Chapter 2

Least squares problems

Least-squares and dimensionality reduction

Least-squares and dimensionality reduction

Given n data points in d dimensions:

$$
X=\left[\begin{array}{ccc}
- & \boldsymbol{x}_{1}^{t} & - \\
- & \boldsymbol{x}_{2}^{t} & - \\
- & \vdots & - \\
- & \boldsymbol{x}_{n}^{t} & -
\end{array}\right] \in \mathbb{R}^{n \times d}
$$

Want to reduce dimensionality from d to k. Choose k directions $\boldsymbol{w}_{1}, \ldots, \boldsymbol{w}_{k}$, arrange them as columns in matrix W :

$$
W=\left[\begin{array}{cccc}
\mid & \mid & & \mid \\
\boldsymbol{w}_{1} & \boldsymbol{w}_{2} & \ldots & \boldsymbol{w}_{k} \\
\mid & \mid & & \mid
\end{array}\right] \in \mathbb{R}^{d \times k}
$$

Project $\boldsymbol{x} \in \mathbb{R}^{d}$ down to $\boldsymbol{z}=W^{t} \boldsymbol{x} \in \mathbb{R}^{k}$. How to choose W ?

Encoding-decoding model

The projection matrix W serves two functions:

- Encode: $\boldsymbol{z}=W^{t} \boldsymbol{x}, \quad \boldsymbol{z} \in \mathbb{R}^{k}, z_{j}=\boldsymbol{w}_{j}^{t} \boldsymbol{x}$.
- The vectors \boldsymbol{w}_{j} form a basis of the projected space.
- We will require that this basis is orthonormal, i.e. $W^{t} W=I$.
- Decode: $\tilde{\boldsymbol{x}}=W \boldsymbol{z}=\sum_{j=1}^{k} z_{j} \boldsymbol{w}_{j}, \quad \tilde{\boldsymbol{x}} \in \mathbb{R}^{d}$.
- If $k=d$, the above orthonormality condition implies $W^{t}=W^{-1}$, and encoding can be undone without loss of information.
- If $k<d$, the decoded $\tilde{\boldsymbol{x}}$ can only approximate \boldsymbol{x} \rightsquigarrow the reconstruction error will be nonzero.
- Note that we did not include an intercept term. Assumption: origin of coordinate system is in the sample mean, i.e. $\sum_{i} \boldsymbol{x}_{i}=0$.

Principal Component Analysis (PCA)

We want the reconstruction error $\|\boldsymbol{x}-\tilde{\boldsymbol{x}}\|^{2}$ to be small.
Objective: minimize $\min _{W \in \mathbb{R}^{d \times k}: W^{t} W=I} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-W W^{t} \boldsymbol{x}_{i}\right\|^{2}$

Finding the principal components

Projection vectors are orthogonal \rightsquigarrow can treat them separately:

$$
\begin{aligned}
& \min _{\boldsymbol{w}:\|\boldsymbol{w}\|=1} \sum_{i=1}^{n}\left\|\boldsymbol{x}_{i}-\boldsymbol{w} \boldsymbol{w}^{t} \boldsymbol{x}_{i}\right\|^{2} \\
& \sum_{i}\left\|\boldsymbol{x}_{i}-\boldsymbol{w} \boldsymbol{w}^{t} \boldsymbol{x}_{i}\right\|^{2}=\sum_{i=1}^{n}[\boldsymbol{x}_{i}^{t} \boldsymbol{x}_{i}-2 \boldsymbol{x}_{i}^{t} \boldsymbol{w} \boldsymbol{w}^{t} \boldsymbol{x}_{i}+\boldsymbol{x}_{i}^{t} \boldsymbol{w}_{\underbrace{\boldsymbol{w}}_{=1} \boldsymbol{w}^{t} \boldsymbol{w}^{t} \boldsymbol{x}_{i}]}^{]} \\
& =\sum_{i}\left[\boldsymbol{x}_{i}^{t} \boldsymbol{x}_{i}-\boldsymbol{x}_{i}^{t} \boldsymbol{w} \boldsymbol{w}^{t} \boldsymbol{x}_{i}\right] \\
& =\sum_{i} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{i}-\sum_{i} \boldsymbol{w}^{t} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t} \boldsymbol{w} \\
& =\sum_{i} \boldsymbol{x}_{i}^{t} \boldsymbol{x}_{i}-\boldsymbol{w}^{t}\left(\sum_{i=1}^{n} \boldsymbol{x}_{i} \boldsymbol{x}_{i}^{t}\right) \boldsymbol{w} \\
& =\underbrace{\sum_{i} x_{i}^{t} \boldsymbol{x}_{i}}_{\text {const. }}-w^{t} X^{t} X \boldsymbol{w} .
\end{aligned}
$$

Finding the principal components

- Want to maximize $\boldsymbol{w}^{t} X^{t} X \boldsymbol{w}$ under the constraint $\|\boldsymbol{w}\|=1$
- Can also maximize the ratio $J(\boldsymbol{w})=\frac{\boldsymbol{w}^{t} X^{t} X \boldsymbol{w}}{\boldsymbol{w}^{t} \boldsymbol{w}}$.
- Optimal projection \boldsymbol{w} is the eigenvector of $X^{t} X$ with largest eigenvalue (compare handout on spectral matrix norm).
- We assumed $\sum_{i} \boldsymbol{x}_{i}=\mathbf{0}$, i.e. the columns of X sum to zero.
\rightsquigarrow compute SVD of "centered" matrix X_{c}
\rightsquigarrow column vectors in W are eigenvectors of $X_{c}^{t} X_{c}$
\rightsquigarrow they are the principal components.

Eigen-faces [Turk and Pentland, 1991]

- $d=$ number of pixels
- Each $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ is a face image
- $x_{i j}=$ intensity of the j-th pixel in image i

Conceptual: We can lean something about the structure of face images. Computational: Can use \boldsymbol{z}_{i} for efficient nearest-neighbor classification: Much faster when $k \ll d$.

Information retrieval: Latent Semantic Analysis [Deerwater, 1990]

- $d=$ number of words in the vocabulary, say 10000 .
- Each $\boldsymbol{x}_{i} \in \mathbb{R}^{d}$ is a vector of word counts
- $x_{i j}=$ frequency of word j in document i

$\left(X^{t}\right)_{d \times n}$	\approx	$W_{d \times k}$	$\left(Z^{t}\right)_{k \times n}$
stocks: $2 \quad \ldots \ldots . .00$		$\left[\begin{array}{lll}0.4 & \ldots & -0.001\end{array}\right]$	
chairman: 4 1		0.8 ... 0.03	
the: 8 7	\approx	0.01 ... 0.04	$\begin{array}{llll}\boldsymbol{z}_{1} & \ldots & \\ \boldsymbol{z}_{n}\end{array}$
: $\ldots \ldots .$.	\sim	: $\quad \cdots \quad \begin{array}{ccc}\text { 0.01 }\end{array}$	$\left[\begin{array}{ccc}z_{1} & \cdots & z_{n} \\ \mid & & \mid\end{array}\right.$
$\begin{array}{lllll}\text { wins: } & 0 & \ldots \ldots & 2 \\ \text { game: } & 1 & \ldots \ldots . & 3\end{array}$		$\begin{array}{lll}0.002 & \ldots & 2.3 \\ 0.003 & \ldots & 1.9\end{array}$	$[\mid]$

How to measure similarity between two documents? Dot products $\boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j}$ In such high-dimensional spaces most pairs of vectors are almost orthogonal \rightsquigarrow scalar products tend to be "noisy". If $k \ll d, \boldsymbol{z}_{i}^{t} \boldsymbol{z}_{j}$ is probably a better similarity measure than $\boldsymbol{x}_{i}^{t} \boldsymbol{x}_{j}$.

Appendix Chapters 1/2

The Gershgorin circle theorem

Gershgorin circle theorem

Every eigenvalue of $A_{n \times n}$ is in one or more of n circles in the complex plane. Each circle is centered at a diagonal entry $a_{i i}$, the radius is $r_{i}=\sum_{j \neq i}\left|a_{i j}\right| \rightsquigarrow$ "Gershgorin disk" $D\left(a_{i i}, r_{i}\right)$.
Proof: $A \boldsymbol{v}=\lambda \boldsymbol{v}$, assume i is the index for which $\left|v_{i}\right| \geq\left|v_{j}\right|, \forall j \neq i$

$$
\begin{aligned}
& (A \boldsymbol{v})_{i}=\lambda v_{i} \Leftrightarrow \quad \sum_{j} a_{i j} v_{j}=\lambda v_{i} \\
& \left(\lambda-a_{i i}\right) v_{i}=\sum_{j \neq i} a_{i j} v_{j} \\
& \left|\lambda-a_{i i}\right|\left|v_{i}\right|=\left|\sum_{j \neq i} a_{i j} v_{j}\right| \\
& \rightsquigarrow\left|\sum_{j \neq i} a_{i j} v_{j}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\left|v_{j}\right| \leq \sum_{j \neq i}\left|a_{i j}\right|\left|v_{i}\right|=r_{i}\left|v_{i}\right| \\
& \rightsquigarrow\left|\lambda-a_{i i}\right|\left|v_{i}\right| \leq r_{i}\left|v_{i}\right| \rightsquigarrow\left|\lambda-a_{i i}\right| \leq r_{i} .
\end{aligned}
$$

Applied to $A^{t}: \lambda_{i}$ must also lie within circles corresponding to the columns of A.

Example

$$
A=\left[\begin{array}{cccc}
10 & -1 & 0 & 1 \\
0.2 & 8 & 0.2 & 0.2 \\
1 & 1 & 2 & 1 \\
-1 & -1 & -1 & -11
\end{array}\right]
$$

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=76601319
For every row, $a_{i i}$ is the center for the disc with radius $\sum_{j \neq i}\left|a_{i j}\right|=r_{i}$.
Discs: $D(10,2), D(8,0.6), D(2,3), D(-11,3)$.
Can improve the accuracy of last two discs by applying the formula to the columns: $D(2,1.2)$ and $D(-11,2.2)$. True eigenvalues are $9.8218,8.1478,1.8995,-10.86$.

Note that A^{t} is diagonal dominant: $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{j i}\right| \rightsquigarrow$ most of the matrix is in the diagonal \rightsquigarrow explains why the eigenvalues are so close to the centers.

Gershgorin circle theorem and diagonal dominance

A diagonal dominant matrix (i.e. $\left|a_{i i}\right|>\sum_{j \neq i}\left|a_{i j}\right|$) is non-singular.
$\lambda \in \mathbb{C}$ is in at least one of the Gershgorin discs $D\left(a_{i i}, r_{i}\right)$ in the complex plane, but none of these discs contains 0 :
$\left|a_{i i}\right|-r_{i}=\left|a_{i i}\right|-\sum_{j \neq i}\left|a_{i j}\right|>0$, so each disc center $a_{i i}$ is further away from 0 than the disc radius, and the point $\lambda=0$ can't belong to any circle.

A symmetric diagonal dominant matrix that has positive values on its diagonal (i.e. $\left.a_{i i}>\sum_{j \neq i}\left|a_{i j}\right|\right)$ is positive definite.

Eigenvalues of symmetric matrices are real.
$\lambda \in \mathbb{R}$ is in at least one of the intervals $\left[a_{i i}-r_{i}, a_{i i}+r_{i}\right]$, but all intervals contain only positive numbers: $a_{i i}-r_{i}=a_{i i}-\sum_{j \neq i}\left|a_{i j}\right|>0$.

Consequences: Jacobi iterations

- Assume that all diagonal entries of A are nonzero.
- Write $A=D+L+U$
where $\quad D=\left[\begin{array}{cccc}a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \cdots & \vdots \\ 0 & 0 & \cdots & a_{n n}\end{array}\right]$ and $L+U=\left[\begin{array}{cccc}0 & a_{12} & \cdots & a_{1 n} \\ a_{21} & 0 & \cdots & a_{2 n} \\ \vdots & \vdots & \cdots & \vdots \\ a_{n 1} & a_{n 2} & \cdots & 0\end{array}\right]$
- So $A \boldsymbol{x}=\boldsymbol{b} \quad \rightsquigarrow \quad(L+D+U) \boldsymbol{x}=\boldsymbol{b}$.
- Define $J=D^{-1}(L+U)$ as the iteration matrix.
- The solution is then obtained iteratively via

$$
\boldsymbol{x}_{(i+1)}=-J \boldsymbol{x}_{(i)}+D^{-1} \boldsymbol{b}
$$

- Error $\boldsymbol{\epsilon}_{(i+1)}=-J \epsilon_{(i)}=\cdots=(-1)^{i+1} J^{i+1} \boldsymbol{\epsilon}_{(0)}$.
- Arrange eigenvalues of J in diagonal matrix Λ.

Consequences: Jacobi iterations

If all the eigenvalues of J have magnitude <1, then $\Lambda^{n} \rightarrow 0$ and consequently $J^{n} \rightarrow 0 \rightsquigarrow$ convergence.

A diagonally dominant \rightsquigarrow Jacobi method converges.

Assume rows of A are rescaled such that diagonal entries are all 1 . If $A=L+I+U$ is diagonal dominant, i.e. $1 \geq$ row sums of abs $(L+U)$, then $L \pm \lambda I+U$ is also diagonally dominant if $|\lambda| \geq 1$, because $|\lambda| \geq 1 \geq$ row sums of $\operatorname{abs}(L+U)$.

Let λ be an eigenvalue of J.

$$
\Rightarrow \quad \operatorname{det}(J-\lambda I)=\operatorname{det}(L+U-\lambda I)=0 .
$$

But if $|\lambda| \geq 1$, then $L+U-\lambda I$ is diagonal dominant as well, so it is non-singular and det $=0$ is not possible. So $|\lambda|<1$.

