
UNIVERSITÄT BASEL

Prof. Dr. Thomas Vetter
Departement Mathematik und Informatik

Spiegelgasse 1
CH – 4051 Basel

Patrick Kahr (patrick.kahr@unibas.ch)
Clemens Büchner (clemens.büchner@unibas.ch)

Computer Grafik 2019 - Übungsblatt 3

Ausgabe in Woche 6 (28.03.2019).

Vorführung der laufenden Programme im Tutorium Woche 8 (Abgabe 11.04.2019)

Maximal zu erreichende Punktzahl: 18

Auf dem Übungsblatt 1 haben Sie gelernt, wie man 2D Dreiecke und Linien zeichnen

und einfärben kann. Nun wollen wir einen Schritt weitergehen und 3D Objekte in

ein 2D Bild zeichnen. Dazu ist es nötig, Vektoren im R3 korrekt auf die Bildebene zu

projizieren. Ausserdem werden wir auch sehen, wie wir Transformationen wie Rota-

tionen oder Translationen einbauen können. Wie angekündigt werden wir in diesem

Aufgabenblatt auch das Konzept des Deferred Shadings implementieren, weshalb

sich die Architektur der Rendering Pipeline ein wenig verändern wird. Checken Sie

die dazu benötigten Dateien aus dem Git Repository aus.

TestSuite

Wenn sie Ex3TestSuite.java ausführen, öffnet sich eine Visuelle Test Suite, mit wel-

cher Sie Ihre Implementierungen testen können. Die Test Suite hat folgende Funk-

tionalitäten:

• Darstellen des von Ihrer Pipeline generierten Bildes und des Gold-Standards

für einen bestimmten Test (auszuwählen via das Menü [Tests]).

• Darstellen der Differenz zwischen dem eigenen und dem Gold-Standard Bild.

Wenn das Differenz-Bild schwarz ist, haben Sie die Aufgabe gelöst.

• Speichern des selbst generierten Bildes.

• Je nach Test erscheint im unteren Teil ein Widget, mit welchem Sie gewisse

Parameter verändern können.

• Diverse Statusmeldungen im unteren linken Bildschirmrand.

Aufgabe 1 - Pinhole Projection (3 Punkte ?)

Wir wollen einen Ausschnitt einer gegebenen 3D Welt auf den Bildschirm projizieren.

Die Pinhole Projection (siehe Vorlesung) ist eine von mehreren Möglichkeiten dies

zu tun. Es folgen nun einige Erklärungen zum Konzept der Pinhole Projection, bevor



2

die eigentlichen Aufgaben vorgestellt werden.

Sei pw = (xw, yw, zw)T ein Punkt in unserer Welt, welchen wir auf die Bildebene

projizieren wollen. Angenommen, das Projektionszentrum der Kamera (das Pinho-

le) befindet sich im Nullpunkt, die Kamera schaut in Richtung der positiven z-Achse

und die Bildebene befindet sich im Abstand f > 0 parallell zur x-y-Ebene und schnei-

det die z-Achse genau im Bildmittelpunkt (u0, v0). Dann können wir den Punkt pw
wie folgt auf die Bildebene projizieren:

pc =:

(
xc
yc

)
=

f

zw

(
xw
yw

)

In homogenen Koordinaten schreibt sich diese Gleichung als:

pc =:

xcyc
1

 =
f

zw

xwyw
zw
f

 ∼
xwyw

zw
f


Die Tilde bezieht sich darauf, dass die Gleichheit nur bis auf einen Skalierungsfaktor

gilt. In Matrix-Schreibweise:

pc =:

xcyc
1

 ∼
1 0 0 0

0 1 0 0

0 0 1/f 0

 ·

xw
yw
zw
1

 := K ·


xw
yw
zw
1


Um die Sache weiter zu vereinfachen, nehmen wir ausserdem an, dass f = 1 ist

und bezeichnen diese Matrix mit K0. Die Koordinaten (xc, yc) nennt man auch

Normalized Image Coordinates.

Der Punkt pc befindet sich nun zwar auf der Bildebene, allerdings sind seine Koordi-

naten relativ zum Bildmittelpunkt (u0, v0). Damit wir einen Punkt dem Rasterizer

übergeben können, muss er aber in einem Koordinatensystem definiert sein, welches

in unserem Bild oben links den Ursprung hat (wir nennen diese Koordinaten (u, v)).

Da wir ausserdem Bilder beliebiger Grösse darstellen wollen, sollten wir auch noch

eine Skalierung berücksichtigen. Den Punkt pi in Bildkoordinaten erhalten wir wie

folgt:

pi =:

uv
1

 ∼
w 0 u0

0 h v0
0 0 1

 ·
xcyc

1

 =: C ·

xcyc
1


Dabei ist w die Breite und h die Höhe des zu rendernden Bildes. Die Matrix C nennen

wir auch Kameramatrix. Sie berücksichtigt die intrinsischen Kamera Parameter.

Die Annahme, dass sich die Kamera gerade im Weltursprung befindet, ist natürlich

nicht immer gegeben (vor allem dann nicht, wenn wir ein Objekt interaktiv bewegen



3

wollen). Damit wir die soeben hergeleiteten Matrizen gebrauchen können, müssen

wir also sicherstellen, dass sich die Kamera auch im Weltursprung befindet. Dies

ist stets durch eine Kombination von Translationen und Rotationen möglich und

genau die Aufgabe der Viewmatrix. Die Viewmatrix V ∈ R4×4 hat in homogenen

Koordinaten folgende Form:

V =

(
R t

0T 1

)

Dabei ist R eine 3× 3 Rotationsmatrix, t = (tx, ty, tz)
T ein Translationsvektor und

0T = (0, 0, 0) der Nullvektor. Durch Applikation der Viewmatrix auf pw landen wir

in den sogenannten Eye Coordinates:

pe =:


xe
ye
ze
1

 =

(
R t

0T 1

)
·


xw
yw
zw
1


Wenn wir all dies zusammenfassen, dann sieht unsere Projektionspipeline folgender-

massen aus:uv
1

 ∼ C ·K0 ·V ·


xw
yw
zw
1

 = C ·
(

R t
)
·


xw
yw
zw
1

 =: P ·


xw
yw
zw
1


Die 3× 4 Matrix P nennt man auch die Projektionsmatrix.

Vervollständigen Sie nun die folgenden Methoden der Klasse PinholeProjection

(eine UML-Übersicht finden Sie weiter unten):

• initializeCamera() welche die Kameramatrix C initialisiert wie soeben er-

klärt.

• initializeView() welche die Viewmatrix initialisiert. Die Implementierung

dieser Methode wurde bereits vorgenommen - die Viewmatrix wird auf die

Einheitsmatrix gesetzt. Überlegen Sie sich, was das für die Position der Kamera

bedeutet.

• project(Double3 pt) welche einen dreidimensionalen Punkt projiziert. Der

Rückgabewert dieser Methode ist ebenfalls vom Typ Double3. Die z-Koordinate

werden wir später für den Z-Buffer gebrauchen. Für diese Koordinate müssen

sie die “Inhomogenisierung”, die als Folge des Einsatzes von homogenen Ko-

ordinaten nötig ist, nicht vornehmen.



4

Vervollständigen Sie anschliessend die folgenden statischen Methoden der Klasse

Projection:

• getRotationX(..), getRotationY(..) und getRotationZ(..) welche je eine

4× 4 Rotationsmatrix um die entsprechende Achse zurückliefern.

• getTranslation(..) welche einen 4× 4 Translationsmatrix zurückliefert.

• getScaling(..) welche eine 4× 4 Skalierungsmatrix zurückliefert.

Die Rotationsmatrizen sind wie folgt definiert:

Rx =


1 0 0 0

0 cosα − sinα 0

0 sinα cosα 0

0 0 0 1

 Ry =


cosα 0 sinα 0

0 1 0 0

− sinα 0 cosα 0

0 0 0 1



Rz =


cosα − sinα 0 0

sinα cosα 0 0

0 0 1 0

0 0 0 1


Die Skaleriungs- und Translationmatrizen wie folgt:

S =


sx 0 0 0

0 sy 0 0

0 0 sz 0

0 0 0 1

 T =


1 0 0 tx
0 1 0 ty
0 0 1 tz
0 0 0 1


Benötigte Dateien: projection.PinholeProjection.java, projection.Projection.java

Mögliche Tests: Pyramid Wire Frame



5

Aufgabe 2 - Turntable (4 Punkte)

Obwohl diese Aufgabe keinen Stern hat, empfehlen wir Ihnen, sie zu lösen. Sie ist

sowohl für das Debugging von zukünftigen Aufgaben hilfreich, als auch sehr nützlich

für das Verständnis der Viewmatrix.

Ziel dieser Aufgabe ist es, das gerenderte Mesh durch Ziehen der Maus drehen zu

können und eine Zoom-Funktionalität einzubauen. Für das interaktive Drehen eines

Objektes haben Sie in der Vorlesung das Konzept des Trackballs kennen gelernt,

welches sich mit Hilfe von Quaternionen elegant implementieren lässt.

Wir verfolgen hier einen etwas abgeänderten, eher zugänglichen Ansatz. Statt eines

Trackballs implementieren wir einen Turntable, der es erlaubt, ein Objekt um einen

Azimuth und einen Elevations Winkel analog der folgenden Abbildung zu drehen.

Aufgepasst: die Achsenbeschriftungen in dieser Abbildund beziehen sich auf die

Körperachsen des Objektes. In unserem Fall würde sich die Bildebene also parallel

zur x-z-Ebene befinden.

Einen Zoom realisieren wir als eine Translation in Richtung der z-Achse (im Bild

y-Achse). Die aktuelle Translation und die beiden Winkel (Azimuth und Elevati-

on) bilden zusammen den aktuellen Zustand des Turntables. Bei Mausbewegungen

werden die drei Variablen entsprechend neu belegt und die Szene neue gerendert.

Vervollständigen Sie die folgenden Methoden der Klasse Turntable um dies umzu-

setzen:

• buildViewMatrix(): Bauen Sie hier eine Viewmatrix wie in Aufgabe 1 vorge-

stellt auf. Benützen Sie die statischen Methoden der Klasse Matrix4. Speichern

Sie die fertige Viewmatrix in der Variable currentView ab.

• handleAzimuth(..) und handleElevation(..): Diese Methoden werden auf-

gerufen, wenn die Maus im GUI gedragged wird. Der übergebene Parameter

newMousePos gibt die aktuelle x bzw. y Koordinate der Maus wieder. Die letz-

ten bekannten Mauskoordinaten sind in den Members mouseX bzw. mouseY



6

gespeichert. In diesen beiden Methoden müssen Sie aus der Mausbewegung

einen Azimuth bzw. Elevations-Winkel berechnen. Berechnen Sie diese so,

dass bspw. eine Mausbewegung vom linken bis zum rechten Rand des Bil-

des einer 180 Grad Drehung entspricht. Speichern Sie die neuen Winkel in den

entsprechenden Membervariablen ab (ansonsten haben die schon eingefügten

Funktionsaufrufe keinen Effekt).

• zoom(..): Diese Methode soll das Objekt um zoomStep heran oder wegzoo-

men.

Wenn Sie diese Methoden korrekt implementiert haben, können Sie im GUI beim

angegebenen Test

• durch Halten und Ziehen der Maus das Objekt drehen und

• durch Drücken von Shift und Ziehen der Maus nach oben oder unten hinein

bzw. hinaus-zoomen.

Bemerkung: Anstatt die Viewmatrix immer wieder neu zu berechnen, ist es auch

möglich die gleiche Viewmatrix fortlaufend upzudaten, so wie Sie das in der Vorle-

sung gelernt haben. Dieses Verfahren führt aber meist zu numerischen Unstimmig-

keiten, was wiederum seltsame Bugs zur Folge hat.

Hinweis 1: Das Objekt muss zuerst um den Azimuth und dann erst um den Elevations-

Winkel gedreht werden.

Hinweis 2: Wir rechnen in Radians.

Benötigte Dateien: projection.TurnTable.java

Mögliche Tests: Turntable: Pyramid Wire Frame

Aufgabe 3 - Meshes, Deferred Shading und Z-Buffer (9 Punkte ?)

Die Pyramiden in den Tests der vorigen Aufgabe werden nur korrekt gezeichnet, weil

die Dreiecke bzw. Linien in der richtigen Reihenfolge dem Renderer übergeben wur-

den. Diesen Missstand wollen wir beheben, indem wir einen Z-Buffer implementieren.

Ausserdem implementieren wir in dieser Aufgabe einen Renderer, der dem Konzept

des Deferred Shadings Folge leistet. Dazu führen wir im Wesentlichen zwei neue Da-

tentypen ein: eine Mesh und eine Correspondence Klasse. Hier eine Übersicht der

Architektur und nachfolgend die entsprechenden Erklärungen:



7

Ein Mesh ist nichts Weiteres als eine Ansammlung von Dreiecken.

Die 3D Punkte oder Vertices dieser Dreiecke sind im Array vertices gespeichert.

Um die Eckpunkte eines Dreiecks zu finden benötigen wir das Array tvi (für Triangle

Vertex Index). Dies ist ein Array aus Triplet und speichert die Indizes derjenigen

Punkte, welche ein Dreieck bilden. tvi speichert nicht die 3D Punkte, sondern nur

einen Index auf diese.

Um nun zum Beispiel auf den ersten Eckpunkt des 25. Dreiecks zuzugreifen, können

wir folgendes tun:

vertices[tvi[24].get(0)];

tvi[24] gibt uns das Triplet für das 25. Dreieck und dieses Triplet gibt uns den

Index, welchen wir in vertices nachschlagen.

Analoges gilt für die Normalen (tni)- und Farb (cni) -Informationen welche auch

pro Vertex abgespeichert werden. Die Mesh Klasse hat noch ein paar zusätzliche

Member, welche wir später im Zusammenhang mit Texturen gebrauchen werden.

Der MeshRenderer ersetzt den bisherigen SimpleRenderer und funktioniert wie

folgt:

Es werden jetzt keine einzelnen Linien oder Dreiecke mehr gerastert, sondern gleich

ein ganzes Mesh “am Stück”. Der MeshRenderer ruft den MeshRasterizer auf, der

durch die Dreiecke des Meshes loopt, die Vertices projiziert und anschliessend das

Dreieck wie gewohnt rastert.

Hier kommt nun das Deferred Shading ins Spiel. Der TrianglePixelHandler, den

wir dem TriangleRasterizer übergeben, ist der MeshRasterizer selbst. Wenn der

Rasterizer einen Punkt identifiziert hat, wird in der Methode handleTrianglePixel(..)

des MeshRasterizers eine Pixel-zu-Dreieck Korrespondenz gesetzt. Für jeden Bild-

pixel (x, y) merken wir uns, welches Dreieck “hinter” diesem Pixel liegt.

Diese Korrespondenz wird durch die Klasse Correspondence repräsentiert. Ein

Correspondence-Objekt besteht aus einer Referenz auf das zugehörige Mesh, die ID



8

des Dreiecks, die baryzentrischen Koordinaten (triCoords) und den z-Wert (depth).

Eigentlich würde die ID des Dreiecks für die Korrespondenz reichen - die restlichen

Variablen erleichtern spätere Aufgaben bzw. vermeiden doppelte Berechnungen.

Um nun ein Mapping (x, y) 7→ Correspondence für jeden Bildpunkt hinzubekom-

men, bedienen wir uns wiederum der Klasse Image<T>. Der MeshRasterizer gibt

ein Bild vom Typ Image<Correspondence> zurück. Der MeshRenderer nimmt an-

schliessend dieses Korrespondenzbild entgegen, loopt über alle eingetragenen Korre-

spondenzen und bestimmt mit Hilfe des bekannten InterpolatedColorShaders die

Farbe.

Wozu der ganze Aufwand wenn wir schlussendlich wieder nur eine Farbe bestim-

men? Später werden wir den InterpolatedColorShader austauschen, um Texturen

auf ein Mesh zu rendern oder zusätzliche Berechnungen für Beleuchtung und Schat-

ten anzustellen, bevor wir die Farbe ins fertige Bild schreiben. Durch das Deferred

Shading können wir diese unterschiedlichen Aufgaben (Rasterung, Texturen, Be-

leuchtung, Schatten) gut auseinanderhalten und modular austauschen.

Konkret sollen Sie nun die folgenden Aufgaben lösen:

a) Rasterization (3 Punkte)

Vervollständigen Sie die Methode rasterize(..) der Klasse MeshRasterizer. In

dieser Methode müssen Sie durch alle Dreicke des gegebenen Meshes loopen, die

Eckpunkte mit der gegebenen Projektion auf die Bildebene abbilden und ansch-

liessend das projizierte Dreieck vom TriangleRasterizer rastern lassen. Für den

TriangleRasterizer müssen zusätzliche Membervariablen zwischengespeichert wer-

den, damit die Methode handleTrianglePixel(..) (siehe nächste Aufgabe) davon

Gebrauch machen kann. Diese zusätzlichen Informationen sind: currentMesh, cur-

rentTriangle und die projizierten Z-Werte des Dreiecks in currentDepths[].

Benötigte Dateien: rasterization.MeshRasterizer.java

Mögliche Tests: Rasterization: Pyramid Mesh

b) Z-Buffer (3 Punkte)

Wie Sie sehen, wird die Pyramide aus a) nicht richtig angezeigt. Dreiecke die näher

an der Kamera liegen, werden von Dreiecken dahinter überschrieben.

Implementieren Sie die Methode handleTrianglePixel(..) der Klasse MeshRa-

sterizer. Diese Methode befüllt das Korrespondenzbild. Hier sollen Sie nun auch

gleich einen Z-Buffer implementieren. Das heisst, eine Korrespondenz an der Stelle

(x, y) wird nur dann gesetzt, wenn es entweder noch keinen Eintrag gibt oder der

z-Wert des aktuellen Punktes kleiner ist als der eingetragene z-Wert. Den z-Wert

des aktuellen anzumalenden Punktes können Sie aus den entsprechenden z-Werte

(currentDepths) der Dreieckspunkte interpolieren. Unabhängig davon müssen Sie

sich hier auch noch überlegen, wann ein Punkt überhaupt sichtbar sein kann, sich

also nicht im ”Rücken” der Kamera befinden.



9

Hinweis 1: Um zu schauen, wie eine Corresponendz gesetzt wird, können sie in der

Klasse MeshRasterizerWithoutZBuffer spicken.

Hinweis 2: Um Entfernungen von Punkten zur Bildebene intuitiv verarbeiten zu

können und keine Probleme mit Vorzeichen zu bekommen, multiplizieren Sie die

Tiefe eines Punktes zd (z-Direction).

Benötigte Dateien: rasterization.MeshRasterizer.java

Mögliche Tests: Z-Buffer: Pyramid Mesh

c) Colorize (3 Punkte)

Nun ist das Korrespondenzbild erstellt und wir können zur Farbgebung übergehen.

Vervollständigen Sie dazu die Methode callShader(..) der Klasse MeshRenderer.

Diese Methode bekommt eine Korrespondenz im Bild und gibt dem Punkt über den

Shader eine Farbe.

Hinweis 1: Um zu schauen, wie der Shader aufgerufen wird, können sie in der Klasse

MeshRendererWrongColorShading spicken.

Hinweis 2: Die benötigten Farben der Eckpunkte sind im mesh gespeichert.

Benötigte Dateien: renderer.MeshRenderer.java

Mögliche Tests: Colorization: Pyramid Mesh

Aufgabe 4 - Near Clipping (2 Punkte)

In der Vorlesung haben Sie das Konzept des Frustums mit einer near clipping und

far clipping plane kennen gelernt. In dieser Aufgabe sollen Sie die near clipping plane

implementieren. Eine far clipping plane brauchen wir in unserer Pipeline nicht, weil

wir einen float-wertigen Z-Buffer haben.

Wenn Sie die Methode handleTrianglePixel(..) der vorigen Aufgabe richtig gelöst

haben, dann haben Sie eigentlich schon so etwas wie ein Clipping gemacht. Nun wol-

len wir aber erstens die Clipping Plane auf eine beliebige Höhe setzen (repräsentiert

durch die Membervariable cNear) und zweitens ein Dreieck gar nicht erst rastern,

wenn es geclipped werden muss. Ändern Sie dazu die Methode rasterize(..) der

Klasse MeshRasterizer so ab, dass ein Dreieck nur gerastert wird, wenn keiner der

drei Dreiecksvertices ausserhalb der Clipping Plane liegt.

Bemerkung: Dies ist ein relativ simples Verfahren um das Clipping zu implemen-

tieren. Eleganter wäre es natürlich, nur diesen Teil des Dreiecks abzuschneiden, der

auch ausserhalb der Clipping Plane liegt. Dann müsste man aber neue Dreiecke

einfügen, was die ganze Sache um einiges komplizierter macht.

Benötigte Dateien: rasterizer.MeshRasterizer.java

Mögliche Tests: Clipping: Pyramid Mesh, Clipping: Teapot Mesh


