Chapter 2

Least squares problems

Least-squares and dimensionality reduction

Least-squares and dimensionality reduction

Given n data points in d dimensions:

$$X = \begin{bmatrix} - & \boldsymbol{x}_1^t & - \\ - & \boldsymbol{x}_2^t & - \\ - & \vdots & - \\ - & \boldsymbol{x}_n^t & - \end{bmatrix} \in \mathbb{R}^{n \times d}$$

Want to reduce dimensionality from d to k. Choose k directions w_1, \ldots, w_k , arrange them as columns in matrix W:

$$W = \begin{bmatrix} | & | & | \\ \boldsymbol{w}_1 & \boldsymbol{w}_2 & \dots & \boldsymbol{w}_k \\ | & | & | \end{bmatrix} \in \mathbb{R}^{d \times k}$$

Project $x \in \mathbb{R}^d$ down to $z = W^t x \in \mathbb{R}^k$. How to choose W?

Encoding-decoding model

The projection matrix W serves two functions:

- Encode: $\boldsymbol{z} = W^t \boldsymbol{x}, \ \boldsymbol{z} \in \mathbb{R}^k, \ z_j = \boldsymbol{w}_j^t \boldsymbol{x}.$
 - The vectors w_j form a basis of the projected space.
 - We will require that this basis is orthonormal, i.e. $W^tW = I$.

• Decode:
$$\tilde{x} = Wz = \sum_{j=1}^k z_j w_j, \ \tilde{x} \in \mathbb{R}^d.$$

- If k = d, the above orthonormality condition implies $W^t = W^{-1}$, and encoding can be undone without loss of information.
- If k < d, the decoded \tilde{x} can only approximate $x \rightarrow the$ reconstruction error will be nonzero.
- Note that we did not include an intercept term. Assumption: origin of coordinate system is in the sample mean, i.e. $\sum_i x_i = 0$.

Principal Component Analysis (PCA)

We want the reconstruction error $\|m{x} - ilde{m{x}}\|^2$ to be small.

Objective: minimize $\min_{W \in \mathbb{R}^{d \times k}: W^t W = I} \sum_{i=1}^n \| \boldsymbol{x}_i - W W^t \boldsymbol{x}_i \|^2$

Finding the principal components

Projection vectors are orthogonal \rightsquigarrow can treat them separately:

$$\begin{split} \min_{\boldsymbol{w}:\,\|\boldsymbol{w}\|=1} \sum_{i=1}^{n} \|\boldsymbol{x}_{i} - \boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}\|^{2} \\ \sum_{i} \|\boldsymbol{x}_{i} - \boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}\|^{2} &= \sum_{i=1}^{n} [\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - 2\boldsymbol{x}_{i}^{t}\boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i} + \boldsymbol{x}_{i}^{t}\boldsymbol{w}\underbrace{\boldsymbol{w}}_{=1}^{t}\boldsymbol{w}\boldsymbol{w}^{t}\boldsymbol{x}_{i}] \\ &= \sum_{i} [\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{x}_{i}^{t}\boldsymbol{w}\,\boldsymbol{w}^{t}\boldsymbol{x}_{i}] \\ &= \sum_{i} \boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \sum_{i} \boldsymbol{w}^{t}\boldsymbol{x}_{i}\,\boldsymbol{x}_{i}^{t}\boldsymbol{w} \\ &= \sum_{i} \boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i} - \boldsymbol{w}^{t}(\sum_{i=1}^{n} \boldsymbol{x}_{i}\boldsymbol{x}_{i}^{t})\boldsymbol{w} \\ &= \sum_{i} \underbrace{\boldsymbol{x}_{i}^{t}\boldsymbol{x}_{i}}_{\text{const.}} - \boldsymbol{w}^{t}\boldsymbol{X}^{t}\boldsymbol{X}\boldsymbol{w}. \end{split}$$

Finding the principal components

- Want to maximize $\boldsymbol{w}^t X^t X \boldsymbol{w}$ under the constraint $\|\boldsymbol{w}\| = 1$
- Can also maximize the ratio $J(\boldsymbol{w}) = \frac{\boldsymbol{w}^t X^t X \boldsymbol{w}}{\boldsymbol{w}^t \boldsymbol{w}}$.
- Optimal projection w is the eigenvector of $X^t X$ with largest eigenvalue (compare handout on spectral matrix norm).
- We assumed ∑_i x_i = 0, i.e. the columns of X sum to zero.
 → compute SVD of "centered" matrix X_c
 → column vectors in W are eigenvectors of X^t_cX_c
 → they are the principal components.

Eigen-faces [Turk and Pentland, 1991]

- d = number of pixels
- Each $oldsymbol{x}_i \in \mathbb{R}^d$ is a face image
- x_{ij} = intensity of the *j*-th pixel in image *i*

Conceptual: We can lean something about the structure of face images. **Computational:** Can use z_i for efficient nearest-neighbor classification: Much faster when $k \ll d$.

Information retrieval: Latent Semantic Analysis [Deerwater, 1990]

- d = number of words in the vocabulary, say 10000.
- Each $\boldsymbol{x}_i \in \mathbb{R}^d$ is a vector of word counts
- $x_{ij} =$ frequency of word j in document i

How to measure similarity between two documents? Dot products $x_i^t x_j$ In such high-dimensional spaces most pairs of vectors are almost orthogonal \rightsquigarrow scalar products tend to be "noisy". If $k \ll d$, $z_i^t z_j$ is probably a better similarity measure than $x_i^t x_j$.

Appendix Chapters 1/2

The Gershgorin circle theorem

Gershgorin circle theorem

Every eigenvalue of $A_{n \times n}$ is in one or more of n circles in the complex plane. Each circle is centered at a diagonal entry a_{ii} , the radius is $r_i = \sum_{j \neq i} |a_{ij}| \rightsquigarrow$ "Gershgorin disk" $D(a_{ii}, r_i)$.

Proof: $A\boldsymbol{v} = \lambda \boldsymbol{v}$, assume *i* is the index for which $|v_i| \ge |v_j|, \ \forall j \neq i$

$$(A\mathbf{v})_{i} = \lambda v_{i} \quad \Leftrightarrow \quad \sum_{j} a_{ij} v_{j} = \lambda v_{i}$$
$$(\lambda - a_{ii}) v_{i} = \sum_{j \neq i} a_{ij} v_{j}$$
$$|\lambda - a_{ii}| |v_{i}| = |\sum_{j \neq i} a_{ij} v_{j}$$

$$\implies |\sum_{j \neq i} a_{ij} v_j| \le \sum_{j \neq i} |a_{ij}| |v_j| \le \sum_{j \neq i} |a_{ij}| |v_i| = r_i |v_i|$$
$$\implies |\lambda - a_{ii}| |v_i| \le r_i |v_i| \implies |\lambda - a_{ii}| \le r_i.$$

Applied to A^t : λ_i must also lie within circles corresponding to the columns of A.

Example

By Nicoguaro - Own work, CC BY 4.0, https://commons.wikimedia.org/w/index.php?curid=76601319

For every row, a_{ii} is the center for the disc with radius $\sum_{j \neq i} |a_{ij}| = r_i$. Discs: D(10,2), D(8,0.6), D(2,3), D(-11,3).

Can improve the accuracy of last two discs by applying the formula to the columns: D(2, 1.2) and D(-11, 2.2). True eigenvalues are 9.8218, 8.1478, 1.8995, -10.86.

Note that A^t is diagonal dominant: $|a_{ii}| > \sum_{j \neq i} |a_{ji}| \rightsquigarrow$ most of the matrix is in the diagonal \rightsquigarrow explains why the eigenvalues are so close to the centers.

Gershgorin circle theorem and diagonal dominance

A diagonal dominant matrix (i.e. $|a_{ii}| > \sum_{j \neq i} |a_{ij}|$) is **non-singular**.

 $\lambda \in \mathbb{C}$ is in at least one of the Gershgorin discs $D(a_{ii}, r_i)$ in the complex plane, but none of these discs contains 0:

 $|a_{ii}| - r_i = |a_{ii}| - \sum_{j \neq i} |a_{ij}| > 0$, so each disc center a_{ii} is further away from 0 than the disc radius, and the point $\lambda = 0$ can't belong to any circle.

A symmetric diagonal dominant matrix that has positive values on its diagonal (i.e. $a_{ii} > \sum_{j \neq i} |a_{ij}|$) is positive definite.

Eigenvalues of symmetric matrices are real.

 $\lambda \in \mathbb{R}$ is in at least one of the intervals $[a_{ii} - r_i, a_{ii} + r_i]$, but all intervals contain only positive numbers: $a_{ii} - r_i = a_{ii} - \sum_{j \neq i} |a_{ij}| > 0$.

Consequences: Jacobi iterations

- Assume that all diagonal entries of A are nonzero.
- Write A = D + L + U

where
$$D = \begin{bmatrix} a_{11} & 0 & \cdots & 0 \\ 0 & a_{22} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$
 and $L+U = \begin{bmatrix} 0 & a_{12} & \cdots & a_{1n} \\ a_{21} & 0 & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & 0 \end{bmatrix}$
So $Ax = b \quad \rightsquigarrow \quad (L+D+U)x = b.$

• Define $J = D^{-1}(L + U)$ as the **iteration matrix**.

• The solution is then obtained iteratively via

$$x_{(i+1)} = -Jx_{(i)} + D^{-1}b.$$

- Error $\epsilon_{(i+1)} = -J\epsilon_{(i)} = \cdots = (-1)^{i+1}J^{i+1}\epsilon_{(0)}$.
- Arrange eigenvalues of J in diagonal matrix $\Lambda.$

Consequences: Jacobi iterations

If all the eigenvalues of J have magnitude < 1,

then $\Lambda^n \to 0$ and consequently $J^n \to 0 \rightsquigarrow$ convergence.

A diagonally dominant \rightsquigarrow Jacobi method converges.

Assume rows of A are rescaled such that diagonal entries are all 1. If A = L + I + U is diagonal dominant, i.e. $1 \ge \text{row sums of abs}(L + U)$, then $L \pm \lambda I + U$ is also diagonally dominant if $|\lambda| \ge 1$, because $|\lambda| \ge 1 \ge \text{row sums of abs}(L + U)$.

Let λ be an eigenvalue of J.

$$\Rightarrow \quad det(J - \lambda I) = det(L + U - \lambda I) = 0.$$

But if $|\lambda| \ge 1$, then $L + U - \lambda I$ is diagonal dominant as well, so it is non-singular and det = 0 is not possible. So $|\lambda| < 1$.