assume A is $(m \times n)$.

- 1. The **column space is** C(A), a subspace of \mathbb{R}^m . It is spanned by the columns of A or R_E . Its dimension is the rank r = #(independent columns) = #(pivots).
- 2. The **row space is** $C(A^t)$, a subspace of \mathbb{R}^n . It is spanned by the rows of A or R_E . There is one nonzero row in R_E for every pivot \rightsquigarrow dimension is also r.
- 3. The **nullspace is** N(A), a subspace of \mathbb{R}^n . It is spanned by the n-r special solutions (one for every free variable), they are independent \rightsquigarrow they form a basis \rightsquigarrow dimension of N(A) ("nullity") is n-r.
- 4. The **left nullspace is** $N(A^t)$, a subspace of \mathbb{R}^m . It contains all vectors \mathbf{y} such that $A^t\mathbf{y} = \mathbf{0}$. Its dimension is m r.

The Fundamental Theorem of Linear Algebra (I)

1.), 2.) and 3.) are part one of the

Fundamental Theorem of Linear Algebra.

For any $m \times n$ matrix A:

- Column space and row space both have dimension r. In other words: column rank = row rank = rank.
- Rank + Nullity = r + (n r) = n.
- 4.) additionally defines the "left nullspace": it contains any left-side row vectors \mathbf{y}^t that are mapped to the zero (row-)vector: $\mathbf{y}^t A = \mathbf{0}^t$. $A^t := B$ is a $(n \times m)$ matrix

$$\leadsto$$
 $\dim(C(B)) + \dim(N(B)) = m.$

 \rightsquigarrow Rank + "Left Nullity" = m.

The Fundamental Theorem of Linear Algebra (II)

Part two of the Fundamental Theorem of Linear Algebra concerns orthogonal relations between the subspaces. Two definitions:

Two vectors $v, w \in V$ are **perpendicular** if their scalar product is zero. The **orthogonal complement** V^{\perp} of a subspace V contains **every** vector that is perpendicular to V.

The nullspace is the orthogonal complement of the row space.

Proof: Every x perpendicular to the rows satisfies Ax = 0.

Reverse is also true: If v is orthogonal to N(A), it must be in the row space. Otherwise we could add v as an extra independent row of the matrix (thereby increasing the rank) without changing the nullspace \rightsquigarrow row space would grow, contradicting $r + \dim(N(A)) = n$.

The Fundamental Theorem of Linear Algebra (II)

Same reasoning holds true for the left nullspace:

Part two of the Fundamental Theorem of Linear Algebra:

- N(A) is the orthogonal complement of $C(A^t)$ (in \mathbb{R}^n).
- $N(A^t)$ is the orthogonal complement of C(A) (in \mathbb{R}^m).

Immediate consequences:

Every $oldsymbol{x} \in \mathbb{R}^n$ can be split into $oldsymbol{x} = oldsymbol{x}_{\mathsf{row}} + oldsymbol{x}_{\mathsf{nullspace}}.$

Thus, the action of A on x is as follows:

$$A\boldsymbol{x}_n=\boldsymbol{0},$$

$$A\boldsymbol{x}_r = A\boldsymbol{x}$$

The 4 subspaces

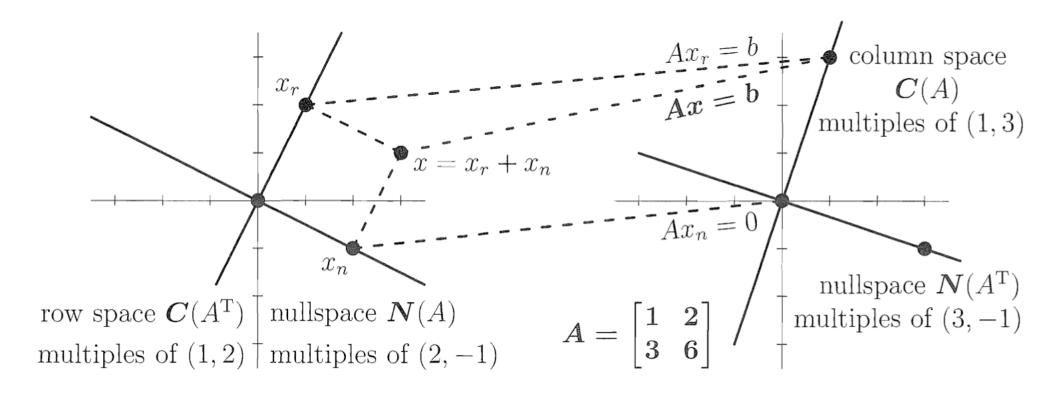


Figure 2.5: The four fundamental subspaces (lines) for the singular matrix A.

Fig. 2.5 in Gilbert Strang: Linear Algebra and Its Applications

Invertible part of a matrix

Every vector in C(A) comes from **one and only one vector** in the row space. Every vector in $C(A^t)$ comes from **one and only one vector** in the column space.

Proof (first assertion):

(i)
$$A\boldsymbol{x}_r = A\boldsymbol{x}_r' \Rightarrow A(\boldsymbol{x}_r - \boldsymbol{x}_r') = \boldsymbol{0} \Rightarrow \boldsymbol{\delta} := \boldsymbol{x}_r - \boldsymbol{x}_r' \in N(A)$$
.

(ii)
$$\boldsymbol{x}_r \in C(A^t), \boldsymbol{x}_r' \in C(A^t) \Rightarrow \boldsymbol{\delta} \in C(A^t).$$

But N(A) and $C(A^t)$ are orthogonal $\Rightarrow \delta = 0$.

Conclusion: From the row space to the column space, A is invertible. In other words: **There is a** $r \times r$ **invertible matrix "hidden" inside** A.

This will be explored later in this course in the context of the **pseudoinverse** and the **SVD**.

Chapter 1

Linear Systems of Equations

Alternatives to Gaussian Elimination

Further Methods for Linear Systems

Direct solution methods

- Gauss-Jordan elimination with pivoting
- Matrix factorization (LU, Cholesky)
- Predictable number of steps

Iterative solution methods

- Jacobi, Newton etc.
- converge in as many steps as necessary

Combination

- direct solution, then improved by iterations
- useful for close-to-singular systems

Factorization methods

- Disadvantage of Gaussian elimination: all righthand sides b_i must be known in advance.
- LU decomposition keeps track of the steps in Gaussian elimination \leadsto The result can be applied to **any future** b required.
- A is **decomposed** or factorized as A = LU:
 - L lower triangular,
 - -U upper triangular.
- **Example:** For a 3×3 matrix, this becomes:

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} l_{11} & 0 & 0 \\ l_{21} & l_{22} & 0 \\ l_{31} & l_{32} & l_{33} \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix}.$$

LU factorization

- \bullet A=LU, L lower triangular, U upper triangular.
- Ax = b becomes LUx = b. Define c = Ux. Lc = b solved by **forward-substitution**, followed by Ux = c solved by **back-substitution**.
- The two interim systems are **trivial to solve** since both are triangular.
- ullet Work effort goes into the **factorization** steps to get L and U.
- U can be computed by **Gaussian elimination**, L records the information necessary to **undo the elimination steps**.

LU factorization: the book-keeping

• Steps in Gaussian elimination involve **pre-multiplication** by elementary R-matrices \rightsquigarrow These are trivially invertible.

$$A = (R_1^{-1} \cdot R_1) \cdot A = \dots =$$

$$= (R_1^{-1} \cdot R_2^{-1} \cdot R_3^{-1} \cdot \dots \cdot R_3 \cdot R_2 \cdot R_1) \cdot A$$

$$= \underbrace{(R_1^{-1} \cdot R_2^{-1} \cdot R_3^{-1} \cdot \dots)}_{L} \cdot \underbrace{(\dots \cdot R_3 \cdot R_2 \cdot R_1 \cdot A)}_{U}$$

• Entries for L are the inverses (i.e. negatives) of the multipliers in the row transformation for each step: $R_{ij}(m)$ Subtracts row j multiplied by m from row i. **Inverse:** $R_{ij}(m)^{-1} = R_{ij}(-m)$.

$$\begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ -3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 6 & 8 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 3 & 1 \end{bmatrix} \begin{bmatrix} 2 & 1 \\ 0 & 5 \end{bmatrix}$$

$$\stackrel{A}{=} \quad \stackrel{A}{=} \quad$$

LU factorization via Gaussian elimination

• LU is not unique:

- Decomposition is multiplicative
 - \leadsto factors can be re-arranged between L and U.
- LU may not exist at all, if there is a zero pivot. Pivoting:
 - Can factorize as $A = P^{-1}LU = P^tLU$.
 - P records the effects of row permutations, so PA = LU. Need to **keep track of permutations** in P.

$$\text{Permutation } \pi = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 1 & 4 & 2 & 5 & 3 \end{pmatrix} \ \Rightarrow \ P_{\pi} = \begin{bmatrix} \boldsymbol{e}_{1}^{t} \\ \boldsymbol{e}_{4}^{t} \\ \boldsymbol{e}_{2}^{t} \\ \boldsymbol{e}_{5}^{t} \\ \boldsymbol{e}_{3}^{t} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \end{bmatrix}.$$

Crout's algorithm

- Alternative method to find the L and U matrices
- Write out A = LU with unknowns for the non-zero elements of L, U.
- Equate entries in the $n \times n$ matrix equation $\rightsquigarrow n^2$ equations in $n^2 + n$ unknowns.
- Underdetermined $\rightsquigarrow n$ unknowns are arbitrary (shows that the LU decomposition is **not unique**) \rightsquigarrow choose the diagonal entries $l_{ii}=1$.

• Crout's algorithm:

- re-write the n^2 equations in a carefully chosen order so that elements of L and U can be found **one-by-one**.

Crout's algorithm

$$\begin{bmatrix} 1 & 0 & 0 \\ l_{21} & 1 & 0 \\ l_{31} & l_{32} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} & u_{13} \\ 0 & u_{22} & u_{23} \\ 0 & 0 & u_{33} \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

Multiplying out gives:

$$u_{11} = a_{11}$$
 $l_{21}u_{11} = a_{21}$
 $l_{31}u_{11} = a_{31}$
 $u_{12} = a_{12}$
 $l_{21}u_{12} + u_{22} = a_{22}$
 $l_{31}u_{12} + l_{32}u_{22} = a_{32}$
 $u_{13} = a_{13}$
 $l_{21}u_{13} + u_{23} = a_{23}$
 $l_{31}u_{13} + l_{32}u_{23} + u_{33} = a_{33}$

Red indicates where an element is used for the first time.

Only one red entry in each equation!

Crout's method fills in the combined matrix

$$\begin{bmatrix} u_{11} & u_{12} & u_{13} & u_{14} & \cdots \\ l_{21} & u_{22} & u_{23} & u_{24} & \cdots \\ l_{31} & l_{32} & u_{33} & u_{34} & \cdots \\ l_{41} & l_{42} & l_{43} & u_{44} & \cdots \\ \vdots & \vdots & \vdots & \vdots & \ddots \end{bmatrix}$$

by columns from left to right, and from top to bottom.

A small example

$$\begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ l_{21} & 1 \end{bmatrix} \begin{bmatrix} u_{11} & u_{12} \\ 0 & u_{22} \end{bmatrix}$$

Solve the linear equations:

$$u_{11} = 4$$

$$l_{21} \cdot u_{11} = 6$$

$$u_{12} = 3$$

$$l_{21} \cdot u_{12} + u_{22} = 3$$

Substitution yields:
$$\begin{bmatrix} 4 & 3 \\ 6 & 3 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 1.5 & 1 \end{bmatrix} \begin{bmatrix} 4 & 3 \\ 0 & -1.5 \end{bmatrix}$$

Chapter 1

Linear Systems of Equations

Positive Definite Matrices and the Cholesky Decomposition

Positive definite matrices

An $n \times n$ symmetric real matrix A is positive-definite if $x^t Ax > 0$ for all vectors $x \neq 0$.

Simple tests for positive definiteness?

- A positive definite matrix A has **all positive entries** on the main diagonal (use $x^t Ax > 0$ with vectors $(1, 0, ..., 0)^t$, $(0, 1, 0, ..., 0)^t$ etc.)
- A is diagonally dominant if $|a_{ii}| > \sum_{i \neq j} |a_{ij}|$.
- A diagonally dominant matrix is positive definite if it is **symmetric** and has **all main diagonal entries positive**. Follows from the **Gershgorin circle theorem** (details will follow...). Note that the **converse is false**.

There are many applications of pos. def. matrices:

- Linear regression models (→ chapter 2).
- Solution of partial differential equations → heat conduction, mass diffusion, wave equation etc.

Example: Heat equation

- u = u(x,t) is temperature as a function of space and time. This function will change over time as heat spreads throughout space.
- $u_t := \frac{\partial u}{\partial t}$ is the **rate of change** of temperature at a point over time.
- $u_{xx} := \frac{\partial^2 u}{\partial x^2}$ is the second spatial derivative of temperature.
- Heat equation: $u_t \propto u_{xx}$. The rate of change of temperature over time is proportional to the local difference of temperature. Proportionality constant: diffusivity of the (isotropic) medium.
- Discretization $u_j^{(m)} = u(x_j, t_m)$ at grid points x_j and time points t_m :

$$x_j := j \cdot rac{h}{ ext{spatial step size}}$$
 and $t_m := m \cdot rac{ au}{ ext{temporal step size}}$

• Assume $h = \tau = 1$, and also diffusivity = 1.

Example: Heat equation

◆ Approximate derivative on grid (→ finite differences):

$$f'(x) \approx \frac{f(x+h) - f(x)}{h}$$
.

Second order (central difference approximation):

$$f''(x) \approx \frac{\frac{f(x+h)-f(x)}{h} - \frac{f(x)-f(x-h)}{h}}{h} = \frac{f(x+h) - 2f(x) + f(x-h)}{h^2}.$$

• Approximate equation $u_t = u_{xx}$ by (we assumed step size =1)

$$\underbrace{u_j^{(m+1)}-u_j^{(m)}}_{\text{rate of change over time}} = \underbrace{u_{j-1}^{(m+1)}-2u_j^{(m+1)}+u_{j+1}^{(m+1)}}_{\text{local temperature difference}}$$

Example: Heat equation

• Solve this **implicit scheme** for $u^{(m+1)}$:

$$(1+2)u_j^{(m+1)}-u_{j-1}^{(m+1)}-u_{j+1}^{(m+1)}=u_j^{(m)},\quad \text{for } j=1,\dots,n-1, \text{ and } m\geq 0.$$

• With A = tri-diagonal with $(a_{j,j-1}, a_{j,j}, a_{j,j+1}) = (-1, 2, -1)$:

$$(I+A)u^{(m+1)} = \begin{bmatrix} \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\ 0 & -1 & \mathbf{3} & -1 & 0 & 0 & 0 \\ 0 & 0 & -1 & \mathbf{3} & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & \mathbf{3} & -1 & 0 \\ \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \end{bmatrix} u^{(m+1)} = u^{(m)}$$

• (I+A) is diagonal dominant and symmetric, and has positive diagonal entries \rightsquigarrow **positive definite**! It is also **sparse** \rightsquigarrow efficient elimination possible: per column only 1 zero needs to be produced below the pivot.

Cholesky LU decomposition

- The Cholesky LU factorization of a pos. def. matrix A is $A=LL^t$.
- ullet Use it to solve a pos. def. system $A {m x} = {m b}$.
- ullet Cholesky algorithm: Partition matrices in $A=LL^t$ as

$$\begin{pmatrix} a_{11} & \boldsymbol{a}_{21}^t \\ \boldsymbol{a}_{21} & A_{22} \end{pmatrix} = \begin{pmatrix} l_{11} & 0 \\ \boldsymbol{l}_{21} & L_{22} \end{pmatrix} \begin{pmatrix} l_{11} & \boldsymbol{l}_{21}^t \\ 0 & L_{22}^t \end{pmatrix} = \begin{pmatrix} l_{11}^2 & l_{11}\boldsymbol{l}_{21}^t \\ l_{11}\boldsymbol{l}_{21} & \boldsymbol{l}_{21}\boldsymbol{l}_{21}^t + L_{22}L_{22}^t \end{pmatrix}$$

Recursion:

- step 1: $l_{11} = \sqrt{a_{11}}$, $l_{21} = \frac{1}{l_{11}} \boldsymbol{a}_{21}$.
- step 2: compute L_{22} from $S:=A_{22}-{\it l}_{21}{\it l}_{21}^t=L_{22}L_{22}^t.$

This is a Cholesky factorization of $S_{(n-1)\times(n-1)}$.

Cholesky: Proof

Proof that the algorithm works for positive definite $A_{n\times n}$ by induction:

- 1. If A is positive definite then $a_{11} > 0$, $\rightsquigarrow l_{11} = \sqrt{a_{11}}$ and $l_{21} = \frac{1}{l_{11}}a_{21}$ are well-defined.
- 2. If A is positive definite, then

$$S = A_{22} - \boldsymbol{l}_{21} \boldsymbol{l}_{21}^t = A_{22} - \frac{1}{a_{11}} \boldsymbol{a}_{21} \boldsymbol{a}_{21}^t$$
 is positive definite.

Proof: take any (n-1) vector $\mathbf{v} \neq 0$ and $w = -(1/a_{11})\mathbf{a}_{21}^t\mathbf{v} \in \mathbb{R}$.

$$\mathbf{v}^t S \mathbf{v} = \begin{pmatrix} w & \mathbf{v}^t \end{pmatrix} \begin{pmatrix} a_{11} & \mathbf{a}_{21}^t \\ \mathbf{a}_{21} & A_{22} \end{pmatrix} \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix} = \begin{pmatrix} w & \mathbf{v}^t \end{pmatrix} A \begin{pmatrix} w \\ \mathbf{v} \end{pmatrix} > 0.$$

- Induction step: Algorithm works for n = k if it works for n = k 1.
- Base case: It obviously works for n = 1; therefore it works for all n.

Chapter 1

Linear Systems of Equations

Iterative Methods

Iterative improvement

- Floating point arithmetic limits the precision of calculated solutions.
- For large systems and "close-to-singular" small systems, precision is generally far worse than machine precision ϵ_m .
 - Direct methods accumulate roundoff errors.
 - Loss of some significant digits isn't unusual even for well-behaved systems.
- Iterative improvement: Start with direct solution method (Gauss, LU, Cholesky etc.), followed by some post-iterations. It will get your solution back to machine precision efficiently.

Iterative improvement

- Suppose x is the (unknown) exact solution of Ax = b and $x + \delta x$ is a calculated (inexact) solution with unknown error δx .
- Substitute calculated solution in original equation:

$$A(\boldsymbol{x} + \delta \boldsymbol{x}) = \boldsymbol{b} + \delta \boldsymbol{b},\tag{1}$$

• Subtract Ax (or b) from both sides:

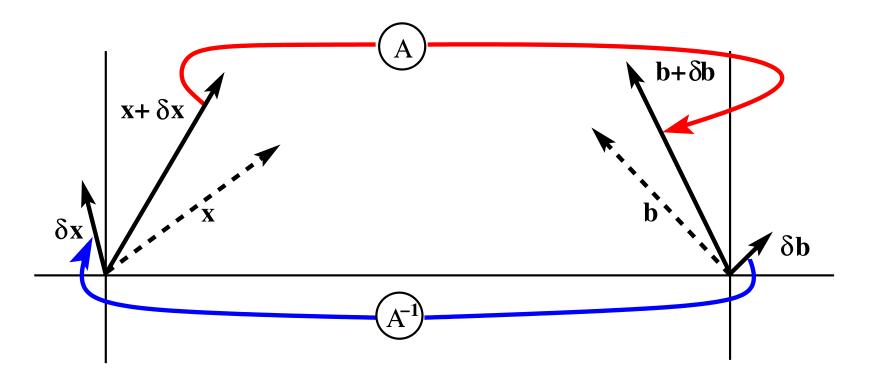
$$A\delta x = \delta b. \tag{2}$$

• Eqn. (1) gives:

$$\delta \boldsymbol{b} = A \quad (\boldsymbol{x} + \delta \boldsymbol{x}) - \boldsymbol{b}. \tag{3}$$

• Right hand side of eqn. (3) is known \rightsquigarrow get $\delta \boldsymbol{b}$ and use this in (2) to solve for $\delta \boldsymbol{x}$.

Iterative improvement



Iterative improvement: first guess $x + \delta x$ is multiplied by A to produce $b + \delta b$. Known vector b is subtracted $\rightsquigarrow \delta b$.

Inversion gives δx and subtraction gives an improved solution x.

LU factorization of A can be used to solve $A\delta x = LU\delta x = \delta b$ to get δx .

Repeat until $\|\delta x\| \approx \epsilon_m$.

Iterative methods: Jacobi

- ullet Assume that all diagonal entries of A are nonzero.
- Write A = D + L + U

where
$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix} \text{ and } L + U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}$$

- So $Ax = b \longrightarrow (L + D + U)x = b$.
- The solution is then obtained iteratively via

$$D\boldsymbol{x} = \boldsymbol{b} - (L + U)\boldsymbol{x}.$$

Iterative methods: Jacobi

• The solution is obtained iteratively via

$$D\boldsymbol{x} = \boldsymbol{b} - (L + U)\boldsymbol{x}.\tag{4}$$

ullet Given $oldsymbol{x}_{(i)}$ obtain $oldsymbol{x}_{(i+1)}$ by solving (4) with $oldsymbol{x} = oldsymbol{x}_{(i)}$:

$$\mathbf{x}_{(i+1)} = -D^{-1}(L+U)\mathbf{x}_{(i)} + D^{-1}\mathbf{b}.$$

- Define $J = D^{-1}(L + U)$ as the **iteration matrix**. $\rightsquigarrow \boldsymbol{x}_{(i+1)} = -J\boldsymbol{x}_{(i)} + D^{-1}\boldsymbol{b}$.
- From (4): $D^{-1}b = x + D^{-1}(L + U)x = x + Jx$ $\Rightarrow x_{(i+1)} = -Jx_{(i)} + x + Jx$.
- ullet (i+1)-th error term: $oldsymbol{\epsilon}_{(i+1)} = oldsymbol{x}_{(i+1)} oldsymbol{x} = -J(oldsymbol{x}_{(i)} oldsymbol{x}) = -Joldsymbol{\epsilon}_{(i)}.$
- ullet Convergence guaranteed if J is "contracting".

Calculating the error, revisited

- Error in (i+1)-th iteration: $\epsilon_{(i+1)} = -J\epsilon_{(i)}$.
- $\epsilon_{(i+1)} = -J(-J\epsilon_{(i-1)}) = J^2\epsilon_{(i-1)} = \cdots = (-1)^{i+1}J^{i+1}\epsilon_{(0)}$.
- So if $J^i \to 0$ (zero matrix) for $i \to \infty$ then $\epsilon_{(i)} \to \mathbf{0}$.
- The key to understanding this condition is the eigenvalue decomposition $J = V\Lambda V^{-1}$ (details next section)
 - the columns of V consist of eigenvectors of J and
 - Λ is a diagonal matrix of **eigenvalues** of J.
- Then $J^2=V\Lambda V^{-1}V\Lambda V^{-1}=V\Lambda^2 V^{-1} \leadsto J^n=V\Lambda^n V^{-1}$.

If all the eigenvalues of J have magnitude <1, then $\Lambda^n\to 0$ and consequently $J^n\to 0 \leadsto$ convergence.

A diagonally dominant → Jacobi method converges.
 Follows from the Gershgorin circle theorem.

Chapter 1

Linear Systems of Equations

Linear Algebra III: Eigenvalues and Eigenvectors

Eigenvalues and eigenvectors

- Consider a square matrix A. A vector v for which $Av = \lambda v$ for some (possibly complex) scalar λ is an **eigenvector** of A, and λ is the associated **eigenvalue**.
- The eigenvectors span the nullspace of $(A \lambda I)$: They are the solutions of $(A - \lambda I)v = 0$.
- A non-zero solution $v \neq 0$ exists if and only if the matrix $(A \lambda I)$ is not invertible:
 - otherwise we could invert $(A \lambda I)$ and get the unique solution $\mathbf{v} = (A \lambda I)^{-1}\mathbf{0} = \mathbf{0}$, i.e. only the zero solution.
- Equivalently we have **non-zero eigenvectors** if and only if the rank of $(A \lambda I) < n$.
- Equivalently we want: $det(A \lambda I) = 0$. Why?

- The **determinant of a square matrix** is a single number. It contains a lot of information about the matrix.
- But is is not a "simple" function...
 Explicit formulas are complicated, but its properties are simple.

Three rules completely determine the number det(A):

- 1. The determinant of the identity matrix is 1: det(I) = |I| = 1.
- 2. The determinant changes sign when two rows are exchanged.
- 3. The determinant is a linear function in each row separately (all other rows stay fixed): 2d-example for first row

$$\begin{vmatrix} ta & tb \\ c & d \end{vmatrix} = t \begin{vmatrix} a & b \\ c & d \end{vmatrix}$$

$$\begin{vmatrix} a+a' & b+b' \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} + \begin{vmatrix} a' & b' \\ c & d \end{vmatrix}$$

Further rules can be deduced:

- 4. If two rows of A are equal, then det(A) = 0.
 - Rule 2: Exchange of the equal rows $\rightsquigarrow det(A)$ changes sign.
 - But matrix stays the same, so det cannot change $\rightsquigarrow det(A) = 0$.
- 5. Subtracting a multiple of one row from another row leaves the same determinant.

$$\begin{vmatrix} a - lc & b - ld \\ c & d \end{vmatrix} = \begin{vmatrix} a & b \\ c & d \end{vmatrix} - l \underbrace{\begin{vmatrix} c & d \\ c & d \end{vmatrix}}_{=0 \text{ (rule 4)}}$$

Usual elimination steps do not affect the determinant!

6. If A has a row of zeros, then det(A) = 0.

Add some other row to zero row $\rightsquigarrow det(A)$ is unchanged (rule 5).

But now there are two identical rows $\rightsquigarrow det(A) = 0$ by rule 4.

7. If A is triangular then $det(A) = \prod_i a_{ii}$.

Suppose the diagonal entries are nonzero. Then elimination can remove all the off-diagonal entries, without changing det(A) (rule 5).

Factoring out the diagonal elements gives

$$det(A) = \prod_i a_{ii} \cdot det(I) = \prod_i a_{ii}$$
 (rules 3 and 1).

Zero diagonal entry \rightsquigarrow elimination produces a zero row.

Rule 5: elimination steps do not change det(A).

Rule 6: zero row $\rightsquigarrow det(A) = 0$.

8. If A is singular, then det(A) = 0. If A is invertible, $det(A) \neq 0$.

A singular: Elimination \leadsto zero row in $U \leadsto det(A) = det(U) = 0$.

A nonsingular: Elimination puts the nonzero pivots d_1, \ldots, d_n on the diagonal. Sign depends on whether the number of row exchanges is even or odd: $det(A) = \pm det(U) = \pm \prod_i d_i \neq 0$.

9. The determinant of AB is the product $det(A) \cdot det(B)$. Proof sketch: When $|B| \neq 0$, consider ratio D(A) := |AB|/|B|. Check that this ratio has properties

- **1**: A = I implies D(A) = 1,
- **2**: exchange of two rows of A gives a sign reversal of D(A),
- 3: linearity in each row
- $\rightsquigarrow D(A)$ must be the determinant of A: D(A) = |A| = |AB|/|B|.
- 10. Formula for 2×2 case:

$$\begin{bmatrix} a & b \\ c & d \end{bmatrix} = LU = \underbrace{\begin{bmatrix} 1 & 0 \\ c/a & 1 \end{bmatrix}}_{det=1} \underbrace{\begin{bmatrix} a & b \\ 0 & (ad-bc)/a \end{bmatrix}}_{det=ad-bc}$$

Eigenvalues and eigenvectors

- $det(A \lambda I) = 0$ is the characteristic polynomial of A.
 - it's a **polynomial of degree** n for $A_{(n \times n)}$,
 - its solutions give all the eigenvalues λ_i .

Example:
$$\begin{vmatrix} a - \lambda & b \\ c & d - \lambda \end{vmatrix} = (a - \lambda)(d - \lambda) - bc = 0.$$

• Once we know all the $\lambda_1, \lambda_2, \dots, \lambda_n$ we take each one in turn and find the **corresponding eigenvectors** v_i by solving the **linear system**

$$(A - \lambda_i I) \boldsymbol{v}_i = \boldsymbol{0}.$$

ullet All eigenvectors fulfill $Aoldsymbol{v}_i=\lambda_ioldsymbol{v}_i.$ In matrix form: $AV=V\Lambda,$ where $oldsymbol{v}_i$ is the $oldsymbol{i}$ -th column of V and Λ is the diagonal matrix

$$\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \ddots & & \\ & & \lambda_n \end{bmatrix}$$

Eigenvalues, pivots and determinants

• Suppose that $\lambda_1, \ldots \lambda_2$ are eigenvalues of A. Then the λ_i are the roots of the characteristic polynomial, and this polynomial of degree n always separates into n factors involving the (possibly complex) eigenvalues (fundamental theorem of algebra), i.e.

$$det(A - \lambda I) = (\lambda_1 - \lambda)(\lambda_2 - \lambda) \cdots (\lambda_n - \lambda).$$

• Holds for every $\lambda \leadsto \text{can set } \lambda = 0$:

$$det(A) = \prod_{i} \lambda_i$$

• We already showed that $det(A) = \pm det(U) = \pm \prod_i d_i$, so **Determinant** = \pm (product of pivots) = product of eigenvalues.

Diagonalization

- Not all linear operators can be represented by diagonal matrices with respect to some basis.
- A square matrix A for which there is some (invertible) P so that $P^{-1}AP = D$ is a diagonal matrix is called **diagonalizable**.

Theorem. Suppose that $A_{(n \times n)}$ has n linearly independent eigenvectors v_1, \ldots, v_n , arranged as columns in the matrix V. Then

$$V^{-1}AV = \Lambda = \begin{bmatrix} \lambda_1 & & \\ & \ddots & \\ & & \lambda_n \end{bmatrix}$$

Proof.
$$Av_i = \lambda_i v_i \Rightarrow AV = V\Lambda \Rightarrow V^{-1}AV = \Lambda$$

Diagonalization

Theorem. Eigenvectors corresponding to distinct (all different) eigenvalues are linearly independent.

Proof. Suppose $c_1 v_1 + c_2 v_2 = 0$.

Then
$$A(c_1v_1 + c_2v_2) = c_1\lambda_1v_1 + c_2\lambda_2v_2 = 0$$
.

Also
$$\lambda_2(c_1v_1 + c_2v_2) = c_1\lambda_2v_1 + c_2\lambda_2v_2 = 0$$
.

Subtraction gives:

$$(\lambda_1 - \lambda_2)c_1 \boldsymbol{v}_1 = \boldsymbol{0} \ \Rightarrow \ c_1 = 0$$
, since $\boldsymbol{v}_1 \neq \boldsymbol{0}$ and $\lambda_1 \neq \lambda_2$.

Similarly, $c_2 = 0$. Thus, no other combination $c_1 v_1 + c_2 v_2 = 0$, and the eigenvectors must be independent. Proof directly extends to any number of eigenvectors.

Orthogonal Diagonalization

- If P is also orthogonal $(PP^t = I)$, A is **orthogonally** diagonalizable.
- ullet Columns of P= linearly independent eigenvectors of A.
- ullet Diagonal entries of D are the corresponding eigenvalues.

Theorem. If a matrix is orthogonally diagonalizable, then it is symmetric

Proof. We assume that $P^tAP = D$ holds, with $P^t = P^{-1}$. Thus, $A = PDP^t$ and $A^t = (PDP^t)^t = PDP^t = A$.

Orthogonal Diagonalization

Theorem. Eigenvectors of a symmetric matrix corresponding to different eigenvalues are orthogonal.

Proof. Let $A^t = A$ have eigenvectors \mathbf{v}_1 and \mathbf{v}_2 for eigenvalues $\lambda_1 \neq \lambda_2$.

$$(A\boldsymbol{v}_1)^t\boldsymbol{v}_2 = \boldsymbol{v}_1^t(A\boldsymbol{v}_2) = \lambda_1\boldsymbol{v}_1^t\boldsymbol{v}_2 = \lambda_2\boldsymbol{v}_1^t\boldsymbol{v}_2.$$

Since $\lambda_1 \neq \lambda_2$, we must have $\boldsymbol{v}_1^t \boldsymbol{v}_2 = 0$.

More general version (without explicit proof): Spectral Theorem **Theorem.** Suppose the $n \times n$ matrix A is symmetric. Then it has n orthogonal eigenvectors with real eigenvalues.

A square matrix A is orthogonally diagonalizable if and only if it is symmetric.

Chapter 1

Linear Systems of Equations

Matrix Powers and Markovian Matrices

Matrix Powers

- Consider a square matrix A with eigenvector decomposition $A_{(n \times n)} = V \Lambda V^{-1}$.
- What are the eigenvectors of $A^2=AA$? Substitution gives: $A^2=V\Lambda V^{-1}V\Lambda V^{-1}=V\Lambda^2 V^{-1}$. So A^2 has the same eigenvectors and squared eigenvalues.
- General form: $A^n = V\Lambda^n V^{-1}$.
- When does $A^k \to 0$ (zero matrix)? **All** $|\lambda_i| < 1$ (cf. convergence analysis of Jacobi iterations).
- Are there other interesting applications of matrix powers? Yes, many!

Matrix Powers: Fibonacci numbers

- The Fibonacci sequence $0, 1, 1, 2, 3, 5, 8, 13, \ldots$ comes from $F_{k+2} = F_{k+1} + F_k$.
- Assume you want to compute F_{100} . Can it be done directly? Yes, with the help of matrix powers...
- ullet Define $oldsymbol{u}_k = egin{bmatrix} F_{k+1} \\ F_k \end{bmatrix}$ and the **transition matrix** $A = egin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$.
- ullet The rule $egin{array}{cccc} F_{k+2} &=& F_{k+1}+F_k \ F_{k+1} &=& F_{k+1} \end{array}$ is $egin{array}{cccc} oldsymbol{u}_{k+1} &= egin{bmatrix} 1 & 1 \ 1 & 0 \end{bmatrix} oldsymbol{u}_k.$
- ullet After 100 steps we reach $m{u}_{100}=A^{100}m{u}_0$, with $m{u}_0=egin{bmatrix}1\\0\end{bmatrix}$.

Matrix Powers: Fibonacci numbers

- 1. Find eigenvectors v_1, v_2 and associated eigenvalues of A.
- 2. Express u_0 as combination of eigenvectors: $u_0 = c_1 v_1 + c_2 v_2 \rightsquigarrow c = V^{-1} u_0$.

 $(A - \lambda I)\mathbf{v} = \mathbf{0} \leadsto \mathbf{v}_1 = \begin{vmatrix} \lambda_1 \\ 1 \end{vmatrix}, \quad \mathbf{v}_2 = \begin{vmatrix} \lambda_2 \\ 1 \end{vmatrix}.$

3. Now $A^{100}u_0 = V\Lambda^{100}V^{-1}u_0 = V\Lambda^{100}c$. Thus, multiply each eigenvector v_i with λ_i^{100} and add up the results with weights c_i .

In our case:

$$A - \lambda I = \begin{bmatrix} 1 - \lambda & 1 \\ 1 & -\lambda \end{bmatrix} \rightsquigarrow det(A - \lambda I) = \lambda^2 - \lambda - 1 \stackrel{!}{=} 0$$

$$\rightsquigarrow \lambda = \frac{1}{2} \pm \sqrt{\frac{1}{4} + 1} \rightsquigarrow \lambda_1 = \frac{1 + \sqrt{5}}{2} \approx 1.618, \quad \lambda_2 = \frac{1 - \sqrt{5}}{2} \approx -0.618.$$

Matrix Powers: Fibonacci numbers

Weights:
$$c_1 = 1/(\lambda_1 - \lambda_2), \quad c_2 = -1/(\lambda_1 - \lambda_2)$$

After 100 steps:
$$m{u}_{100} = c_1 \lambda_1^{100} m{v}_1 + c_2 \lambda_2^{100} m{v}_2 = \frac{\lambda_1^{100} m{v}_1 - \lambda_2^{100} m{v}_2}{\lambda_1 - \lambda_2}$$
.

• We want $F_{100} =$ second component of u_{100} . Second components of eigenvectors are 1, and $\lambda_1 - \lambda_2 = \sqrt{5}$. Thus,

$$F_{100} = \frac{\lambda_1^{100} - \lambda_2^{100}}{\lambda_1 - \lambda_2} = \frac{1}{\sqrt{5}} \left[\left(\frac{1 + \sqrt{5}}{2} \right)^{100} - \left(\frac{1 - \sqrt{5}}{2} \right)^{100} \right] \approx 3.54 \cdot 10^{20}.$$

- Note: $\lambda_2^k/(\lambda_1-\lambda_2)<1/2$ and result must be an integer, so $F_k=\frac{\lambda_1^k-\lambda_2^k}{\lambda_1-\lambda_2}$ must be the nearest integer to $\frac{1}{\sqrt{5}}\left(\frac{1+\sqrt{5}}{2}\right)^k$.
- The ratio $\frac{F_{k+1}}{F_k}$ approaches the **golden ratio** $\frac{1+\sqrt{5}}{2}\approx 1.618$ for large k.

Matrix Powers: Markov matrices

- A matrix is a **Markov matrix** iff the following holds:
 - 1. Every entry is non-negative, 2. Every column adds to 1.
- A Markov matrix is called **column-stochastic:** entries in every column can be interpreted as probabilities.
- Suppose A is Markovian, and start with probability vector u_0 .
- Observation: if we make a sequence of update steps, $u_k = A^k u_0$, we will approach a steady state for $k \to \infty$, and this steady state does not depend on the starting vector u_0 !
- **Asymptotic loss of memory:** Markov chain "forgets" where it started. The question is why...

Matrix Powers: Markov matrices

• Intuition: Since the eigenvalues of A are raised to larger and larger powers, a non-trivial steady state can only occur for $\lambda=1$. The steady state equation $A \boldsymbol{u}_{\infty} = \boldsymbol{u}_{\infty}$ then makes \boldsymbol{u}_{∞} an eigenvector of A with eigenvalue $\lambda=1$.

Theorem. A positive Markov matrix (entries $a_{ij} > 0$) has one eigenvalue $\lambda_1 = 1$, all other eigenvalues have $|\lambda| < 1$.

We will not formally prove this theorem here. But the existence of $\lambda_1 = 1$ easily follows from this observation:

• Consider $A = \begin{bmatrix} p_1 & q_1 \\ p_2 & q_2 \end{bmatrix}$. A is column-stochastic, so every column of A-1I adds to $1-1=0 \rightsquigarrow$ the **row vectors add up to zero**, $(p_1-1,q_1)^t+(p_2,q_2-1)^t=(0,0)^t$, so they are **linearly dependent** $\rightsquigarrow det(A-1I)=0 \rightsquigarrow \lambda=1$ is an eigenvalue of A.

Matrix Powers: Markov matrices

• A^2 is also a Markov matrix:

$$A^{2} = \begin{bmatrix} p_{1}^{2} + p_{2}q_{1} & p_{1}q_{1} + q_{1}q_{2} \\ p_{1}p_{2} + p_{2}q_{2} & p_{2}q_{2} + q_{2}^{2} \end{bmatrix}$$

Note that this matrix is also column-stochastic: Sum of first column is

$$p_1^2 + p_2q_1 + p_1p_2 + p_2q_2 = p_1(p_1 + p_2) + p_2(q_1 + q_2) = p_1 + p_2 = 1.$$

- By induction, all matrices A^k are Markov matrices! \rightsquigarrow they all have the eigenvalue $\lambda=1$.
- ullet This argument holds true for any $n \times n$ Markov matrix A.

Markov matrices: Rental cars example

Rental cars in Denver. Every month, 80% of the Denver cars stay in Denver, 20% leave. 5% of outside cars come in, 95% stay outside. Fraction of cars in Denver starts at $1/50 = 0.02 \rightsquigarrow \mathbf{u}_0 = (0.02, 0.98)^t$.

First month:
$$u_1 = \begin{bmatrix} 0.8 & 0.05 \\ 0.2 & 0.95 \end{bmatrix} \begin{bmatrix} 0.02 \\ 0.98 \end{bmatrix} = \begin{bmatrix} 0.065 \\ 0.935 \end{bmatrix}$$

$$k$$
-th month: $oldsymbol{u}_k = A^k oldsymbol{u}_0 = V \Lambda^k V^{-1} oldsymbol{u}_0$

Eigenvalues and eigenvectors:

$$A \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} = 1 \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix}, \quad A \begin{bmatrix} -1 \\ 1 \end{bmatrix} = 0.75 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Weights:
$$u_0 = c_1 v_1 + c_2 v_2 = \begin{vmatrix} 0.02 \\ 0.98 \end{vmatrix} = 1 \begin{vmatrix} 0.2 \\ 0.8 \end{vmatrix} + 0.18 \begin{vmatrix} -1 \\ 1 \end{vmatrix}$$

Markov matrices: Rental cars example

After
$$k$$
 months: $\boldsymbol{u}_k = A^k \boldsymbol{u}_0 = V \Lambda^k \boldsymbol{c} = 1^k \cdot 1 \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix} + (0.75)^k \cdot 0.18 \begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Thus, the eigenvector $m{v}_1 = \begin{bmatrix} 0.2 \\ 0.8 \end{bmatrix}$ with $\lambda_1 = 1$ is the steady state,

i.e. in the limit, 20% of the cars are in Denver and 80% outside.

Initial vector u_0 is asymptotically irrelevant.

Other eigenvector v_2 disappears because $|\lambda_2| < 1$.

Magnitude of λ_2 controls the **speed of convergence** to the steady state.

Markov matrices: Google example

Idea: for n websites, columns in $A_{n\times n}$ contain pairwise transition probabilities from one website to all other ones, computed from the number of links between the sites.

Then find u_{∞} by a **random walk** that follows links (i.e. random surfing).

This steady state vector gives the **limit fraction of time at each site**.

The **ranking** of sites is then based on u_{∞} .

According to Google, the Markov matrix A has $2.7 \cdot 10^9$ rows and cols. Probably the largest eigenvalue problem ever solved!

Chapter 1

Linear Systems of Equations

Differential Equations and Matrix Exponentials

Applications to Differential Equations

Main Idea: Convert constant-coefficient DEs into linear algebra.

- One equation: $\frac{du}{dt} = \lambda u$ has solutions $u(t) = ce^{\lambda t}$.
- Initial conditions: Choose c = u(0) (since $e^0 = 1$).
- n equations: $\frac{d\mathbf{u}}{dt} = A\mathbf{u}$, starting from $\mathbf{u}(0)$ at t = 0.
- Equations are linear: If u(t) and v(t) are solutions $\leadsto cu(t) + dv(t)$ is solution.
- ullet Here, A is a constant matrix \leadsto compute eigen-vectors and -values satisfying $Aoldsymbol{v}=\lambdaoldsymbol{v}.$
- Substitute $u(t) = e^{\lambda t}v$ into $\frac{du}{dt} = Au$:

$$\Rightarrow \lambda e^{\lambda t} \mathbf{v} = A e^{\lambda t} \mathbf{v} \Leftrightarrow A \mathbf{v} = \lambda \mathbf{v}.$$

First Order Equations

- All components of this **special solution** $u(t) = e^{\lambda t}v$ share the same time-dependent scalar $e^{\lambda t}$.
- Real eigenvalues: $\lambda > 0 \leadsto$ solution grows, $\lambda < 0 \leadsto$ solution decays.
- Complex eigenvalues: Real part describes growth/decay, imaginary part ω gives oscillation like a sine wave: $e^{i\omega t} = \cos(\omega t) + i\sin(\omega t)$.
- Complete solution is **linear combination of special solutions** for each (\boldsymbol{v},λ) -pair. Coefficients are determined by initial conditions.
- **Recipe** (assuming no repeated eigenvalues $\rightsquigarrow n$ eigenvectors):
 - Write u(0) as combination of eigenvectors $c_1v_1 + \cdots + c_nv_n$
 - Multiply v_i by $e^{\lambda_i t}$
 - Solution is $\boldsymbol{u}(t) = c_1 e^{\lambda_1 t} \boldsymbol{v}_1 + \dots + c_n e^{\lambda_n t} \boldsymbol{v}_n$.

Second Order Equations

• **Mechanics** is dominated by

$$m^{\mathrm{mass}}$$
 \ddot{y} $+$ $b\dot{y}$ $+$ ky $=$ 0 acceleration damping restoring force

Linear second-order equation with constant coefficients m, b, k.

• Assume m=1. define ${\boldsymbol u}=(y,\dot y)^t$. The two eqs.

$$\frac{dy}{dt} = \dot{y} \text{ and } \frac{d\dot{y}}{dt} = -ky - b\dot{y}$$

convert to

$$\frac{d}{dt}\boldsymbol{u} = A\boldsymbol{u} \iff \frac{d}{dt} \begin{bmatrix} y \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -k & -b \end{bmatrix} \begin{bmatrix} y \\ \dot{y} \end{bmatrix}$$

Reduction to first-order system!

Second Order Equations

- Determinant $|A \lambda I| = \lambda^2 + b\lambda + k \stackrel{!}{=} 0$
 - \rightsquigarrow two distinct eigenvalues λ_1, λ_2
 - \rightsquigarrow two eigenvectors. Here: $\boldsymbol{v}_1 = (1, \lambda_1)^t, \boldsymbol{v}_2 = (1, \lambda_2)^t$.
- Solution:

$$\boldsymbol{u}(t) = c_1 e^{\lambda_1 t} \boldsymbol{v}_1 + c_2 e^{\lambda_2 t} \boldsymbol{v}_2.$$

First component: y(t) (position),

Second component: $\dot{y}(t)$ (velocity).

The exponential of a matrix

- If there are n independent eigenvectors: Complete solution is **linear combination of special solutions** for each (\boldsymbol{v},λ) -pair. More general & compact version?
- **Taylor series** of function f(x) is $\sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n$, where $f^{(n)}(a)$ is the n-th derivative of f at point a.
- Exponential function, a=0: $e^x=1+x+\frac{1}{2}x^2+\frac{1}{6}x^3+\cdots$
- Substitute square matrix At for x:

$$e^{At} = I + At + \frac{1}{2}(At)^2 + \frac{1}{6}(At)^3 + \cdots$$
$$\frac{d}{dt}e^{At} = A + A^2t + \frac{1}{2}A^3t^2 + \cdots = Ae^{At}$$

 \leadsto we immediately see that $m{u}=e^{At}m{u}(0)$ solves $\frac{d}{dt}m{u}=Am{u}$.

The exponential of a matrix

Simple case: n indep. eigenvectors $\rightsquigarrow A$ is diagonalizable $\rightsquigarrow A = V\Lambda V^{-1}$:

$$e^{At} = I + V\Lambda V^{-1}t + \frac{1}{2}(V\Lambda V^{-1}t)^{2} + \cdots$$

$$= V\left[I + \Lambda t + \frac{1}{2}(\Lambda t)^{2} + \cdots\right]V^{-1}$$

$$= Ve^{\Lambda t}V^{-1} = V\begin{bmatrix}e^{\lambda_{1}t} & & \\ & \ddots & \\ & & e^{\lambda_{n}t}\end{bmatrix}V^{-1}.$$

Substitute in general form of solution:

$$\mathbf{u}(t) = e^{At}\mathbf{u}(0) = Ve^{\Lambda t} \underbrace{V^{-1}\mathbf{u}(0)}_{=\mathbf{c}, \text{ since } V\mathbf{c} = \mathbf{u}_0}$$
$$= c_1 e^{\lambda_1 t} \mathbf{v}_1 + \dots + c_n e^{\lambda_n t} \mathbf{v}_n.$$

The exponential of a matrix

What if there are **not enough eigenvectors?** Example:

$$\frac{d}{dt}\boldsymbol{u} = A\boldsymbol{u} \implies \frac{d}{dt} \begin{bmatrix} y \\ \dot{y} \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & 2 \end{bmatrix} \begin{bmatrix} y \\ \dot{y} \end{bmatrix}$$

Idea: Use Taylor series directly. Series ends after linear term!

$$e^{At} = e^{It}e^{(A-I)t} = e^{t}[I + (A-I)t + \frac{1}{2}\underbrace{(A-I)^{2}}_{0}t^{2} + 0 + \cdots]$$

$$\boldsymbol{u}(t) = e^{At}\boldsymbol{u}(0) = e^{t} \begin{bmatrix} I + \begin{bmatrix} -1 & 1 \\ -1 & 1 \end{bmatrix} t \end{bmatrix} \boldsymbol{u}(0)$$

First component: $y(t) = e^{t} y(0) - te^{t} y(0) + te^{t} \dot{y}(0)$.

Chapter 1

Linear Systems of Equations

Singular Value Decomposition

Singular value decomposition

- Remember matrix diagonalization: $V^{-1}AV = \Lambda$. Three problems:
 - A must be square.
 - There are not always enough eigenvectors.
 - Only for symmetric matrices, the $oldsymbol{v}_i$ are orthogonal.
- ullet The SVD solves these problems, but at an additional price: we now have **two sets of singular vectors** $oldsymbol{u}_i$ and $oldsymbol{v}_i$.

Denoting by σ_i the **singular values**, they are related as:

$$A \boldsymbol{v}_i = \sigma_i \boldsymbol{u}_i$$
 and $A^t \boldsymbol{u}_i = \sigma_i \boldsymbol{v}_i$.

• If r is the rank of A, there will be r positive singular values, say $\sigma_1, \ldots, \sigma_r > 0$. All remaining ones will be zero.

Calculating the SVD

ullet Combine the two equations that define a pair $oldsymbol{u}, oldsymbol{v}$:

$$A^{t}(A\boldsymbol{v}) = A^{t}(\sigma\boldsymbol{u}) = \sigma(A^{t}\boldsymbol{u}) = \sigma(\sigma\boldsymbol{v}) = \sigma^{2}\boldsymbol{v}.$$

- ullet So $A^tAoldsymbol{v}=\sigma^2oldsymbol{v}$.
 - Singular values: square roots of the eigenvalues of A^tA (note that A^tA is positive semi-definite).
 - Singular vectors v: eigenvectors of A^tA .
- We can always choose orthonormal eigenvectors: Orthonormal basis always exists, because A^tA is symmetric \rightsquigarrow orthogonally diagonalizable.
- Given v_i, σ_i , compute u_i according to $u_i = \sigma_i^{-1} A v_i, \quad i = 1, \ldots, r$.
- Arrange singular values on **diagonal of a matrix** S and singular vectors as the columns of **orthogonal matrices** U **and** V.
- Then we have AV = US and $A^tU = VS$.

Calculating the SVD: starting with U

- So far: Start with eigenvector decomposition of $A^tA \rightsquigarrow V$ and S, then compute $\boldsymbol{u}_i = \sigma_i^{-1} A \boldsymbol{v}_i$.
- Can also start with $AA^t \leadsto U$ and S:

$$AA^{t}u = A\sigma v = \sigma(Av) = \sigma(\sigma u) = \sigma^{2}u.$$

Singular values are also the square roots of the eigenvalues of AA^t , and the eigenvectors of AA^t are the columns of U.

- Then $\boldsymbol{v}_i = \sigma_i^{-1} A^t \boldsymbol{u}_i, \quad i = 1, \dots, r.$
- **BUT:** Don't mix the two methods. Problem: Eigenvectors only determined **up to the direction**: if \boldsymbol{v} is eigenvector of A^tA , then also $-\boldsymbol{v}$ is one: $A^tA\boldsymbol{v} = \lambda\boldsymbol{v} \Rightarrow A^tA(-\boldsymbol{v}) = \lambda(-\boldsymbol{v})$.

So if you compute both u_i and v_i as eigenvectors of AA^t and A^tA , the signs can be arbitrary \rightsquigarrow not necessarily a correct SVD.

Singular value decomposition

Orthogonality implies $AV = US \leadsto AVV^t = A = USV^t$. Economy version of the singular value decomposition (SVD) of A: U is $m \times r$, S is $r \times r$, V is $n \times r$.

What about the remaining n-r vectors \boldsymbol{v}_i and the m-r vectors \boldsymbol{u}_i with $\sigma_i=0$? They span the nullspaces of A and A^t :

$$A oldsymbol{v}_j = oldsymbol{0}, \ \ ext{for} \ j > r$$
 $A^t oldsymbol{u}_j = oldsymbol{0}, \ \ ext{for} \ j > r$

Singular value decomposition

Full singular value decomposition (SVD) of A:

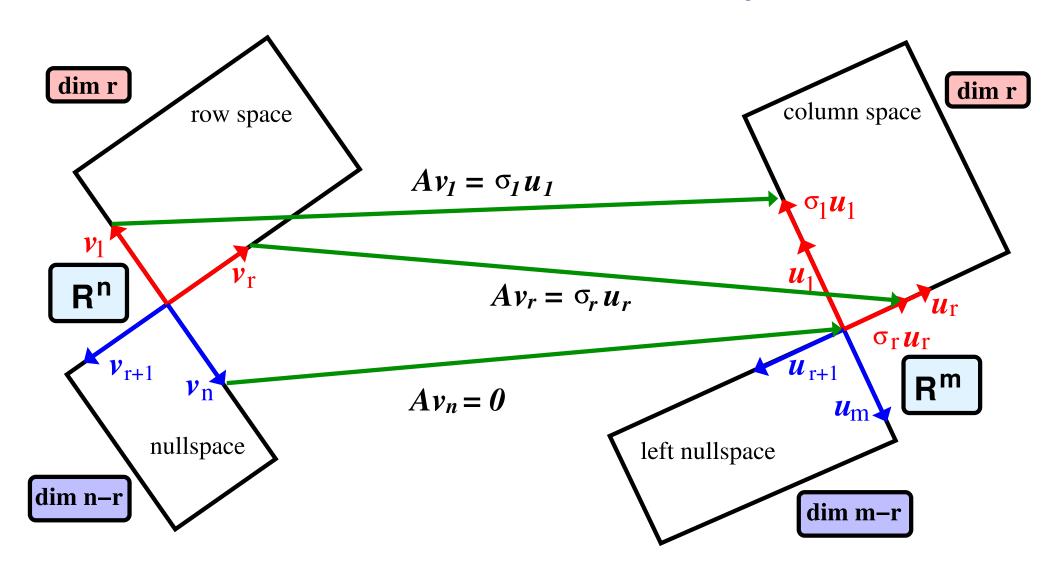
U is $m \times m$, S is $m \times n$, V is $n \times n$.

SVD and bases for the 4 subspaces

$$A oldsymbol{v}_j = \sigma_j oldsymbol{u}_j, \quad ext{for } j \leq r.$$
 $A^t oldsymbol{u}_j = \sigma_j oldsymbol{v}_j, \quad ext{for } j \leq r.$ $A oldsymbol{v}_j = oldsymbol{0}, \quad ext{for } j > r.$ $A^t oldsymbol{u}_j = oldsymbol{0}, \quad ext{for } j > r.$

- Columns of V with $\sigma_j > 0$ are an orthonormal basis for $C(A^t)$. Diagonal elements in S scale the columns in V: $A^t y = V S^t U^t y$, so the columns of V with nonzero σ span the row space.
- Last n-r columns of V are an orthonormal basis for N(A).
- Columns of U with $\sigma_j > 0$ are an orthonormal basis for C(A). Diagonal elements in S scale the columns in U: $Ax = USV^tx$, so the columns of U with nonzero σ span the column space.
- Last m-r columns of U are an orthonormal basis for $N(A^t)$.

SVD and bases for the 4 subspaces



SVD and linear systems

Assume A is a $n \times n$ matrix. With the SVD decomposition:

$$Am{x} = m{b}$$
 $USV^tm{x} = m{b}$ $SV^tm{x} = U^tm{b}$ $Sm{z} = m{d}$, where $m{z} = V^tm{x}$ and $m{d} = U^tm{b}$.

Written in blocks this is

Solution: $z_i = d_i/\sigma_i$, i = 1, ..., r. What about the remaining entries?

SVD and linear systems

Recall: b must be in C(A) (otherwise no solution exists), last m-r columns of U form basis of orthogonal complement $N(A^t)$.

Right hand side is

$$oldsymbol{d} = U^t oldsymbol{b} = egin{bmatrix} - & oldsymbol{u}_1^t & - \ - & oldsymbol{u}_2^t & - \ - & oldsymbol{u}_{r+1}^t & - \ - & oldsymbol{u}_{r+1}^t & - \ - & oldsymbol{u}_{r+2}^t & - \ & dots \ - & oldsymbol{u}_{m}^t & - \ \end{pmatrix} oldsymbol{b} = egin{bmatrix} d_1 \ dots \ d_r \ 0 \ dots \ 0 \ \end{bmatrix}$$

For $r+1 \le i \le n$: $0 \cdot z_i = 0 \leadsto$ can choose them arbitrarily.

Pseudoinverse

Alternative formalism for SVD solution:

- Write S^+ to denote the matrix obtained by replacing each σ_k in S^t by its reciprocal, so $S^+S=\begin{bmatrix}I_r&0\\0&0\end{bmatrix}$
- Then compute:

$$USV^t oldsymbol{x} = oldsymbol{b}$$
 $SV^t oldsymbol{x} = U^t oldsymbol{b}$
 $Soldsymbol{z} = U^t oldsymbol{b}$
 $ilde{oldsymbol{z}} = (oldsymbol{z}_{[1:r]}, oldsymbol{0})^t = S^+ U^t oldsymbol{b}$
 $oldsymbol{x} = V oldsymbol{ ilde{z}} = \underbrace{VS^+ U^t}_{A^+} oldsymbol{b}.$

 A^+ is the **pseudoinverse** of A: it maps $b \in C(A)$ back to $x \in C(A^t)$.

SVD and linear systems

Homogeneous equations:

- Zero right hand side: b = 0
- Columns of V with $\sigma_j = 0$ are an orthonormal basis for the N(A).
- Solved immediately by SVD: Any column of V whose corresponding $\sigma_i = 0$ yields a solution.

General case:

- Consider arbitrary b. Two cases: does b lie in C(A) or not?
- If **YES**, there exists a solution x; in fact more than one, since any vector in the nullspace can be added to x.
- SVD solution $x = A^+ b$ is the "purest" solution: the one with smallest length $||x||^2$. Why? $x \in C(A^t)$, any nonzero component in the orthogonal nullspace would only increase the length.

General case

Consider arbitrary b. Two cases: does b lie in C(A) or not?

NO: If b is not in C(A), there is **no solution**.

But: can compute **compromise** solution: Among all possible x, it will minimize the **sum of squared errors** between left- and right hand side \rightarrow least-squares methods.

SVD and **Zeroing**

The SVD can solve further numerical problems:

- ullet Zero a small singular value if σ_j is (too) close to zero.
- This forces a **zero coefficient** instead of a **random large coefficient** that would scale a vector "close to" the nullspace:

$$m{x} = V m{z} = \underbrace{m{v}_1 \frac{d_1}{\sigma_1} + \dots + m{v}_r \frac{d_r}{\sigma_r}}_{\text{rowspace}} + \underbrace{m{v}_{r+1} z_{r+1} + \dots + m{v}_n z_n}_{\text{nullspace}}$$

• Rule of thumb: if the ratio $\sigma_j/\sigma_1 < \epsilon_m$ then **zero the entry in the pseudo-inverse matrix**, since the value is probably **corrupted by roundoff** anyway.

Chapter 1

Linear Systems of Equations

The condition number

Conditioning

- **Conditioning** is a measure of the **sensitivity to perturbations**, due to measurement error, statistical fluctuations in the data analysis process, or caused by roundoff errors.
 - These perturbations might affect the numerical values in b and/or A.
- Conditioning describes how this **problem error** Δb , ΔA will affect the **solution error** Δx .
- A function of the **problem itself**, **independent** of the algorithm used. (In practice, however, this separation between the problem and the algorithm might be less clear as it seems...Example: In elimination, the values in A change after every elimination step.)

Vector and matrix norms

- How to compare **closeness** of two vectors \boldsymbol{x} and $\boldsymbol{x} + \Delta \boldsymbol{x}$? Look at relative quantities like $\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \leq \delta$, or $\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x} + \Delta \boldsymbol{x}\|} \leq \delta$.
- Vector norm properties:

(i)
$$\|\boldsymbol{x}\| > 0, \ \forall \boldsymbol{x} \neq 0$$

(ii)
$$||a\boldsymbol{x}|| = |a|||\boldsymbol{x}||$$

$$\mathsf{(iii)} \ \| \boldsymbol{x} + \boldsymbol{y} \| \leq \| \boldsymbol{x} \| + \| \boldsymbol{y} \|$$

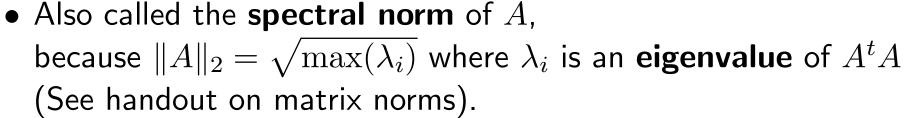
• The **vector** p-**norms** (ℓ_p **norms**) are defined by

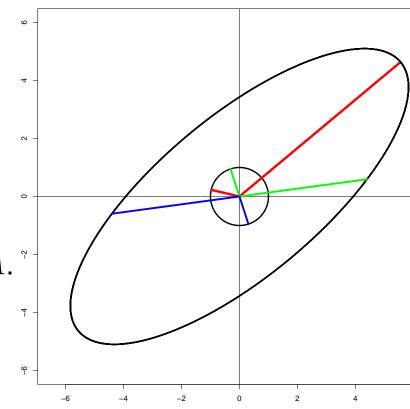
$$\|\boldsymbol{x}\|_{p} = \left(\sum_{i=1}^{n} |x_{i}|^{p}\right)^{1/p}, \quad 1 \leq p \leq \infty,$$
$$\|\boldsymbol{x}\|_{\infty} = \max(|x_{1}|, \dots, |x_{n}|).$$

• $\|x\|_2$ is the usual **Euclidean norm.** What about matrix norms?

Vector and matrix norms

- y = Ax transforms vector x into $y \rightsquigarrow A$ rotates and/or stretches x.
- Consider the effect of A on a unit vector \boldsymbol{x} (i.e. \boldsymbol{x} so that $\|\boldsymbol{x}\|_2 = 1$).
- The "largest" Ax value is a measure of the geometric effect of the transformation A.
- The 2-norm is $||A||_2 = \max_{\|\boldsymbol{x}\|_2=1} ||A\boldsymbol{x}||_2$.





Vector and matrix norms

- Two other **useful and easier-to-calculate** matrix norms:
- $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}|$ column sum norm.
- $||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}|$ row sum norm.
- ||A|| satisfies vector norm properties **PLUS** $||AB|| \le ||A|| ||B||$ and, in particular, $||Ax|| \le ||A|| ||x||$.

Sensitivity to perturbations

- Original system is Ax = b. Assume that right hand side is changed to $b + \Delta b$ because of roundoff or measurement error.
- Then the solution is changed to ${m x}+\Delta{m x}$. Goal: Estimate the change in the solution from the change $\Delta{m b}$. Subtract $A{m x}={m b}$ from $A({m x}+\Delta{m x})={m b}+\Delta{m b}$ to find $A(\Delta{m x})=\Delta{m b} \quad \Leftrightarrow \quad \Delta{m x}=A^{-1}\Delta{m b}$

$$\Delta x = A^{-1} \Delta b$$
 \Rightarrow $\|\Delta x\| \le \|A^{-1}\| \|\Delta b\|$
 $Ax = b$ \Rightarrow $\|b\| \le \|A\| \|x\|$

Multiplication and division of both sides by $(\|\boldsymbol{b}\|\|\boldsymbol{x}\|)$ gives

$$\frac{\|\Delta x\|}{\|x\|} \le \underbrace{\|A\| \|A^{-1}\|}_{k(A)} \frac{\|\Delta b\|}{\|b\|}.$$

Sensitivity to perturbations

- Error can also be in the matrix: we have $A + \Delta A$ instead of the true matrix A.
- Subtract $A \boldsymbol{x} = \boldsymbol{b}$ from $(A + \Delta A)(\boldsymbol{x} + \Delta \boldsymbol{x}) = \boldsymbol{b}$ to find $A(\Delta \boldsymbol{x}) = -(\Delta A)(\boldsymbol{x} + \Delta \boldsymbol{x}) \iff \Delta \boldsymbol{x} = -A^{-1}(\Delta A)(\boldsymbol{x} + \Delta \boldsymbol{x})$

$$\frac{\|\Delta x\| \le \|A^{-1}\| \|\Delta A\| \|x + \Delta x\|}{\|x + \Delta x\|} \le \underbrace{\|A\| \|A^{-1}\|}_{k(A)} \underbrace{\|\Delta A\|}_{\|A\|}.$$

• Conclusion: Errors can be in the matrix or in the r.h.s. This **problem error** is amplified into the **solution error** Δx . Rel. solution error is bounded by k(A) times rel. problem error.

Condition number

- $k(A) = ||A||||A^{-1}||$ is called the **condition number** of A.
- $1 \le k(A) \le \infty$.
- An ill-conditioned problem has a large condition number.
- Small residual does **not** guarantee accuracy for ill-conditioned problems: \hat{x} is a numerical solution to Ax = b, and $\Delta x = x \hat{x}$. Define **residual** r to represent the error $r = b A\hat{x} = b \hat{b} = \Delta b$:

$$\frac{\|\Delta \boldsymbol{x}\|}{\|\boldsymbol{x}\|} \le k(A) \frac{\|\boldsymbol{r}\|}{\|\boldsymbol{b}\|}.$$

- k(A) is a mathematical property of the coefficient matrix A.
- In **exact** math a singular matrix has $k(A) = \infty$. k(A) indicates how close a matrix is to being **numerically** singular.

Condition number

- k(A) can be measured with any matrix p-norm.
- Spectral norm $||A||_2 = \sqrt{\lambda_{\max}(A^t A)} = \sigma_{\max}(A)$

For an invertible matrix M we have:

$$M\mathbf{v} = \lambda \mathbf{v} \Rightarrow \mathbf{v} = \lambda M^{-1}\mathbf{v} \Rightarrow M^{-1}\mathbf{v} = \lambda^{-1}\mathbf{v},$$

so M^{-1} has the same eigenvectors but inverse eigenvalues, and

$$||A^{-1}||_2 = \sqrt{\lambda_{\min}(A^t A)} = \sigma_{\min}(A) \leadsto k(A) = \frac{\sigma_{\max}}{\sigma_{\min}}.$$

• Can be generalized to singular/rectangular matrices: $k(A) = ||A|| ||A^+||$ = ratio of largest and smallest positive singular value.