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Auf dem Ubungsblatt 1 haben Sie gelernt, wie man 2D Dreiecke und Linien zeichnen
und einfarben kann. Nun wollen wir einen Schritt weitergehen und 3D Objekte in
ein 2D Bild zeichnen. Dazu ist es nétig, Vektoren im R? korrekt auf die Bildebene zu
projizieren. Ausserdem werden wir auch sehen, wie wir Transformationen wie Rota-
tionen oder Translationen einbauen kénnen. Wie angekiindigt werden wir in diesem
Aufgabenblatt auch das Konzept des Deferred Shadings implementieren, weshalb
sich die Architektur der Rendering Pipeline ein wenig veréindern wird. Checken Sie
die dazu bendtigten Dateien aus dem Git Repository aus.

TestSuite

Wenn sie Ex3TestSuite.java ausfithren, 6ffnet sich eine Visuelle Test Suite, mit wel-
cher Sie Thre Implementierungen testen kénnen. Die Test Suite hat folgende Funk-
tionalitaten:

e Darstellen des von Ihrer Pipeline generierten Bildes und des Gold-Standards
fiir einen bestimmten Test (auszuwéhlen via das Menii [Tests]).

Darstellen der Differenz zwischen dem eigenen und dem Gold-Standard Bild.
Wenn das Differenz-Bild schwarz ist, haben Sie die Aufgabe gelost.

Speichern des selbst generierten Bildes.

Je nach Test erscheint im unteren Teil ein Widget, mit welchem Sie gewisse
Parameter verdndern kénnen.

Diverse Statusmeldungen im unteren linken Bildschirmrand.

Aufgabe 1 - Pinhole Projection (3 Punkte x)

Wir wollen einen Ausschnitt einer gegebenen 3D Welt auf den Bildschirm projizieren.
Die Pinhole Projection (siehe Vorlesung) ist eine von mehreren Moglichkeiten dies
zu tun. Es folgen nun einige Erklérungen zum Konzept der Pinhole Projection, bevor



die eigentlichen Aufgaben vorgestellt werden.

Sei py = (Tw, Yuw, 2w)’ ein Punkt in unserer Welt, welchen wir auf die Bildebene
projizieren wollen. Angenommen, das Projektionszentrum der Kamera (das Pinho-
le) befindet sich im Nullpunkt, die Kamera schaut in Richtung der positiven z-Achse
und die Bildebene befindet sich im Abstand f > 0 parallell zur z-y-Ebene und schnei-
det die z-Achse genau im Bildmittelpunkt (ug, vg). Dann kénnen wir den Punkt p,
wie folgt auf die Bildebene projizieren:
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In homogenen Koordinaten schreibt sich diese Gleichung als:
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Die Tilde bezieht sich darauf, dass die Gleichheit nur bis auf einen Skalierungsfaktor
gilt. In Matrix-Schreibweise:
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Um die Sache weiter zu vereinfachen, nehmen wir ausserdem an, dass f = 1 ist
und bezeichnen diese Matrix mit Ky. Die Koordinaten (z.,y.) nennt man auch
Normalized Image Coordinates.

Der Punkt p. befindet sich nun zwar auf der Bildebene, allerdings sind seine Koordi-
naten relativ zum Bildmittelpunkt (ug,vp). Damit wir einen Punkt dem Rasterizer
iibergeben kénnen, muss er aber in einem Koordinatensystem definiert sein, welches
in unserem Bild oben links den Ursprung hat (wir nennen diese Koordinaten (u, v)).
Da wir ausserdem Bilder beliebiger Grosse darstellen wollen, sollten wir auch noch
eine Skalierung beriicksichtigen. Den Punkt p; in Bildkoordinaten erhalten wir wie
folgt:
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Dabei ist w die Breite und h die Hohe des zu rendernden Bildes. Die Matrix C nennen
wir auch Kameramatrix. Sie beriicksichtigt die intrinsischen Kamera Parameter.

Die Annahme, dass sich die Kamera gerade im Weltursprung befindet, ist natiirlich
nicht immer gegeben (vor allem dann nicht, wenn wir ein Objekt interaktiv bewegen



wollen). Damit wir die soeben hergeleiteten Matrizen gebrauchen kénnen, miissen
wir also sicherstellen, dass sich die Kamera auch im Weltursprung befindet. Dies
ist stets durch eine Kombination von Translationen und Rotationen méglich und
genau die Aufgabe der Viewmatrix. Die Viewmatrix V € R**? hat in homogenen

-(34)

Dabei ist R eine 3 x 3 Rotationsmatrix, t = (¢, t,,t.)7 ein Translationsvektor und

Koordinaten folgende Form:

0”7 = (0,0,0) der Nullvektor. Durch Applikation der Viewmatrix auf p,, landen wir
in den sogenannten Eye Coordinates:
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Wenn wir all dies zusammenfassen, dann sieht unsere Projektionspipeline folgender-

massen aus:
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Die 3 x 4 Matrix P nennt man auch die Projektionsmatrix.

Vervollstéindigen Sie nun die folgenden Methoden der Klasse PinholeProjection
(eine UML-Ubersicht finden Sie weiter unten):

e initializeCamera() welche die Kameramatrix C initialisiert wie soeben er-
klart.

e initializeView() welche die Viewmatrix initialisiert. Die Implementierung
dieser Methode wurde bereits vorgenommen - die Viewmatrix wird auf die
Einheitsmatrix gesetzt. Uberlegen Sie sich, was das fiir die Position der Kamera
bedeutet.

e project(Double3 pt) welche einen dreidimensionalen Punkt projiziert. Der
Riickgabewert dieser Methode ist ebenfalls vom Typ Double3. Die z-Koordinate
werden wir spéter fiir den Z-Buffer gebrauchen. Fiir diese Koordinate miissen
sie die “Inhomogenisierung”, die als Folge des Einsatzes von homogenen Ko-

ordinaten nétig ist, nicht vornehmen.



<<abstract>>
Projection
R Py Lo dombie) . -
R — leidauble) : N
gerScaling(scale:Vectors): Matrizd
+getTranslation(trans:Vector3): Matrixd L 4x4 Matrix
Matrix4 ‘—j

+project (pt:Vectors) : Vector3

#m: double[]

+mulviply(viVectord) : Matrixd
+mulviply(d:double): Matrixd
+get (row:int,col:int) : double

PinholeProjection +set (row:int,col:int, val:double)

—camera: Matrix4
—view: Matrixd
-projection: Matrixd

-initializeCamera()
~inicializeView ()

+3etView (MAtrix:Matrizd)
+project (pt:Vectors) : Vector3

Vervollstédndigen Sie anschliessend die folgenden statischen Methoden der Klasse

Projection:

e getRotationX(..), getRotationY(..) und getRotationZ(..) welche je eine
4 x 4 Rotationsmatrix um die entsprechende Achse zuriickliefern.

e getTranslation(..) welche einen 4 x 4 Translationsmatrix zuriickliefert.

e getScaling(..) welche eine 4 x 4 Skalierungsmatrix zuriickliefert.

Die Rotationsmatrizen sind wie folgt definiert:

1 0 0 0 cosae 0 sina 0
R, — 0 c?sa —sina 0 R, — O 1 0 0
0 sina cosa O —sina 0 cosa O
0 0 0 1 0 0 0 1
cosae —sina 0 O
R, — sinae cosaa 0 O
0 0 1 0
0 0 01
Die Skaleriungs- und Translationmatrizen wie folgt:
s, 0 0 O 1 0 0 ¢,
g _ 0 s, 0 0 T— 0 1 0 ¢t
0 0 s, O 0 0 1 ¢,
0O 0 0 1 00 0 1

Benotigte Dateien: projection.PinholeProjection.java, projection.Projection.java

Mogliche Tests: Pyramid Wire Frame



Aufgabe 2 - Turntable (4 Punkte)

Obwohl diese Aufgabe keinen Stern hat, empfehlen wir Thnen, sie zu l6sen. Sie ist
sowohl fiir das Debugging von zukiinftigen Aufgaben hilfreich, als auch sehr niitzlich
fiir das Versténdnis der Viewmatrix.

Ziel dieser Aufgabe ist es, das gerenderte Mesh durch Ziehen der Maus drehen zu
konnen und eine Zoom-Funktionalitéit einzubauen. Fiir das interaktive Drehen eines
Objektes haben Sie in der Vorlesung das Konzept des Trackballs kennen gelernt,
welches sich mit Hilfe von Quaternionen elegant implementieren lésst.

Wir verfolgen hier einen etwas abgeédnderten, eher zugénglichen Ansatz. Statt eines
Trackballs implementieren wir einen Turntable, der es erlaubt, ein Objekt um einen
Azimuth und einen Elevations Winkel analog der folgenden Abbildung zu drehen.

Viewpoint

Aufgepasst: die Achsenbeschriftungen in dieser Abbildund beziehen sich auf die
Korperachsen des Objektes. In unserem Fall wiirde sich die Bildebene also parallel
zur x-z-Ebene befinden.

Einen Zoom realisieren wir als eine Translation in Richtung der z-Achse (im Bild
y-Achse). Die aktuelle Translation und die beiden Winkel (Azimuth und Elevati-
on) bilden zusammen den aktuellen Zustand des Turntables. Bei Mausbewegungen
werden die drei Variablen entsprechend neu belegt und die Szene neue gerendert.
Vervollstédndigen Sie die folgenden Methoden der Klasse Turntable um dies umzu-
setzen:

e buildViewMatrix(): Bauen Sie hier eine Viewmatrix wie in Aufgabe 1 vorge-
stellt auf. Beniitzen Sie die statischen Methoden der Klasse Matrix4. Speichern
Sie die fertige Viewmatrix in der Variable currentView ab.

e handleAzimuth(..) und handleElevation(..): Diese Methoden werden auf-
gerufen, wenn die Maus im GUI gedragged wird. Der iibergebene Parameter
newMousePos gibt die aktuelle x bzw. y Koordinate der Maus wieder. Die letz-
ten bekannten Mauskoordinaten sind in den Members mouseX bzw. mouseY



gespeichert. In diesen beiden Methoden miissen Sie aus der Mausbewegung
einen Azimuth bzw. Elevations-Winkel berechnen. Berechnen Sie diese so,
dass bspw. eine Mausbewegung vom linken bis zum rechten Rand des Bil-
des einer 180 Grad Drehung entspricht. Speichern Sie die neuen Winkel in den
entsprechenden Membervariablen ab (ansonsten haben die schon eingefiigten
Funktionsaufrufe keinen Effekt).

e zoom(..): Diese Methode soll das Objekt um zoomStep heran oder wegzoo-
men.

Wenn Sie diese Methoden korrekt implementiert haben, kénnen Sie im GUI beim
angegebenen Test

e durch Halten und Ziehen der Maus das Objekt drehen und

e durch Driicken von Shift und Ziehen der Maus nach oben oder unten hinein
bzw. hinaus-zoomen.

Bemerkung: Anstatt die Viewmatrix immer wieder neu zu berechnen, ist es auch
moglich die gleiche Viewmatrix fortlaufend upzudaten, so wie Sie das in der Vorle-
sung gelernt haben. Dieses Verfahren fithrt aber meist zu numerischen Unstimmig-
keiten, was wiederum seltsame Bugs zur Folge hat.

Hinweis 1: Das Objekt muss zuerst um den Azimuth und dann erst um den Elevations-
Winkel gedreht werden.
Hinweis 2: Wir rechnen in Radians.

Benotigte Dateien: projection.TurnTable.java
Mogliche Tests: Turntable: Pyramid Wire Frame

Aufgabe 3 - Meshes, Deferred Shading und Z-Buffer (9 Punkte x)

Die Pyramiden in den Tests der vorigen Aufgabe werden nur korrekt gezeichnet, weil
die Dreiecke bzw. Linien in der richtigen Reihenfolge dem Renderer iibergeben wur-
den. Diesen Missstand wollen wir beheben, indem wir einen Z-Buffer implementieren.
Ausserdem implementieren wir in dieser Aufgabe einen Renderer, der dem Konzept
des Deferred Shadings Folge leistet. Dazu fithren wir im Wesentlichen zwei neue Da-
tentypen ein: eine Mesh und eine Correspondence Klasse. Hier eine Ubersicht der
Architektur und nachfolgend die entsprechenden Erklarungen:



Mesh

ertices: W
s T
+oolozs: BGEA[] Triang lePixelHandler

+tvi: Triplec[] +handleTrianglePixel (int:x,int:y, triCoords: Vectors)
+tni: Triplec[]
+tci: Triplet[]

\ correspondence instead of

1
| Establishes p;xal—m—tna—;glab|

MeshRenderer - calling a shader.
MeshRasterizer ;
+mesh: Mesh 1
+meshRasterizer: MeshRasterizer +rasterize (mesh:Mesh,p:Projection) : Image<Correspondence>
-shader: PixelShader
+renderMesh (p:Projection) : Image<RGEA> —‘ﬁl InterpolatedColorShader
+colorize(c:Image<Correspondencer) : Image<RGBA> Correspondence

+mesh: Mesh

+triangle: int

+triCoords: BarycentricCoordinates
+depth: double

Ein Mesh ist nichts Weiteres als eine Ansammlung von Dreiecken.

Die 3D Punkte oder Vertices dieser Dreiecke sind im Array vertices gespeichert.
Um die Eckpunkte eines Dreiecks zu finden bendtigen wir das Array tvi (fiir Triangle
Vertex Index). Dies ist ein Array aus Triplet und speichert die Indizes derjenigen
Punkte, welche ein Dreieck bilden. tvi speichert nicht die 3D Punkte, sondern nur
einen Index auf diese.

Um nun zum Beispiel auf den ersten Eckpunkt des 25. Dreiecks zuzugreifen, kénnen
wir folgendes tun:

vertices[tvi[24].get(0)];

tvi[24] gibt uns das Triplet fiir das 25. Dreieck und dieses Triplet gibt uns den
Index, welchen wir in vertices nachschlagen.

Analoges gilt fiir die Normalen (tni)- und Farb (cni) -Informationen welche auch
pro Vertex abgespeichert werden. Die Mesh Klasse hat noch ein paar zusétzliche

Member, welche wir spéter im Zusammenhang mit Texturen gebrauchen werden.

Der MeshRenderer ersetzt den bisherigen SimpleRenderer und funktioniert wie
folgt:

Es werden jetzt keine einzelnen Linien oder Dreiecke mehr gerastert, sondern gleich
ein ganzes Mesh “am Stiick”. Der MeshRenderer ruft den MeshRasterizer auf, der
durch die Dreiecke des Meshes loopt, die Vertices projiziert und anschliessend das
Dreieck wie gewohnt rastert.

Hier kommt nun das Deferred Shading ins Spiel. Der TrianglePixelHandler, den
wir dem TriangleRasterizer {ibergeben, ist der MeshRasterizer selbst. Wenn der
Rasterizer einen Punkt identifiziert hat, wird in der Methode handleTrianglePixel(. .
des MeshRasterizers eine Pixel-zu-Dreieck Korrespondenz gesetzt. Fiir jeden Bild-
pixel (z,y) merken wir uns, welches Dreieck “hinter” diesem Pixel liegt.

Diese Korrespondenz wird durch die Klasse Correspondence reprisentiert. Ein
Correspondence-Objekt besteht aus einer Referenz auf das zugehorige Mesh, die ID



des Dreiecks, die baryzentrischen Koordinaten (triCoords) und den z-Wert (depth).
Eigentlich wiirde die ID des Dreiecks fiir die Korrespondenz reichen - die restlichen
Variablen erleichtern spitere Aufgaben bzw. vermeiden doppelte Berechnungen.

Um nun ein Mapping (z,y) — Correspondence fiir jeden Bildpunkt hinzubekom-
men, bedienen wir uns wiederum der Klasse Image<T>. Der MeshRasterizer gibt
ein Bild vom Typ Image<Correspondence> zuriick. Der MeshRenderer nimmt an-
schliessend dieses Korrespondenzbild entgegen, loopt iiber alle eingetragenen Korre-
spondenzen und bestimmt mit Hilfe des bekannten InterpolatedColorShaders die
Farbe.

Wozu der ganze Aufwand wenn wir schlussendlich wieder nur eine Farbe bestim-
men? Spiter werden wir den InterpolatedColorShader austauschen, um Texturen
auf ein Mesh zu rendern oder zusétzliche Berechnungen fiir Beleuchtung und Schat-
ten anzustellen, bevor wir die Farbe ins fertige Bild schreiben. Durch das Deferred
Shading konnen wir diese unterschiedlichen Aufgaben (Rasterung, Texturen, Be-
leuchtung, Schatten) gut auseinanderhalten und modular austauschen.

Konkret sollen Sie nun die folgenden Aufgaben 16sen:

a) Rasterization (3 Punkte)

Vervollstéindigen Sie die Methode rasterize(..) der Klasse MeshRasterizer. In
dieser Methode miissen Sie durch alle Dreicke des gegebenen Meshes loopen, die
Eckpunkte mit der gegebenen Projektion auf die Bildebene abbilden und ansch-
liessend das projizierte Dreieck vom TriangleRasterizer rastern lassen. Fiir den
TriangleRasterizer miissen zusétzliche Membervariablen zwischengespeichert wer-
den, damit die Methode handleTrianglePixel(..) (siehe néichste Aufgabe) davon
Gebrauch machen kann. Diese zusétzlichen Informationen sind: currentMesh, cur-
rentTriangle und die projizierten Z-Werte des Dreiecks in currentDepths[].

Bendtigte Dateien: rasterization.MeshRasterizer.java
Mogliche Tests: Rasterization: Pyramid Mesh

b) Z-Buffer (3 Punkte)
Wie Sie sehen, wird die Pyramide aus a) nicht richtig angezeigt. Dreiecke die néher
an der Kamera liegen, werden von Dreiecken dahinter iiberschrieben.

Implementieren Sie die Methode handleTrianglePixel(..) der Klasse MeshRa-
sterizer. Diese Methode befiillt das Korrespondenzbild. Hier sollen Sie nun auch
gleich einen Z-Buffer implementieren. Das heisst, eine Korrespondenz an der Stelle
(z,y) wird nur dann gesetzt, wenn es entweder noch keinen Eintrag gibt oder der
z-Wert des aktuellen Punktes kleiner ist als der eingetragene z-Wert. Den z-Wert
des aktuellen anzumalenden Punktes konnen Sie aus den entsprechenden z-Werte
(currentDepths) der Dreieckspunkte interpolieren. Unabhingig davon miissen Sie
sich hier auch noch iiberlegen, wann ein Punkt iiberhaupt sichtbar sein kann, sich
also nicht im ”Riicken” der Kamera befinden.



Hinweis 1: Um zu schauen, wie eine Corresponendz gesetzt wird, kénnen sie in der
Klasse MeshRasterizerWithoutZBuffer spicken.

Hinweis 2: Um Entfernungen von Punkten zur Bildebene intuitiv verarbeiten zu
konnen und keine Probleme mit Vorzeichen zu bekommen, multiplizieren Sie die
Tiefe eines Punktes zd (z-Direction).

Benotigte Dateien: rasterization.MeshRasterizer.java
Mogliche Tests: Z-Buffer: Pyramid Mesh

c) Colorize (3 Punkte)

Nun ist das Korrespondenzbild erstellt und wir kénnen zur Farbgebung iibergehen.
Vervollstéindigen Sie dazu die Methode callShader(..) der Klasse MeshRenderer.
Diese Methode bekommt eine Korrespondenz im Bild und gibt dem Punkt {iber den
Shader eine Farbe.

Hinweis 1: Um zu schauen, wie der Shader aufgerufen wird, kénnen sie in der Klasse
MeshRendererWrongColorShading spicken.
Hinweis 2: Die benétigten Farben der Eckpunkte sind im mesh gespeichert.

Benotigte Dateien: renderer.MeshRenderer.java
Mogliche Tests: Colorization: Pyramid Mesh

Aufgabe 4 - Near Clipping (2 Punkte)

In der Vorlesung haben Sie das Konzept des Frustums mit einer near clipping und
far clipping plane kennen gelernt. In dieser Aufgabe sollen Sie die near clipping plane
implementieren. Eine far clipping plane brauchen wir in unserer Pipeline nicht, weil
wir einen float-wertigen Z-Buffer haben.

Wenn Sie die Methode handleTrianglePixel(..) der vorigen Aufgabe richtig gelost
haben, dann haben Sie eigentlich schon so etwas wie ein Clipping gemacht. Nun wol-
len wir aber erstens die Clipping Plane auf eine beliebige Hohe setzen (représentiert
durch die Membervariable cNear) und zweitens ein Dreieck gar nicht erst rastern,
wenn es geclipped werden muss. Andern Sie dazu die Methode rasterize(..) der
Klasse MeshRasterizer so ab, dass ein Dreieck nur gerastert wird, wenn keiner der
drei Dreiecksvertices ausserhalb der Clipping Plane liegt.

Bemerkung: Dies ist ein relativ simples Verfahren um das Clipping zu implemen-
tieren. Eleganter wire es natiirlich, nur diesen Teil des Dreiecks abzuschneiden, der
auch ausserhalb der Clipping Plane liegt. Dann miisste man aber neue Dreiecke
einfiigen, was die ganze Sache um einiges komplizierter macht.

Bendtigte Dateien: rasterizer.MeshRasterizer.java
Mogliche Tests: Clipping: Pyramid Mesh, Clipping: Teapot Mesh



