
Chapter 2

Least squares problems

Least-squares and dimensionality reduction
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Least-squares and dimensionality reduction

Given n data points in d dimensions:

X =


− xt

1 −
− xt

2 −
− ... −
− xt

n −

 ∈ Rn×d

Want to reduce dimensionality from d to k. Choose k directions

w1, . . . ,wk, arrange them as columns in matrix W :

W =

 | | |
w1 w2 . . . wk

| | |

 ∈ Rd×k

Project x ∈ Rd down to z = W tx ∈ Rk. How to choose W?
2



Encoding–decoding model

The projection matrix W serves two functions:

• Encode: z = W tx, z ∈ Rk, zj = wt
jx.

– The vectors wj form a basis of the projected space.

– We will require that this basis is orthonormal, i.e. W tW = I.

• Decode: x̃ = Wz =
∑k

j=1 zjwj, x̃ ∈ Rd.

– If k = d, the above orthonormality condition implies W t = W−1,

and encoding can be undone without loss of information.

– If k < d, the decoded x̃ can only approximate x

 the reconstruction error will be nonzero.

• Note that we did not include an intercept term. Assumption: origin of

coordinate system is in the sample mean, i.e.
∑

ixi = 0.
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Principal Component Analysis (PCA)

We want the reconstruction error ‖x− x̃‖2 to be small.

Objective: minimize minW∈Rd×k:W tW=I

∑n
i=1 ‖xi −WW txi‖2
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Finding the principal components

Projection vectors are orthogonal  can treat them separately:

min
w: ‖w‖=1

∑n

i=1
‖xi −wwtxi‖2

∑
i
‖xi −wwtxi‖2 =

n∑
i=1

[xt
ixi − 2xt

iww
txi + xt

iww
tw︸︷︷︸
=1

wtxi]

=
∑

i
[xt

ixi − xt
iww

txi]

=
∑

i
xt
ixi −

∑
i
wtxix

t
iw

=
∑

i
xt
ixi −wt

( n∑
i=1

xix
t
i

)
w

=
∑

i
xt
ixi︸ ︷︷ ︸

const.

−wtXtXw.
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Finding the principal components

• Want to maximize wtXtXw under the constraint ‖w‖ = 1

• Can also maximize the ratio J(w) = wtXtXw
wtw

.

• Optimal projection w is the eigenvector of XtX with largest eigenvalue

(compare handout on spectral matrix norm).

• We assumed
∑

ixi = 0, i.e. the columns of X sum to zero.

 compute SVD of “centered” matrix Xc

 column vectors in W are eigenvectors of Xt
cXc

 they are the principal components.
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Eigen-faces [Turk and Pentland, 1991]

• d = number of pixels

• Each xi ∈ Rd is a face image

• xij = intensity of the j-th pixel in image i

xi ≈ WW txi = Wzi
(Xt)d×n ≈ Wd×k (Zt)k×n

≈

 | |
z1 . . . zn
| |


Conceptual: We can lean something about the structure of face images.

Computational: Can use zi for efficient nearest-neighbor classification:

Much faster when k � d.
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Information retrieval: Latent Semantic Analysis
[Deerwater, 1990]

• d = number of words in the vocabulary, say 10000.

• Each xi ∈ Rd is a vector of word counts

• xij = frequency of word j in document i

(Xt)d×n ≈ Wd×k (Zt)k×n
stocks: 2 . . . . . . 0

chairman: 4 . . . . . . 1
the: 8 . . . . . . 7
. . . ... . . . . . . ...

wins: 0 . . . . . . 2
game: 1 . . . . . . 3

 ≈


0.4 . . . −0.001
0.8 . . . 0.03
0.01 . . . 0.04

... . . . ...
0.002 . . . 2.3
0.003 . . . 1.9


 | |
z1 . . . zn
| |


How to measure similarity between two documents? Dot products xt

ixj

In such high-dimensional spaces most pairs of vectors are almost

orthogonal  scalar products tend to be “noisy”.

If k � d, ztizj is probably a better similarity measure than xt
ixj.
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Appendix Chapters 1/2

The Gershgorin circle theorem



Gershgorin circle theorem

Every eigenvalue of An×n is in one or more of n circles in the complex

plane. Each circle is centered at a diagonal entry aii,

the radius is ri =
∑

j 6=i |aij|  “Gershgorin disk” D(aii, ri).

Proof: Av = λv, assume i is the index for which |vi| ≥ |vj|, ∀j 6= i

(Av)i = λvi ⇔
∑

j
aijvj = λvi

(λ− aii)vi =
∑

j 6=i
aijvj

|λ− aii||vi| = |
∑

j 6=i
aijvj|

 |
∑

j 6=i aijvj| ≤
∑

j 6=i |aij||vj| ≤
∑

j 6=i |aij||vi| = ri|vi|

 |λ− aii||vi| ≤ ri|vi|  |λ− aii| ≤ ri.

Applied to At: λi must also lie within circles corresponding to the columns of A.
1



Example

A =


10 −1 0 1
0.2 8 0.2 0.2
1 1 2 1
−1 −1 −1 −11



By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=76601319

For every row, aii is the center for the disc with radius
∑

j 6=i |aij| = ri.
Discs: D(10, 2), D(8, 0.6), D(2, 3), D(−11, 3).
Can improve the accuracy of last two discs by applying the formula to the columns:
D(2, 1.2) and D(−11, 2.2). True eigenvalues are 9.8218, 8.1478, 1.8995,−10.86.

Note that At is diagonal dominant: |aii| >
∑

j 6=i |aji|  most of the matrix is in the

diagonal  explains why the eigenvalues are so close to the centers.
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Gershgorin circle theorem and diagonal dominance

A diagonal dominant matrix (i.e. |aii| >
∑

j 6=i |aij|) is non-singular.

λ ∈ C is in at least one of the Gershgorin discs D(aii, ri) in the complex

plane, but none of these discs contains 0:

|aii| − ri = |aii| −
∑

j 6=i |aij| > 0, so each disc center aii
is further away from 0 than the disc radius, and the point

λ = 0 can’t belong to any circle.

aii

ri

0

A symmetric diagonal dominant matrix that has positive values on its

diagonal (i.e. aii >
∑

j 6=i |aij|) is positive definite.

Eigenvalues of symmetric matrices are real.

λ ∈ R is in at least one of the intervals [aii− ri, aii + ri], but all intervals

contain only positive numbers: aii − ri = aii −
∑

j 6=i |aij| > 0.
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Consequences: Jacobi iterations

• Assume that all diagonal entries of A are nonzero.

• Write A = D + L+ U

where D =


a11 0 · · · 0

0 a22 · · · 0
... ... . . . ...

0 0 · · · ann

 and L+U =


0 a12 · · · a1n
a21 0 · · · a2n

... ... . . . ...

an1 an2 · · · 0


• So Ax = b  (L+D + U)x = b.

• Define J = D−1(L+ U) as the iteration matrix.

• The solution is then obtained iteratively via

x(i+1) = −Jx(i) +D−1b.

• Error ε(i+1) = −Jε(i) = · · · = (−1)i+1J i+1ε(0).

• Arrange eigenvalues of J in diagonal matrix Λ.
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Consequences: Jacobi iterations

If all the eigenvalues of J have magnitude < 1,

then Λn→ 0 and consequently Jn→ 0  convergence.

A diagonally dominant  Jacobi method converges.

Assume rows of A are rescaled such that diagonal entries are all 1.

If A = L+ I +U is diagonal dominant, i.e. 1 ≥ row sums of abs(L+U),

then L± λI + U is also diagonally dominant if |λ| ≥ 1,

because |λ| ≥ 1 ≥ row sums of abs(L+ U).

Let λ be an eigenvalue of J .

⇒ det(J − λI) = det(L+ U − λI) = 0.

But if |λ| ≥ 1, then L + U − λI is diagonal dominant as well, so it is

non-singular and det = 0 is not possible. So |λ| < 1.
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