UNIVERSITAT BASEL

Prof. Dr. Thomas Vetter Spiegelgasse 1 Patrick Kahr (patrick.kahr@unibas.ch)
Departement Mathematik und Informatik CH - 4051 Basel Clemens Biichner (clemens.buechner@unibas.ch)

Computer Grafik 2019 - Ubungsblatt 1

Ausgabe in Woche 1 (21.02.2019).

Vorfithrung der laufenden Programme im Tutorium Woche 3 (Abgabe 08.03.2019) .
Maximal zu erreichende Punktzahl: 24

Ziele dieses Blattes sind die in der Vorlesung vorgestellten Algorithmen zum Zeichnen
von Linien und Dreiecken zu implementieren und die Architektur einer Rendering
Pipeline besser zu verstehen.

Den Renderer, den Sie in diesem Blatt komplettieren und auf dem die weiteren
Blatter aufbauen werden, kann Dreiecke und Linien zeichnen und ist im Wesentlichen
ein 2-Stufen Prozess:

(a) Als erstes wird bestimmt, welche Pixel im zu erstellenden Bild von einem Ob-
jekt (Linie oder Dreieck) getroffen werden. Diese Aufgabe wird vom Rasterizer

ubernommen.

(b) Wenn der Rasterizer einen Pixel "gefunden” hat, farbt der Shader diesen ein.
Je nach Art des Shaders kénnen Objekte verschieden eingefdrbt werden.

Die Renderer, welche in der Praxis verwendet werden und auch den, welchen Sie bis
zum Ende des Semesters implementieren werden, sind weitaus komplexer. Nichtsde-
stotrotz sind diese beiden Schritte in irgendeiner Form immer Teil einer Rendering
Pipeline.

Im soeben beschriebenen Fall wird ein Pixel direkt eingefdrbt nachdem er vom Ra-
sterizer identifizert wurde. Dies muss nicht unbedingt so sein. Es ist auch mdéglich,
zuerst alle Objekte zu rastern und die Farbzuweisung erst spéter fiir alle Pixel auf
einmal vorzunehmen. Solch eine Architektur wird auch als Deferred Shading bezeich-
net. Deferred Shading hat den taktischen Vorteil, dass der Rasterizer unabhéngig
vom Shader ist.

LineRasterizer

er: LinePixelEandler

SimpleRenderer

“chader: Pixelshader

+SimpleRenderex (wiint,niint, shader:PixelShader)
+drawPlainLine (line:Vector2[],color:RGBA)
+drawline (line:Vector2[],colors:RGBA[])
+drawPlainTriangle (triangle:Vector2(],color:RGEH
+drawTriangle (triangle:Vector2[], colors:RGBA[])
+getFinallmg(): Image<RGSA>

+rasterline (line:Vector2[]

“c<interfaces>
LinePixelHandler

eLinePixel (int:x,int:y, line:Vector2[]

TriangleRasterizer

<<abstract>>
PixelShader

~setlineColors (colors:RGBA[])

Image

#w: int

4n: int

#data: Object[]

+Image (wiint,hiint)

+get (x:int,yiint): T

+set (x:int,y:int,val:T): vois
+cols ()i int

+rows (): int

RGBA

+setTriangleColors (colors:RGEA(]
+setImgSize (w:int,hiint)
~getImg () : Image<RGBA>

r: fleat
+g: float
+b: float
+a: fleat

-handler: TrianglePixelHandler

<<interface>>
TrianglePixelHandler

+rasterTriangle (Eriangle:Vector2[]

leTrianglePixel (int:x,int:y, triCoords:BarycentricCoordinatep)

In diesem UML sehen sie eine Klassen-Ubersicht der beschriebenen 2-Stufen Pipe-
line. Wie Sie sehen, rufen dabei die beiden Rasterizer nicht direkt einen Pixel Shader
auf, sondern eine Implementationen des Interfaces Line- bzw. TrianglePixelHandler.
Eine direkte Variante wére durchaus denkbar, die Zwischenstufe der Pixel-Handler
ist jedoch notwendig, um spéter das Deferred Shading einfach implementieren zu

konnen.

Aufgabe 1 - Image<RGBA> (2 Punkte)
Ziel dieser Aufgabe ist es sich mit dem image package vertraut zu machen.

Erzeugen sie mit Hilfe des image packages eine neue Image<RGBA> Instanz und
zeichnen Sie von “Hand” einige Pixel oder Linien speichern Sie das Bild anschlie-
ssend.

e Wie liegt das Koordinatensystem im Bild?
e Was geschieht, wenn man auf Pixel ausserhalb des Images zugreift?

e Was geschieht wenn man die Farbe eines Pixels abruft, wenn dieser vorher
nicht eingefarbt wurde?

Hinweis: 0 < 7,g9,b,a <1

Benotigte Dateien: exercises.Ex1.java

Aufgabe 2 - Image Flip (2 Punkte)

Ergénzen sie die Methode fliplmageUpsideDown, welche ein Image horizontal in der
Mitte spiegelt. Wenden sie diese Funktion auf das in der Aufgabe 1 erstellte Bild an
und speichern sie das gespiegelte Bild.

Benotigte Dateien: exercises.Ex1.java

Aufgabe 3 - Bresenham Linien zeichnen (4 Punkte *)

Implementieren Sie die Funktion bresenham(..) der Klasse LineRasterizer, welche

eine Linie mit Hilfe des Bresenham Algorithmus’ rastert. Eine Linie wird durch
zwei Vektoren Vector2 reprisentiert (Start- und Endpunkt). Wenn Sie innerhalb
des Bresenham-Algorithmus einen Pixel bestimmt haben, rufen sie anschliessend
die Methode handleLinePixel() des linePixelHandlers auf, welcher im ConstantCo-
lorShader implementiert ist und alle Pixel gleich einfarbt.

Hinweis 1: Die Erkldrung des Bresenham Algorithmus auf den Vorlesungsfolien gel-
ten nur fir den Fall, dass die Steigung der Linie im Intervall [—1, 1] liegt! Sie miissen
jedoch auch die anderen Félle abdecken.

Hinweis 2: Vergessen Sie das Clipping nicht.

Benotigte Dateien: rasterization.LineRasterizer.java

Aufgabe 4 - Linienbilder generieren (2 Punkte)

Nachdem Sie den Bresenham Algorithmus implementiert haben, zeichnen Sie in der
Methode lineRasterExample der Ex1 Klasse Linien mit unterschiedlichen Steigungen
um sich zu vergewissern, dass Thre Linien liickenlos gezeichnet werden. Verwenden
Sie dazu die Funktion simpleRenderer.drawPlainLine(Vector2[] line, RGBA color),
die im Hintergrund Thren Algorithmus aus Aufgabe 3 aufruft.

Hinweis: Zeichnen Sie Linien mit unterschiedlich Steigungen, welche auch grosser als
1 sind.

Benotigte Dateien: exercises.Ex1.java

Aufgabe 5 - Baryzentrische Koordinaten (2 Punkte x)

Die baryzentrischen (oder auch Dreiecks-) Koordinaten, sind sehr hilfreich wenn es
um das Rastern und Einfarben von Dreiecken geht. Zur Erinnerung: Punkte p in-
nerhalb eines Dreiecks (a, b, ¢) lassen sich mit Hilfe der baryzentrischen Koordinaten
darstellen als
7= od + b + A€
mit
0<MN<1]ie{0,1,2} und doa=1
i€{0,1,2}

Verfollstandigen Sie die Methode getBarycentricCoordinates() der Klasse Barycen-
tricCoordinateTransform, welche gegeben der drei Eckpunkten (@,b,¢) eines Drei-
ecks fiir einen Punkt 5= (x,y) die Baryzentrischen Koordinaten \; berechnet.

Benotigte Dateien: utils.BarycentricCoordinateTransform.java

Aufgabe 6 - Gefiillte Dreiecke zeichnen (6 Punkte *)

Implementieren Sie die Funktion rasterTriangle(..) der Klasse TriangleRasterizer,
die ein ausgefiilltes Dreieck zeichnet. Ein Dreieck wird ebenfalls als Array von
Vector2 reprisentiert (diesmal aber natiirlich mit drei Eintrdgen). Es gibt ver-
schiedene Verfahren um Dreiecke zu rastern. Verwenden Sie das "billige” Verfah-
ren, welches in der Vorlesung vorgestellt wurde. Wenn Sie einen Pixel gefunden
haben, der angezeichnet werden muss, rufen Sie analog zur Aufgabe 1 die Metho-
de handleTrianglePixel des trianglePixelHandlers auf. Diese Methode erwartet die
baryzentrischen Koordinaten (lambda) des Punktes (z,y) als Ubergabeparameter.

Um zu testen ob IThre Transformation in baryzentrischen Koordinaten und die
Rasterung der Dreiecke richtig funktioniert, rufen Sie die statische Methode gene-
ratePlasererdlmage() in exl.test.Plasteredlmage.java auf. Diese erzeugt eine gleich-
méssige Flache aus Dreiecken indem die Farbwerte der einzelnen Pixel addiert
werden. Falls Thre Implementation richtig funktioniert, ist das Bild plastered.png
eine einheitlich graue Fléache.

Hinweis 1: Um die barycentrischen Koordinaten des Punktes (z,y) zu erhalten,
verwenden Sie die in der Aufgabe 5 implementierte Methode getBarycentricCoor-
dinates()

Hinweis 2: Machen Sie sich in der Aufgabe auch Gedanken zum Clipping. Es kann
sein, dass spétere Tests crashen, wenn Sie kein Clipping implementiert haben
(ausserdem kann Clipping die Effizienz ihrer Pipeline steigern).

Hinweis 3: Die Methode generatePlasererdlmage in der Ex1 fiillt das ganze Bild
mit Dreiecken, welche sich nicht iiberlappen. Falls Thr Bild eine einheitlich graue
Flache ist, werden die Rénder ihrer Dreiecke richtig gerundet.

Benotigte Dateien: rasterization.TriangleRasterizer.java
exercises.Ex1.java

Aufgabe 7 - Interpoliertes Shading (6 Punkte *)

<<abstract>>
PixelShader

+zetLlineColors (colors:RGBA[])
+zetTriangleColors (colors:RGBA[]
+zetImgSize (w:int, h:int)
+getImg(): Image<RGBA>

|{]onsta ntCoIorShaderl |Interpo|atedColor5hader|

Nun da Sie Linien und Dreiecke rastern kénnen, widmen wir uns in dieser Aufgabe
einem etwas fortgeschrittenen Shader. Folgende Methoden der abstrakten Klasse
PixelShader miissen implementiert werden:

o handleTrianglePixel(..). Diese Methode soll den Farbwert ¢ fiir den Pixel an
der Position z,y im Bild aus den Eckfarben ¢}, ¢}, c} interpolieren. Verwen-
den Sie dazu die baryzentrischen Koordinaten, die der Funktion {ibergeben
werden. Die benotigten Farbwerte sind in der Membervariable lineColors des
PixelShaders gespeichert.

o Analog fiir die Methode handleLinePixel(..), welche den Farbwert des Pixels
an der Position z,y im Bild auf den aus den beiden Farben der Endpunkten,
ch und ¢!, interpolierten Wert setzt:

c(z,y) = och + Aich

Zeichnen und speichern Sie ein Bild welches verschiedenfarbige Linien und Dreiecke
enthalt um sich zu vergewissern, dass Thre Implementation korrekt ist.

Hinweis 1: Die Farben der Eckpunkte sind in triangleColors bzw. lineColors der
Klasse PixelShader.java gespeichert.

Hinweis 2: RGBA-Farben konnen sie mittels RGBA. .times(factor) mit einem Faktor

multiplizieren.

Hinweis 3: Um die Farben in einem Dreieck zu interpolieren, schauen Sie sich die
Klasse BarycentricCoordinates.java etwas genauer an.

Benotigte Dateien: shader.InterpolatedColorShader.java

