Chapter 2

Least squares problems

Linear curve fitting

- Notation: n objects at locations $\boldsymbol{x}_{i} \in \mathbb{R}^{p}$. Every object has measurement $y_{i} \in \mathbb{R}$.
- Approximate "regression targets" y as a parametrized function of \boldsymbol{x}.
- Consider a 1-dim problem initially.
- Start with n data points $\left(x_{i}, y_{i}\right), i=1, \ldots, n$.

- Choose d basis functions $g_{0}(x), g_{1}(x), \ldots$.
- Fitting to a line uses two basis functions $g_{0}(x)=1$ and $g_{1}(x)=x$. In most cases $n \gg d$.
- Fit function $=$ linear combination of basis functions:
$f(x ; \boldsymbol{w})=\sum_{j} w_{j} g_{j}(x)=w_{0}+w_{1} x$.
- $f\left(x_{i}\right)=y_{i}$ exactly is (usually) not possible, so approximate $f\left(x_{i}\right) \approx y_{i}$
- n residuals are defined by $r_{i}=y_{i}-f\left(x_{i}\right)=y_{i}-\left(w_{0}+w_{1} x_{i}\right)$.

Calculus or algebra?

- Quality of fit can be measured by residual sum of squares $R S S=\sum_{i} r_{i}^{2}=\sum_{i}\left[y_{i}-\left(w_{0}+w_{1} x_{i}\right)\right]^{2}$.
- Minimizing $R S S$ with respect to w_{1} and w_{0} provides the least-squares fit.
- To solve the least squares problem we can

1. set the derivative of RSS to zero \rightsquigarrow calculus, or
2. solve an over-determined system \rightsquigarrow algebra: $w_{0}+w_{1} x_{i}=y_{i}, i=1, \ldots, n$

- The results you get are...
- mathematically the same, but

- have different numerical properties.

Matrix-vector form

- Write $f(x) \approx y$ in matrix-vector form for n observed points as

$$
\underbrace{\left[\begin{array}{cc}
1 & x_{1} \\
1 & x_{2} \\
\vdots & \vdots \\
1 & x_{n}
\end{array}\right]}_{X} \underbrace{\left[\begin{array}{c}
w_{0} \\
w_{1}
\end{array}\right]}_{\boldsymbol{w}} \approx \underbrace{\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]}_{\boldsymbol{y}}
$$

- We minimize the sum of squared errors, which is the squared norm of the residual vector $\boldsymbol{r}=\boldsymbol{y}-X \boldsymbol{w}$:

$$
R S S=\sum_{i=1}^{n}\left(y_{i}-(X \boldsymbol{w})_{i}\right)^{2}=\|\boldsymbol{y}-X \boldsymbol{w}\|^{2}=\|\boldsymbol{r}\|^{2}=\boldsymbol{r}^{t} \boldsymbol{r}
$$

- $R S S=0$ only possible if all the data points lie on a line.

Basis functions

X has as many columns as there are basis functions. Examples:

- High-dimensional linear functions
$\boldsymbol{x} \in \mathbb{R}^{p}, g_{0}(\boldsymbol{x})=1$ and $g_{1}(\boldsymbol{x})=x_{1}, g_{2}(\boldsymbol{x})=x_{2}, \ldots, g_{p}(\boldsymbol{x})=x_{p}$.

$$
\begin{aligned}
X_{i \bullet} & =\boldsymbol{g}^{t}\left(\boldsymbol{x}_{i}\right)=\left(1,-\boldsymbol{x}_{i}^{t}-\right), \quad(i \text {-th row of } X) \\
f(\boldsymbol{x} ; \boldsymbol{w}) & =\boldsymbol{w}^{t} \boldsymbol{g}=w_{0}+w_{1} x_{1}+\cdots+w_{p} x_{p} .
\end{aligned}
$$

- Document analysis: Assume a fixed collection of words:

$$
\begin{aligned}
\boldsymbol{x} & =\text { text document } \\
g_{0}(\boldsymbol{x}) & =1 \\
g_{i}(\boldsymbol{x}) & =\# \text { (occurences of } i \text {-th word in document }) \\
f(\boldsymbol{x} ; \boldsymbol{w}) & =\boldsymbol{w}^{t} \boldsymbol{g}=w_{0}+\sum_{i \in \text { words }} w_{i} g_{i}(\boldsymbol{x}) .
\end{aligned}
$$

Solution by Calculus

$$
\begin{aligned}
R S S & =\boldsymbol{r}^{t} \boldsymbol{r}=(\boldsymbol{y}-X \boldsymbol{w})^{t}(\boldsymbol{y}-X \boldsymbol{w}) \\
& =\boldsymbol{y}^{t} \boldsymbol{y}-\boldsymbol{y}^{t} X \boldsymbol{w}-\boldsymbol{w}^{t} X^{t} \boldsymbol{y}+\boldsymbol{w}^{t} X^{t} X \boldsymbol{w} \\
& =\boldsymbol{y}^{t} \boldsymbol{y}-2 \boldsymbol{y}^{t} X \boldsymbol{w}+\boldsymbol{w}^{t} X^{t} X \boldsymbol{w}
\end{aligned}
$$

Minimization: set the gradient (vector of partial derivatives) to zero:

$$
\nabla_{\boldsymbol{w}} R S S=\frac{\partial R S S}{\partial \boldsymbol{w}} \stackrel{!}{=} \mathbf{0}
$$

We need some properties of vector derivatives:

$$
\begin{aligned}
\partial(A \boldsymbol{x}) / \partial \boldsymbol{x} & =A^{t} \\
\partial\left(\boldsymbol{x}^{t} A\right) / \partial \boldsymbol{x} & =A \\
\partial\left(\boldsymbol{x}^{t} A \boldsymbol{x}\right) / \partial \boldsymbol{x} & =A \boldsymbol{x}+A^{t} \boldsymbol{x} \quad \text { (if } A \text { is square) }
\end{aligned}
$$

Normal Equations

$$
\begin{aligned}
\frac{\partial R S S}{\partial \boldsymbol{w}} & =\frac{\partial}{\partial \boldsymbol{w}}\left[\boldsymbol{y}^{t} \boldsymbol{y}-2 \boldsymbol{y}^{t} X \boldsymbol{w}+\boldsymbol{w}^{t} X^{t} X \boldsymbol{w}\right] \\
& =-2 X^{t} \boldsymbol{y}+\left[X^{t} X \boldsymbol{w}+\left(X^{t} X\right)^{t} \boldsymbol{w}\right] \\
& =-2 X^{t} \boldsymbol{y}+2 X^{t} X \boldsymbol{w}=\mathbf{0}
\end{aligned}
$$

Normal equations: $X^{t} X \boldsymbol{w}=X^{t} \boldsymbol{y}$.
Could solve this system. But: All solution methods based on normal equations are inherently susceptible to roundoff errors:

$$
\begin{aligned}
k(X) & =\sigma_{\max } / \sigma_{\min }, \text { where } X^{t} X \boldsymbol{v}_{i}=\sigma_{i}^{2} \boldsymbol{v}_{i} \\
k\left(X^{t} X\right) & =\mu_{\max } / \mu_{\min }, \text { where } X^{t} X X^{t} X \boldsymbol{v}_{i}=\mu_{i}^{2} \boldsymbol{v}_{i} \\
X^{t} X X^{t} X \boldsymbol{v}_{i} & =X^{t} X \sigma_{i}^{2} \boldsymbol{v}_{i}=\sigma_{i}^{4} \boldsymbol{v}_{i} \Rightarrow \mu_{i}=\sigma_{i}^{2} \\
\Rightarrow k\left(X^{t} X\right) & =k^{2}(X),
\end{aligned}
$$

The algebraic approach will avoid this problem!

From Calculus to Algebra

$$
\begin{aligned}
& \frac{\partial R S S(\boldsymbol{w})}{\partial \boldsymbol{w}}=-2 X^{t} \boldsymbol{y}+2 X^{t} X \boldsymbol{w} \stackrel{!}{=} \mathbf{0} \\
& \quad \Rightarrow X^{t}(\boldsymbol{y}-X \hat{\boldsymbol{w}})=X^{t} \boldsymbol{r}=\mathbf{0} \quad \Rightarrow \boldsymbol{r} \in N\left(X^{t}\right)
\end{aligned}
$$

- Every $X \boldsymbol{w}$ is in column space $C(X)$, residual \boldsymbol{r} is in the orthogonal complement $N\left(X^{t}\right)$ (left nullspace).
- Let $\hat{\boldsymbol{y}}$ be the orthogonal projection of \boldsymbol{y} on $C(X)$
$\rightsquigarrow \boldsymbol{y}$ can be split into $\hat{\boldsymbol{y}} \in C(X)+\boldsymbol{r} \in N\left(X^{t}\right)$.

Algebraic interpretation

- $\boldsymbol{y}=\hat{\boldsymbol{y}} \in C(X)+\boldsymbol{r} \in N\left(X^{t}\right) \rightsquigarrow$ Consider over-determined systems

$$
\begin{aligned}
& X \boldsymbol{w}=\boldsymbol{y}=\hat{\boldsymbol{y}}+\boldsymbol{r} \text { (solution impossible, if } \boldsymbol{r} \neq \mathbf{0} \text {) } \\
& X \hat{\boldsymbol{w}}=\hat{\boldsymbol{y}} \text { (solvable, since } \hat{\boldsymbol{y}} \in C(X)!)
\end{aligned}
$$

- The solution $\hat{\boldsymbol{w}}$ of $X \boldsymbol{w}=\hat{\boldsymbol{y}}$ makes the error as small as possible:

$$
\|X \boldsymbol{w}-\boldsymbol{y}\|^{2}=\|X \boldsymbol{w}-(\hat{\boldsymbol{y}}+\boldsymbol{r})\|^{2}=\|X \boldsymbol{w}-\hat{\boldsymbol{y}}\|^{2}+\|\boldsymbol{r}\|^{2}
$$

Reduce $\|X \boldsymbol{w}-\hat{\boldsymbol{y}}\|^{2}$ to zero by solving $X \hat{\boldsymbol{w}}=\hat{\boldsymbol{y}}$ and choosing $\boldsymbol{w}=\hat{\boldsymbol{w}}$.
Remaining error $\|\boldsymbol{r}\|^{2}$ cannot be avoided, since $\boldsymbol{r} \in N\left(X^{t}\right)$.
$X^{t} X \hat{\boldsymbol{w}}=X^{t} \hat{\boldsymbol{y}}=X^{t} \boldsymbol{y} \quad \Rightarrow \quad \hat{\boldsymbol{w}}=\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{y}$ (if $X^{t} X$ invertible).

- The fitted values at the sample points are $\hat{\boldsymbol{y}}=X \hat{\boldsymbol{w}}=X\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{y}$.
- $H=X\left(X^{t} X\right)^{-1} X^{t}$ is called hat matrix (puts a "hat" on $\boldsymbol{y} \rightsquigarrow \hat{\boldsymbol{y}}$).

Algebraic interpretation

- Left nullspace $N\left(X^{t}\right)$ is orthogonal complement of column space $C(X)$.
- H is orthogonal projection on $C(X)$:

$$
H X=X\left(X^{t} X\right)^{-1} X^{t} X=X, \quad H N\left(X^{t}\right)=0
$$

- $M=I-H$ is orthogonal projection on nullspace of X^{t} :

$$
M X=(I-H) X=X-X=0, \quad M N\left(X^{t}\right)=M
$$

- H and M are symmetric $\left(H^{t}=H\right)$ and idempotent $(M M=M)$

The algebra of Least Squares:
H creates fitted values: $\hat{\boldsymbol{y}}=H \boldsymbol{y} \rightsquigarrow \hat{\boldsymbol{y}} \in C(X)$
M creates residuals: $\boldsymbol{r}=M \boldsymbol{y} \rightsquigarrow \boldsymbol{r} \in N\left(X^{t}\right)$

Algebraic interpretation

$X^{t} X$ is invertible iff X has linearly independent columns.

Why? $X^{t} X$ has the same nullspace as X :
(i) If $\boldsymbol{a} \in N(X)$, then $X \boldsymbol{a}=\mathbf{0} \Rightarrow X^{t} X \boldsymbol{a}=\mathbf{0} \rightsquigarrow \boldsymbol{a} \in N\left(X^{t} X\right)$.
(ii) If $\boldsymbol{a} \in N\left(X^{t} X\right)$, then $\boldsymbol{a}^{t} X^{t} X \boldsymbol{a}=0 \Leftrightarrow\|X \boldsymbol{a}\|^{2}=0$,
so $X \boldsymbol{a}$ has length zero $\Rightarrow X \boldsymbol{a}=\mathbf{0}$.
Thus, every vector in one nullspace is also in the other one.
So if $N(X)=\{\mathbf{0}\}$, then $X^{t} X \in \mathbb{R}^{d \times d}$ has full rank d.
When X has independent columns, $X^{t} X$ is positive definite.
Why? $X^{t} X$ is clearly symmetric and invertible.
To show: All eigenvalues >0
$X^{t} X \boldsymbol{v}=\lambda \boldsymbol{v} \rightsquigarrow \boldsymbol{v}^{t} X^{t} X \boldsymbol{v}=\lambda \boldsymbol{v}^{t} \boldsymbol{v} \rightsquigarrow \lambda=\frac{\|X \boldsymbol{v}\|^{2}}{\|\boldsymbol{v}\|^{2}}>0$.

SVD for Least-Squares

- Goal: Avoid numerical problems for normal equations:
$X^{t} X \boldsymbol{w}=X^{t} \boldsymbol{y}, \quad k\left(X^{t} X\right)=k^{2}(X)$.
- Idea: Apply the SVD directly to $X_{n \times d}$.
- The squared norm of the residual is

$$
\begin{aligned}
R S S=\|\boldsymbol{r}\|^{2} & =\|X \boldsymbol{w}-\boldsymbol{y}\|^{2} \\
& =\left\|U S V^{t} \boldsymbol{w}-\boldsymbol{y}\right\|^{2} \\
& =\left\|U\left(S V^{t} \boldsymbol{w}-U^{t} \boldsymbol{y}\right)\right\|^{2} \\
& =\left\|S V^{t} \boldsymbol{w}-U^{t} \boldsymbol{y}\right\|^{2}
\end{aligned}
$$

Last equation: U is orthonormal $\rightsquigarrow\|U \boldsymbol{a}\|^{2}=\boldsymbol{a}^{t} U^{t} U \boldsymbol{a}=\boldsymbol{a}^{t} \boldsymbol{a}=\|\boldsymbol{a}\|^{2}$.

- Minimizing $R S S$ is equivalent to minimizing $\|S \boldsymbol{z}-\boldsymbol{c}\|^{2}$ where $\boldsymbol{z}=V^{t} \boldsymbol{w}$ and $\boldsymbol{c}=U^{t} \boldsymbol{y}$.

SVD and LS

Recall: Columns \boldsymbol{u}_{i} of $U_{n \times n}$ with $\sigma_{i}>0$ form a basis of $C(X)$. Remaining columns form basis of $N\left(X^{t}\right)$:

$$
\boldsymbol{c}=U^{t} \boldsymbol{y}=\underbrace{}_{\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{d} \\
0 \\
- \\
-
\end{array} \boldsymbol{u}_{d}^{t}\right.} \begin{array}{l}
- \\
0
\end{array} \begin{array}{ccc}
- & \boldsymbol{u}_{1}^{t} & - \\
- & \boldsymbol{u}_{2}^{t} & - \\
0 & \vdots & 0 \\
0 & 0 & 0
\end{array}] \in C\left(\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
\vdots \\
0
\end{array}\right]+\underbrace{\left[\begin{array}{ccc}
0 & 0 & 0 \\
& \vdots & \\
0 & 0 & 0 \\
- & \boldsymbol{u}_{d+1}^{t} & - \\
- & \boldsymbol{u}_{d+2}^{t} & - \\
& \vdots & \\
- & \boldsymbol{u}_{n}^{t} & -
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
\vdots \\
y_{n-1} \\
y_{n}
\end{array}\right]}_{\left[\begin{array}{c}
0 \\
y_{n-1} \\
y_{n}
\end{array}\right]}
$$

SVD and bases for the 4 subspaces

SVD and LS

- $\|\boldsymbol{r}\|^{2}=\|S \boldsymbol{z}-\boldsymbol{c}\|^{2}$ written in blocks:

$$
\left\|\left[\begin{array}{cccc}
\sigma_{1} & 0 & \ldots & 0 \\
0 & \sigma_{2} & \ldots & 0 \\
0 & 0 & \ldots & \sigma_{d} \\
\hline 0 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \ldots & 0
\end{array}\right]\left[\begin{array}{c}
z_{1} \\
z_{2} \\
\vdots \\
z_{d}
\end{array}\right]-\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{d} \\
c_{d+1} \\
\vdots \\
c_{n}
\end{array}\right]\right\|^{2}
$$

- To choose \boldsymbol{z} so that $\|\boldsymbol{r}\|^{2}$ is minimal requires $z_{i}=c_{i} / \sigma_{i}, i=1, \ldots, d$ $\rightsquigarrow r_{1}=r_{2}=\cdots=r_{d}=0$.
- Unavoidable error: $R S S=\|\boldsymbol{r}\|^{2}=c_{d+1}^{2}+c_{d+2}^{2}+\cdots+c_{n}^{2}$.
- For very small singular values, use zeroing. $R S S$ will increase:

One additional term (usually small): $R S S^{\prime}=c_{d}^{2}+c_{d+1}^{2}+c_{d+2}^{2}+\cdots+c_{n}^{2}$, but often significantly better precision (reduced condition number).

Classification

Classification: Find class boundaries based on training data $\left\{\left(\boldsymbol{x}_{1}, y_{1}\right), \ldots,\left(\boldsymbol{x}_{n}, y_{n}\right)\right\}$. Use boundaries to classify new items \boldsymbol{x}^{*}. Here, y_{i} is a discrete class indicator (or "label"). Example: Fish-packing plant wants to automate the process of sorting fish on conveyor belt using optical sensing.

(Duda, Hart, Stork, 2001)

Linear Discriminant Analysis (Ronald Fisher, 1936)

(Duda, Hart, Stork, 2001)
Main Idea: Simplify the problem by projecting down to a 1-dim subspace. Question: How should we select the projection vector, which optimally discriminates between the different classes?

Separation Criterion

- Let \boldsymbol{m}_{j} an estimate of the class means $\boldsymbol{\mu}_{j}$:

$$
\boldsymbol{m}_{y}=\frac{1}{n_{y}} \sum_{\boldsymbol{x} \in \mathrm{class} y} \boldsymbol{x}, \quad n_{y}=\#(\text { objects in class } y)
$$

- Projected samples: $\boldsymbol{x}_{i}^{\prime}=\boldsymbol{w}^{t} \boldsymbol{x}_{i}, i=1,2, \ldots, n$. Projected means:

$$
\tilde{m}_{y}=\frac{1}{n_{y}} \sum_{\boldsymbol{x} \in \mathrm{class} y} \boldsymbol{w}^{t} \boldsymbol{x}=\boldsymbol{w}^{t} \boldsymbol{m}_{y} .
$$

- First part of separation criterion (two-class case):

$$
\max _{\boldsymbol{w}}\left[\boldsymbol{w}^{t}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\right]^{2}=\max _{\boldsymbol{w}}\left[\tilde{m}_{1}-\tilde{m}_{2}\right]^{2}
$$

- There might still be considerable overlap...
\rightsquigarrow should also consider the scatter or variance.

Separation Criterion

Two Gaussians with the same mean distance, but different variances:

Excursion: The multivariate Gaussian distribution

Probability density function:
$p(\boldsymbol{x} ; \boldsymbol{\mu}, \Sigma)=\frac{1}{\sqrt{2 \pi|\Sigma|}} \exp \left(-\frac{1}{2}(\boldsymbol{x}-\boldsymbol{\mu})^{t} \Sigma^{-1}(\boldsymbol{x}-\boldsymbol{\mu})\right)$

Excursion: The multivariate Gaussian distribution

Covariance

(also written "co-variance")
is a measure of how much two random variables vary together. Can be positive, zero, or negative.

Sample covariance matrix $\widehat{\boldsymbol{\Sigma}}=\frac{1}{n} \sum_{i=1}^{n}\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)\left(\boldsymbol{x}_{i}-\overline{\boldsymbol{x}}\right)^{t}$, with sample mean $\overline{\boldsymbol{x}}=\frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}=\boldsymbol{m}$. If $\boldsymbol{m}=\mathbf{0} \rightsquigarrow \widehat{\boldsymbol{\Sigma}}=\frac{1}{n} X^{t} X$.

Separation Criterion

- Assume both classes are Gaussians with the same covariance matrix. Let Σ_{W} be an estimate of this "within class" covariance matrix:

$$
\begin{aligned}
\Sigma_{y} & =\frac{1}{n_{y}} \sum_{\boldsymbol{x} \in \text { class } y}\left(\boldsymbol{x}-\boldsymbol{m}_{y}\right)\left(\boldsymbol{x}-\boldsymbol{m}_{y}\right)^{t} \\
\Sigma_{W} & =0.5\left(\Sigma_{1}+\Sigma_{2}\right)
\end{aligned}
$$

- Variance of projected data:

$$
\begin{aligned}
\tilde{\Sigma}_{y} & =\frac{1}{n_{y}} \sum_{\boldsymbol{x} \in \text { class } y}\left(\boldsymbol{w}^{t} \boldsymbol{x}-\tilde{m}_{y}\right)\left(\boldsymbol{w}^{t} \boldsymbol{x}-\tilde{m}_{y}\right)^{t} \\
& =\frac{1}{n_{y}} \sum_{\boldsymbol{x} \in \text { class } y} \boldsymbol{w}^{t}\left(\boldsymbol{x}-\boldsymbol{m}_{y}\right)\left(\boldsymbol{x}-\boldsymbol{m}_{y}\right)^{t} \boldsymbol{w}=\boldsymbol{w}^{t} \Sigma_{y} \boldsymbol{w} \\
\tilde{\Sigma}_{W} & =0.5\left(\tilde{\Sigma}_{1}+\tilde{\Sigma}_{2}\right)=\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w} \in \mathbb{R}_{+}
\end{aligned}
$$

- Strategy: $\Delta_{\tilde{m}}^{2}=\left(\tilde{m}_{1}-\tilde{m}_{2}\right)^{2}$ should be large, $\tilde{\Sigma}_{W}$ small.

Separation Criterion

$$
\begin{aligned}
J(\boldsymbol{w}) & =\frac{\Delta_{\tilde{m}}^{2}}{\tilde{\Sigma}_{W}}=\frac{\boldsymbol{w}^{t} \overbrace{\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{t}} \boldsymbol{w}}{\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}} \\
\frac{\partial}{\partial \boldsymbol{w}} J(\boldsymbol{w}) & =\frac{\partial}{\partial \boldsymbol{w}} \frac{\boldsymbol{w}_{B}^{t} \Sigma_{B} \boldsymbol{w}}{\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}} \stackrel{!}{=} 0 \\
& =-\frac{\boldsymbol{w}^{t} \Sigma_{B} \boldsymbol{w}}{\left(\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}\right)^{2}} 2 \Sigma_{W} \boldsymbol{w}+\frac{1}{\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}} 2 \Sigma_{B} \boldsymbol{w} \\
& \Rightarrow \frac{\boldsymbol{w}^{t} \Sigma_{B} \boldsymbol{w}}{\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}}\left(-\Sigma_{W} \boldsymbol{w}\right)+\Sigma_{B} \boldsymbol{w}=0 \\
\Rightarrow \Sigma_{B} \boldsymbol{w} & =\frac{\boldsymbol{w}^{t} \Sigma_{B} \boldsymbol{w}}{\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}} \Sigma_{W} \boldsymbol{w}=: \lambda \Sigma_{W} \boldsymbol{w}
\end{aligned}
$$

Separation Criterion

- Let Σ_{W} be non-singular:

$$
[\Sigma_{W}^{-1} \underbrace{\left.\Sigma_{B}\right] \boldsymbol{w}}_{\Delta_{\boldsymbol{m}} \Delta_{\boldsymbol{m}}^{t} \boldsymbol{w} \propto \Delta_{\boldsymbol{m}}}=\lambda \boldsymbol{w}, \quad \text { with } \quad \lambda=\frac{\boldsymbol{w}^{t} \Sigma_{B} \boldsymbol{w}}{\boldsymbol{w}^{t} \Sigma_{W} \boldsymbol{w}}=J(\boldsymbol{w})
$$

- Thus, \boldsymbol{w} is an eigenvector of $\Sigma_{W}^{-1} \Sigma_{B}$, the associated eigenvalue is the objective function! Maximum: eigenvector with largest eigenvalue.
- Unscaled Solution: $\hat{\boldsymbol{w}}=\Sigma_{W}^{-1} \Delta_{\boldsymbol{m}}=\Sigma_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$.
- This is the solution of the linear system $\Sigma_{W} \boldsymbol{w}=\boldsymbol{m}_{1}-\boldsymbol{m}_{2}$.
- Σ_{W} is a covariance matrix \rightsquigarrow there is an underlying data matrix A such that $\Sigma_{W} \propto A^{t} A \rightsquigarrow$ potential numerical problems: squared condition number compared to A...

Discriminant analysis and least squares

Theorem: The LDA vector $\hat{\boldsymbol{w}}^{\text {LDA }}=\Sigma_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$ coincides with the solution of the LS problem $\hat{\boldsymbol{w}}^{\mathrm{LS}}=\arg \min _{\boldsymbol{w}}\|X \boldsymbol{w}-\boldsymbol{y}\|^{2}$ if
$n_{1}=\#$ samples in class 1
$n_{2}=\#$ samples in class 2
$X=\left[\begin{array}{ccc}- & \boldsymbol{x}_{1}^{t} & - \\ - & \boldsymbol{x}_{2}^{t} & - \\ \vdots & \\ - & \boldsymbol{x}_{n}^{t} & -\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right]$,
with $\quad \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}=\boldsymbol{m}=\mathbf{0}$ (i.e. origin in sample mean),

$$
y_{i}=\left\{\begin{array}{ll}
+1 / n_{1}, & \text { if } \boldsymbol{x}_{i} \text { in class } 1 \\
-1 / n_{2}, & \text { else }
\end{array} \quad \Rightarrow \sum_{i=1}^{n} y_{i}=0\right.
$$

Discriminant analysis and least squares (cont'd)

- "Within" covariance $\Sigma_{W} \propto \sum_{\boldsymbol{x} \in \text { class } y}\left(\boldsymbol{x}-\boldsymbol{m}_{y}\right)\left(\boldsymbol{x}-\boldsymbol{m}_{y}\right)^{t}$.
- "Between" covariance $\Sigma_{B} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{t}$
- The sum of both is the "total covariance" $\Sigma_{B}+\Sigma_{W}=\Sigma_{T}$ $\Sigma_{T} \propto \sum_{i} x_{i} \boldsymbol{x}_{i}^{t}=X^{t} X$.
- We know that $\boldsymbol{w}^{\mathrm{LDA}} \propto \Sigma_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right) \rightsquigarrow \Sigma_{W} \boldsymbol{w}^{\mathrm{LDA}} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$.
- Now $\Sigma_{B} \boldsymbol{w}^{\text {LDA }}=\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)^{t} \boldsymbol{w}^{\mathrm{LDA}} \rightsquigarrow \Sigma_{B} \boldsymbol{w}^{\text {LDA }} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$.
- $\Sigma_{T} \boldsymbol{w}^{\mathrm{LDA}}=\left(\Sigma_{B}+\Sigma_{W}\right) \boldsymbol{w}^{\mathrm{LDA}} \rightsquigarrow \Sigma_{T} \boldsymbol{w}^{\mathrm{LDA}} \propto\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$.
- With $X^{t} X=\Sigma_{T}, X^{t} \boldsymbol{y}=\boldsymbol{m}_{1}-\boldsymbol{m}_{2}$, we arrive at $\boldsymbol{w}^{\mathrm{LDA}} \propto \Sigma_{T}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)=\Sigma_{T}^{-1} X^{t} \boldsymbol{y} \propto\left(X^{t} X\right)^{-1} X^{t} \boldsymbol{y}=\boldsymbol{w}^{\mathrm{LS}}$.

Chapter 2

Least squares problems

Application Example: Secondary Structure Prediction in Proteins

α-helix

Short historical Introduction

- Genetics as a natural science started in 1866: Gregor Mendel performed experiments that pointed to the existence of biological elements called genes.
- Deoxy-ribonucleic acid (DNA) isolated by Friedrich Miescher in 1869.
- 1944: Oswald Avery (and coworkers) identified DNA as the major carrier of genetic material, responsible for inheritance.
Ribose: (simple) sugar molecule, deoxy-ribose \rightsquigarrow loss of oxygen atom.
Nucleic acid: overall name for DNA and RNA (large biomolecules). Named for their initial discovery in nucleus of cells, and for presence of phosphate groups (related to phosphoric acid).

Ribose

Deoxyribose

Short historical Introduction

- 1953, Watson \& Crick: 3-dimensional structure of DNA. They inferred the method of DNA replication.
- 2001: first draft of the human genome published by the Human Genome Project and the company Celera.
- Many new developments, such as Next Generation Sequencing, Deep learning etc.

By RE73 - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=18862884

Base pairs and the DNA

By Madprime (talk A. contribs) - Own work, CC BY-SA 3.0,

- DNA composed of 4 basic molecules \rightsquigarrow nucleotides.
- Nucleotides are identical up to different nitrogen base: organic molecule with a nitrogen atom that has the chemical properties of a base (due to free electron pair at nitrogen atom).
- Each nucleotide contains phosphate, sugar (of deoxy-ribose type), and one of the 4 bases: Adenine, Guanine, Cytosine, Thymine (A, G, C, T).
- Hydrogen bonds between base pairs: $G \equiv C, A=T$.

By OpenStax - https://cnx.org/contents/FPtK1zmh@8.25:fEI3C8Ot@10/Preface, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=30131206

The structure of DNA

- DNA molecule is directional due to asymmetrical structure of the sugars which constitute the skeleton: Each sugar is connected to the strand upstream in its 5th carbon and to the strand downstream in its 3rd carbon.
- DNA strand goes from 5^{\prime} to 3^{\prime}. The directions of the two complementary DNA strands are reversed to one another (\rightsquigarrow Reversed Complement).

Adapted from https://commons.wikimedia.org/w/index.php?curid=30131206

By Zephyris - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=15027555

Replication of DNA

Biological process of producing two replicas of DNA from one original DNA molecule.

Cells have the distinctive property of division

\rightsquigarrow DNA replication is most essential part for biological inheritance.
Unwinding \rightsquigarrow single bases exposed on each strand.
Pairing requirements are strict \rightsquigarrow single strands are templates for re-forming identical double helix (up to mutations).
DNA polymerase: enzyme that catalyzes the synthesis of new DNA.

Genes and Chromosomes

- In higher organisms, DNA molecules are packed in a chromosome.
- Genome: total genetic information stored in the chromosomes.
- Every cell contains a complete set of the genome, differences are due to variable expression of genes.

By Sponk, Tryphon, Magnus Manske,
https://commons.wikimedia.org/w/index.php?curid=20539140

- A gene is a sequence of nucleotides that encodes the synthesis of a gene product.
- Gene expression: Process of synthesizing a gene product (often a protein) \rightsquigarrow controls timing, location, and amount.

The Central Dogma

Transcription: making of an RNA molecule from DNA template. Translation: construction of amino acid sequence from RNA.
$\Rightarrow \quad$ Almost no exceptions (\rightsquigarrow retroviruses)

Transcription

2 Various proteins bii to a sequence AAU near the 3' end of t pre-mRNA molecul 10-30 nucleotides the cleavage and p specificity factor (C) the pre-mRNA.

https://commons.wikimedia.org/w/index.php?curid=9810855

Translation

- mRNA molecules are translated by ribosomes: Enzyme that links together amino acids.
- Message is read three bases at a time.
- Initiated by the first AUG codon (codon $=$ nucleotide triplet).
- Covalent bonds (=sharing of electron pairs) are made between adjacent amino acids
\Rightarrow growing chain of amino acids ("polypeptide").
- When a "stop" codon (UAA, UGA, UAG) is

Ribonucleic acid encountered, translation stops.

Peptide Synthesis

By Boumphreyfr - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7200200

The genetic code

Standard genetic code

$\begin{gathered} \text { 1st } \\ \text { base } \end{gathered}$	2nd base								3rd base
		U		C		A		G	
U	UUU	(Phe/F) Phenylalanine	UCU	(Ser/S) Serine	UAU	(Tyr/M) Tyrosine	UGU	(Cys/C) Cysteine	U
	UUC		UCC		UAC		UGC		C
	UUA	(Leu/L) Leucine	UCA		UAA ${ }^{(8)}$	Stop (Ochre)	UGA ${ }^{[8]}$	Stop (Opal)	A
	UUG		UCG		UAG ${ }^{[8]}$	Stop (Amber)	UGG	(Trp/W) Tryptophan	G
C	CUU		CCU	(Pro/P) Proline	CAU	(His/H) Histidine	CGU	(Arg/R) Arginine	U
	CUC		CCC		CAC		CGC		C
	CUA		CCA		CAA	(Gin/Q) Glutamine	CGA		A
	CUG		CCG		CAG		CGG		G
A	AUU	(lle/l) Isoleucine	ACU	(Thr/T) Threonine	AAU	(Asn/N) Asparagine	AGU	(Ser/S) Serine	U
	AUC		ACC		AAC		AGC		C
	AUA		ACA		AAA	(Lys/K) Lysine	AGA	(Arg/R) Arginine	A
	AUG ${ }^{(A)}$	(Met/M) Methionine	ACG		AAG		AGG		G
G	GUU	(Val/V) Valine	GCU	(Ala/A) Alanine	GAU	(Asp/D) Aspartic acid	GGU	(Gly/G) Glycine	U
	GUC		GCC		GAC		GGC		C
	GUA		GCA		GAA	(Glu/E) Glutamic acid	GGA		A
	GUG		GCG		GAG		GGG		G

Wikipedia
Highly redundant: only 20 (or 21) amino acids formed from $4^{3}=64$ possible combinations.

$\overbrace{\substack{\text { Aspartic Acid } \\ \text { (Asp) }}}^{\text {Negative }} \underbrace{\text { N }}_{\substack{\text { Glutamic Acid } \\(\text { Glu) }}}$

C. Special Cases

$$
\begin{aligned}
& \text { Cysteine } \\
& \text { (Cys) (C) }
\end{aligned}
$$

Selenocysteine

$$
\begin{aligned}
& \text { Selenocystei } \\
& \text { (Sec) (U) }
\end{aligned}
$$

Glycine Proline

$$
\underbrace{2 \times 21023}_{-2}
$$

$$
\begin{aligned}
& \text { D. Amino Acids with Hydrophobic Side Chain } \\
& \text { Alanine } \\
& \text { (Ala) A A A }
\end{aligned}
$$

By Dancojocari. https://commons.wikimedia.org/w/index.php?curid=9176441

Proteins

- Linear polymer of amino acids, linked together by peptide bonds. Average size ≈ 200 amino acids, can be over 1000 .
- To a large extent, cells are made of proteins.
- Proteins determine shape and structure of a cell. Main instruments of molecular recognition and catalysis.
- Complex structure with four hierarchical levels.

1. Primary structure: amino acid sequence.
2. Different regions form locally regular secondary structures like α helices and β-sheets.
3. Tertiary structure: packing such structures into one or several 3D domains.
4. Several domains arranged in a quaternary structure.

Molecular recognition

Interaction between molecules through noncovalent bonding

[^0]
Catalysis

Increasing the rate of a chemical reaction by adding a substance \rightsquigarrow catalyst.

Protein Structure: primary to quaternary

Durbin et al., Cambridge University Press
Structure is determined by the primary sequence and their physicochemical interactions in the medium.
Structure determines functionality.

Secondary Structure

Secondary structure: two main types: β-sheet and α-helix

The School of Biomedical Sciences Wiki
Short range interactions in the AA chain are important for the secondary structure: α-helix performs a 100° turn per amino acid \rightsquigarrow full turn after 3.6 AAs. Formation of a helix mainly depends on interactions in a $4 A A$ window.

Example: Cytochrome C2 Precursor

Secondary structure (h=helix)
amino acid sequence

hhhhhhhhhhh

MKKGFLAAGVFAAVAFASGAALAEGDAAAGEKVSKKCLACHTFDQGGANKVGPNLFGVFE hhhhhhhh hhhhhhhhh hhhhhhhhh
NTAAHKDDYAYSESYTEMKAKGLTWTEANLAAYVKDPKAFVLEKSGDPKAKSKMTFKLTK
hhhhhhhhhhhhh
DDEIENVIAYLKTLK

Given: Examples of known helices and non-helices in several proteins \rightsquigarrow training set

Goal: Predict, mathematically, the existence and position of α-helices in new proteins.

Classification of Secondary Structure

Idea: Use a sliding window to cut the AA chain into pieces. 4 AAs are enough to capture one full turn \rightsquigarrow choose window of size 5 .

Decision Problem: Find function $f(\ldots)$ that predicts for each substring in a window the structure:

$$
f(\text { AADTG })= \begin{cases}" \text { Yes", } & \text { if the central AA belongs to an } \alpha \text {-helix, } \\ \text { "No", } & \text { otherwise }\end{cases}
$$

Problem: How should we numerically encode a string like AADTG?
Simple encoding scheme: Count the number of occurrences of each AA in the window. First order approximation, neglects AA's position within the window.

Example

. . .RAADTGGSDP . . .
...xxxhhhhhhx...
...xxxhhhhhhx...
...xxxhhhhhhx...

(black $\hat{=}$ structure info about central $A A ;$ green $\hat{=}$ know secondary structure; red $\hat{=}$ sliding window)

A	C	D	\ldots	G	\ldots	R	S	T	\ldots.	Y	Label
2	0	1	0	0	0	1	0	1	0	0	"No"
2	0	1	0	1	0	0	0	1	0	0	$" Y e s "$
1	0	1	0	2	0	0	0	1	0	0	$" Y e s "$
$:$	$:$	$:$	$:$	$:$	$:$	\vdots	\vdots	$:$	\vdots	\vdots	\vdots

This is a binary classification problem
\rightsquigarrow use Linear Discriminant Analysis

Discriminant Analysis

Consider $X_{n \times d}$, with $n=\#$ (windows) and $d=\#(\mathrm{AAs})=20$ (or 21), and the n-vector of class indicators \boldsymbol{y}

$$
X=\left[\begin{array}{cccccc}
2 & 0 & 1 & \ldots & 0 & \ldots \\
2 & 0 & 1 & \ldots & 1 & \ldots \\
1 & 0 & 1 & \ldots & 2 & \ldots \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{array}\right]=\left[\begin{array}{ccc}
- & \boldsymbol{x}_{1}^{t} & - \\
- & \boldsymbol{x}_{2}^{t} & - \\
& \vdots & \\
- & \boldsymbol{x}_{n}^{t} & -
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
" \mathrm{No"} \\
" \mathrm{Yes"} \\
" Y e s " \\
\vdots
\end{array}\right]
$$

For the binary class idicators, we use some numerical encoding scheme.
Interpretation with basis functions:

$$
\begin{aligned}
\boldsymbol{x} & =\text { sequence of characters from alphabet } \mathcal{A} \\
g_{i}(\boldsymbol{x}) & =\#(\text { occurences of letter } i \text { in sequence }) \\
f(\boldsymbol{x} ; \boldsymbol{w}) & =\boldsymbol{w}^{t} \boldsymbol{g}=\sum_{i \in c h a r a c t e r s} w_{i} g_{i}(\boldsymbol{x})
\end{aligned}
$$

Discriminant analysis and least squares

Recall: The LDA vector $\hat{\boldsymbol{w}}^{\text {LDA }}=\Sigma_{W}^{-1}\left(\boldsymbol{m}_{1}-\boldsymbol{m}_{2}\right)$ coincides with the solution of the LS problem $\hat{\boldsymbol{w}}^{\mathrm{LS}}=\arg \min _{\boldsymbol{w}}\|X \boldsymbol{w}-\boldsymbol{y}\|^{2}$ if

$$
\begin{aligned}
n_{1}= & \text { \# samples in class } \mathbf{1} \\
n_{2}= & \text { \# samples in class } \mathbf{2} \\
X= & {\left[\begin{array}{ccc}
- & \boldsymbol{x}_{1}^{t} & - \\
- & \boldsymbol{x}_{2}^{t} & - \\
\vdots \\
- & \boldsymbol{x}_{n}^{t} & -
\end{array}\right], \quad \boldsymbol{y}=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right], } \\
\text { with } \quad & \frac{1}{n} \sum_{i=1}^{n} \boldsymbol{x}_{i}=\boldsymbol{m}=\mathbf{0} \text { (i.e. origin in sample mean) }, \\
& y_{i}=\left\{\begin{array}{ll}
+1 / n_{1}, & \text { if } \boldsymbol{x}_{i} \text { in class } \mathbf{1} \\
-1 / n_{2}, & \text { else. }
\end{array} \Rightarrow \sum_{i=1}^{n} y_{i}=0\right.
\end{aligned}
$$

Singular Value Decomposition (SVD)

Recall: SVD for nonsquare matrix $X \in \mathbb{R}^{n \times d}: X=U S V^{t}$.
Residual sum of squares:
$R S S=\|\boldsymbol{r}\|^{2}=\|X \boldsymbol{w}-\boldsymbol{y}\|^{2}=\left\|U S V^{t} \boldsymbol{w}-\boldsymbol{y}\right\|^{2}=\|\underbrace{V^{t} \boldsymbol{w}}_{\boldsymbol{z}}-\underbrace{U^{t} \boldsymbol{y}}_{\boldsymbol{c}}\|^{2}$
Minimizing $\|\boldsymbol{r}\|^{2}$ is equivalent to minimizing $\|S \boldsymbol{z}-\boldsymbol{c}\|^{2}$:

$$
\text { minimize }\|\boldsymbol{r}\|^{2}=\left\|\left[\begin{array}{ccc}
\sigma_{1} & & 0 \\
& \cdots & \\
0 & & \sigma_{d} \\
\hline 0 & \cdots & 0 \\
\vdots & \ddots & \vdots \\
0 & \cdots & 0
\end{array}\right] \cdot\left[\begin{array}{c}
z_{1} \\
\vdots \\
z_{d}
\end{array}\right]-\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{d} \\
c_{d+1} \\
\vdots \\
c_{n}
\end{array}\right]\right\|^{2}
$$

We now choose z_{k} so that $\|\boldsymbol{r}\|^{2}$ is minimal, i.e., for $\sigma_{k}>0$:

$$
z_{k}=\frac{c_{k}}{\sigma_{k}}
$$

Iterative Algorithm

In our problem we have $d=20$ (or 21) and $n>10000$.
Goal: Use only $X^{t} X \in \mathbb{R}^{d \times d} \quad$ and $\quad X^{t} \boldsymbol{y} \in \mathbb{R}^{d}$.
Initialize $X^{t} X=0$ (zero matrix), $X^{t} \boldsymbol{y}=\mathbf{0}$. Update: for $j=1$ to n :

$$
\begin{aligned}
X^{t} X+\boldsymbol{x}_{j} \boldsymbol{x}_{j}^{t} & \longrightarrow X^{t} X \\
X^{t} \boldsymbol{y}+\boldsymbol{x}_{j} y_{j} & \longrightarrow X^{t} \boldsymbol{y}
\end{aligned}
$$

The first update procedure is correct, since

$$
\begin{aligned}
\left(X^{t} X\right)_{i k} & =\sum_{j=1}^{n} x_{j i} x_{j k} \\
\Rightarrow X^{t} X & =\sum_{j=1}^{n}\left[\begin{array}{c}
x_{j 1} \\
x_{j 2} \\
\vdots \\
x_{j d}
\end{array}\right] \cdot\left[x_{j 1}, x_{j 2}, \ldots, x_{j d}\right]=\sum_{j=1}^{n} \boldsymbol{x}_{j} \boldsymbol{x}_{j}^{t}
\end{aligned}
$$

Iterative Algorithm

A similar calculation yields the other equation:

$$
\left(X^{t} \boldsymbol{y}\right)_{i}=\sum_{j} x_{j i} y_{j} \Rightarrow X^{t} \boldsymbol{y}=\sum_{j}\left[\begin{array}{c}
x_{j 1} \\
x_{j 2} \\
\vdots \\
x_{j d}
\end{array}\right] \cdot y_{j}=\sum_{j=1}^{n} \boldsymbol{x}_{j} y_{j}
$$

One remaining problem: In LDA we assumend that X was centered, i.e. the column sums are all zero. Compute the column sums as:

$$
\mathbf{1}^{t} X=[1,1, \ldots, 1]\left[\begin{array}{ccc}
- & \boldsymbol{x}_{1}^{t} & - \\
- & \boldsymbol{x}_{2}^{t} & - \\
& \vdots & \\
- & \boldsymbol{x}_{n}^{t} & -
\end{array}\right]=n \cdot\left[m_{1}, m_{2}, \ldots, m_{d}\right]=n \cdot \boldsymbol{m}^{t}
$$

$\rightsquigarrow " c e n t e r e d " X_{c}=X-1 m^{t}=X-\frac{1}{n} 11^{t} X$

Centering

$$
\begin{aligned}
X_{c} & =X-\mathbf{1} \boldsymbol{m}^{t}=X-\frac{1}{n} \mathbf{1 1} \mathbf{1}^{t} X \\
X_{c}^{t} X_{c} & =X^{t} X+\frac{1}{n^{2}} X^{t} \mathbf{1} \underbrace{\mathbf{1}^{t} \mathbf{1}}_{=n} \mathbf{1}^{t} X-\frac{1}{n} X^{t} \mathbf{1 1} \mathbf{1}^{t} X-\frac{1}{n} X^{t} \mathbf{1} \mathbf{1}^{t} X \\
& =X^{t} X-\frac{1}{n} X^{t} \mathbf{1} \mathbf{1}^{t} X \\
& =X^{t} X-n \cdot \mathbf{m m}^{t}
\end{aligned}
$$

Iteratively update the vector $n \cdot \boldsymbol{m}$ for every \boldsymbol{x}_{i} corresponding to a new window position: Initialize $n \cdot \boldsymbol{m}=\mathbf{0}$ and update $n \cdot \boldsymbol{m} \leftarrow n \cdot \boldsymbol{m}+\boldsymbol{x}_{i}$

What about $X^{t} y$? We should have used

$$
X_{c}^{t} \boldsymbol{y}=\left(X-\mathbf{1} \boldsymbol{m}^{t}\right)^{t} \boldsymbol{y}=\left(X^{t}-\boldsymbol{m} \mathbf{1}^{t}\right) \boldsymbol{y}=X^{t} \boldsymbol{y}-\boldsymbol{m} \mathbf{1}^{t} \boldsymbol{y}
$$

But by construction, \boldsymbol{y} is orthogonal to $\mathbf{1} \rightsquigarrow \mathbf{1}^{t} \boldsymbol{y}=0$, so nothing needs to be done!

Iterative Algorithm

Goal: Solution which only requires $X_{c}^{t} X_{c} \in \mathbb{R}^{d \times d}$ and $X_{c}{ }^{t} \boldsymbol{y} \in \mathbb{R}^{d}$ alone (and does not use X_{c} or \boldsymbol{y} explicitly).

We need:

- The matrix V (for computing $\hat{\boldsymbol{w}}=V \boldsymbol{z}$)

Solution: columns of V are the eigenvectors of $X_{c}^{t} X_{c}$, corresponding eigenvalues are $\lambda_{i}, i=1, \ldots, n \Rightarrow \sigma_{i}^{2}=\lambda_{i}$

- For the nonzero SVs, we need $z_{i}=\left(U^{t} \boldsymbol{y}\right)_{i} / \sigma_{i}=\sigma_{i}\left(U^{t} \boldsymbol{y}\right)_{i} / \sigma_{i}^{2}$ Solution:

$$
\begin{gathered}
X_{c}=U S V^{t} \Rightarrow V^{t} X_{c}^{t} \boldsymbol{y}=V^{t} V S^{t} U^{t} \boldsymbol{y}=S^{t} U^{t} \boldsymbol{y} \\
\Rightarrow z_{i}=\left(U^{t} \boldsymbol{y}\right)_{i} / \sigma_{i}=\left(V^{t} X_{c}^{t} \boldsymbol{y}\right)_{i} / \sigma_{i}^{2}
\end{gathered}
$$

So \boldsymbol{z} and finally $\hat{\boldsymbol{w}}=V \boldsymbol{z}$ can be computed from $X_{c}^{t} X_{c}$ and $X_{c}^{t} \boldsymbol{y}$ alone!

[^0]: Crystal structure of a short peptide L-Lys-D-Ala-D-Ala (bacterial cell wall precursor) bound to the antibiotic vancomycin through hydrogen bonds. By

