Image Filtering (linear)

Image Filtering (linear)

- Each novel output pixel value $\mathrm{O}(\mathrm{x}, \mathrm{y})$ is as linear function of the neighboring pixel values of $\mathrm{I}(\mathrm{x}, \mathrm{y})$.
The linear weights are stored in the filter kernel $\mathrm{K}(\mathrm{s}, \mathrm{t})$ (also called filter or filter mask)

$$
O[x, y]=\sum_{s=-a}^{a} \sum_{t=-b}^{b} k[s, t] I[x+s, y+t]
$$

10	5	3
4	5	1
1	1	7

I Input Image
filter function

O Output image

Linear Filtering as correlation or convolution

- Cross-correlation: $O[x, y]=\sum_{s=-a}^{a} \sum_{t=-b}^{b} k[s, t] I[x+s, y+t]$

Symbol: $O=k \otimes I$

- Convolution:

$$
O[x, y]=\sum_{s=-a}^{a} \sum_{t=-b}^{b} k[s, t] I[x-s, y-t]
$$

Symbol: $O=k * I$

Convolution is commutative and associative

For symmetric kernels there is no difference !!!

Convolution

Linear filters: examples

Original

Identical image

Linear filters: examples

Original

Shifted left By 1 pixel

Linear filters: examples

Original

Blur (with a mean filter)

Linear filters: examples

$$
\text { 娄 }\left(\begin{array}{l|l|l|}
\hline 0 & 0 & 0 \\
\hline 0 & 2 & 0 \\
0 & 0 & 0 \\
\hline
\end{array}-\frac{1}{9} \begin{array}{|l|l|l|}
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline 1 & 1 & 1 \\
\hline
\end{array}\right)=
$$ (accentuates edges)

Separable Filter

An often used filter for blurring is the binominal mask.
Since this 2D mask can be separated into two 1D masks the computational complexity can be heavily reduced!.

$$
{ }^{4} B=\frac{1}{256}\left|\left(\begin{array}{ccccc}
1 & 4 & 6 & 4 & 1 \\
4 & 16 & 24 & 16 & 4 \\
6 & 24 & 36 & 24 & 6 \\
4 & 16 & 24 & 16 & 4 \\
1 & 4 & 6 & 4 & 6
\end{array}\right)=\frac{1}{16}\right|\left(\begin{array}{l}
1 \\
4 \\
6 \\
4 \\
1
\end{array}\right) \circ \frac{1}{16}\left(\begin{array}{lllll}
1 & 4 & 6 & 4 & 1
\end{array}\right)
$$

Filtering as matrix multiplication (1D)

Filtering as matrix multiplication (1D)
$\left[\begin{array}{cccccccccccccccc}0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 \\ 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2 & 0.2 \\ 0.2 & 0.2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0.2 & 0.2 & 0.2\end{array}\right]\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1\end{array}\right]$

