Chapter 2

Least squares problems

Least-squares and dimensionality reduction



Least-squares and dimensionality reduction

Given n data points in d dimensions:
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Want to reduce dimensionality from d to k. Choose k directions
w1, ..., W, arrange them as columns in matrix W:

W= lw; wy ... wg ERka

Project £ € R? down to z = Wiz € R*. How to choose W7



Encoding—decoding model

The projection matrix W serves two functions:

e Encode: z = W'z, z e R", z; =wix.

— The vectors w; form a basis of the projected space.
— We will require that this basis is orthonormal, i.e. W'W = 1I.

e Decode: =Wz = Zle ziw;, T € RY
— If k = d, the above orthonormality condition implies Wt = W =1,

and encoding can be undone without loss of information.

— If k < d, the decoded x can only approximate x
~+ the reconstruction error will be nonzero.

e Note that we did not include an intercept term. Assumption: origin of
coordinate system is in the sample mean, i.e. > . x; = 0.



Principal Component Analysis (PCA)

We want the reconstruction error ||z — Z||? to be small.

Objective: minimize minyy, cpaxk. w7 21y |€i — WWha;||?




Finding the principal components

Projection vectors are orthogonal ~~» can treat them separately:
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Finding the principal components

e Want to maximize w'X*Xw under the constraint ||w| =1

.. . t~yt
e Can also maximize the ratio J(w) = %=

e Optimal projection w is the eigenvector of X*X with largest eigenvalue
(compare handout on spectral matrix norm).

e We assumed ) . x; = 0, i.e. the columns of X sum to zero.
~» compute SVD of “centered” matrix X,
~ column vectors in W are eigenvectors of XX,
~+ they are the principal components.



Eigen-faces [Turk and Pentland, 1991]

e d = number of pixels
e Each z; € R? is a face image

e z,;; = intensity of the j-th pixel in image ¢
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Conceptual: We can lean something about the structure of face images.
Computational: Can use z; for efficient nearest-neighbor classification:
Much faster when £ < d.



Information retrieval: Latent Semantic Analysis
[Deerwater, 1990]

e d = number of words in the vocabulary, say 10000.
e Each x; € R% is a vector of word counts

e 1,; = frequency of word j in document

(Xt)an ~ Waxk (Zt)an
[ stocks: 2 ...... - 0.4 —0.001 _
chairman: 4 ...... 0.8 0.03 ’ ‘
the: 8 ...... 0.01 0.04
_ ~ : : Z1 ... Znpn
wins: 0 ... 0.002 2.3 | |
| gamer 1 ... 10.003 1.9 | ]

How to measure similarity between two documents? Dot products xix;

In such high-dimensional spaces most pairs of vectors are almost

orthogonal ~~ scalar products tend to be “noisy".
If k < d, zlz; is probably a better similarity measure than xlx;.



Appendix Chapters 1/2

The Gershgorin circle theorem



Gershgorin circle theorem

Every eigenvalue of A IS in one or more of n circles in the complex
nxn

plane. Each circle is centered at a diagonal entry a;;,

the radius is r; = > ., |a;;| ~> "Gershgorin disk” D(a;i, ;).

Proof: Av = Av, assume 1 is the index for which |v;| > |v;|, Vj # i
(A’U)Z = \v; & Zj A; UV = AV;
()\ — aii)vi — Zj;éi 55U
A — @il [vi] = |Z#i a;jV;)
o | i @i U5 < D i |aigllog] < 35 laigl|vil = rilvil
s (X = agil i < rijvi] (A —ag] <o

Applied to A?: \; must also lie within circles corresponding to the columns of A.



Example

X  Eigenvalues
-].O _]. O ]- | } 0 X X X X
02 8 02 0.2
A= 1 1 2 1 E
-1 -1 -1 —11] )
: U— L 5 -10 - 5 0 5 L‘O 15

Real axis
By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w /index.php?curid=76601319

For every row, a;; is the center for the disc with radius Zj#i aij| = 7.

Discs: D(10,2), D(8,0.6), D(2,3), D(—11,3).

Can improve the accuracy of last two discs by applying the formula to the columns:
D(2,1.2) and D(—11,2.2). True eigenvalues are 9.8218,8.1478,1.8995, —10.86.

Note that A’ is diagonal dominant: |a;;| > >, |a;i| ~» most of the matrix is in the

diagonal ~~ explains why the eigenvalues are so close to the centers.
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Gershgorin circle theorem and diagonal dominance

[A diagonal dominant matrix (i.e. [ai;| > > ., |ai;|) is non-singular.

A € Cis in at least one of the Gershgorin discs D(a;;, ;) in the complex
plane, but none of these discs contains 0:

|aii| — i = |ai| — 3254 |aijl > 0, so each disc center a;;
is further away from 0 than the disc radius, and the point
A = 0 can't belong to any circle.

A symmetric diagonal dominant matrix that has positive values on its
diagonal (i.e. ai;; > » ., |aij|) is positive definite.

Eigenvalues of symmetric matrices are real.
A € Ris in at least one of the intervals [a;; — r;, a;; + 4], but all intervals
contain only positive numbers: a;; — 1; = a;; — Zj#i a;;| > 0.



Consequences: Jacobi iterations

e Assume that all diagonal entries of A are nonzero.
e Write A=D+L+U

ai1 O --- 0 0
0 ag --- 0 (21
where D = and L+U =
0 0 "t Opn an1

e SoAr=b ~ (L+D+U)x=b.
e Define J = D™ YL + U) as the iteration matrix.
e [he solution is then obtained iteratively via

zy1) = —Jxy + Db,

e Error €(i+1) — —Je(i) — - = (—1)i+1Ji+1€(0).
e Arrange eigenvalues of J in diagonal matrix A.




Consequences: Jacobi iterations

If all the eigenvalues of J have magnitude < 1,
then A™ — 0 and consequently J” — 0 ~» convergence.

A diagonally dominant ~~ Jacobi method converges.

Assume rows of A are rescaled such that diagonal entries are all 1.

If A= L+ 1+U is diagonal dominant, i.e. 1 > row sums of abs(L + U),
then L = A\l + U is also diagonally dominant if |A\| > 1,

because |A| > 1 > row sums of abs(L + U).

Let A be an eigenvalue of J.
= det(J —N) =det(L+U — M) =0.

But if |[A| > 1, then L + U — Al is diagonal dominant as well, so it is
non-singular and det = 0 is not possible. So |\| < 1.
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