UNIVERSITAT BASEL

Prof. Dr. Thomas Vetter Spiegelgasse 1 Patrick Kahr (patrick.kahr@unibas.ch)
Departement Mathematik und Informatik CH - 4051 Basel Clemens Biichner (clemens.biichner@unibas.ch)

Computer Grafik 2019 - Ubungsblatt 6

Ausgabe in Woche 12 (09.05.2019).

Vorfiihrung der laufenden Programme im Tutorium Woche 14 (Abgabe 23.05.2019).
Zu erreichende Punktzahl: 27

Zusétzlich enthilt dieses Blatt 3 nicht-obligatorische Bonusaufgaben welche maximal
9 Punkte ergeben.

In der Vorlesung wurde ein alternatives Verfahren zur Erzeugung von realistischen
Bildern vorgestellt: Raytracing bzw. Raycasting. Worin unterscheidet sich dieses
Verfahren vom auf den Blédttern 1-5 verfolgten Ansatz?

Ziel dieses Aufgabenblattes ist es einen einfachen Raytracer zu implementieren.

Aufgabe 1 - Schnitt Strahl - Dreieck / Kugel (5 Punkte x)

Implementieren Sie das Intersectable Interface in den Klassen Sphere und Tri-
angle. Vervollstédndigen Sie dazu jeweils die intersect Methode, sodass diese den
Schnittpunkt eines Strahls mit dem jeweiligen Objekt berechnet (siehe Folien). Da
ein solcher nicht immer existiert, gibt die Funktion zwecks intuitiver Code-Semantik
eine Instanz der Container-Klasse java.Optional<T> zuriick.

Ergénzen Sie als néichstes die Methode rayCastScene in der Klasse Scene. Sie soll
die Schnittpunkte eines Strahls mit allen Objekten der Szene berechnen und — sofern
existent — denjenigen zuriickgeben, der am néchsten zum Ursprungspunkt des Strahls
liegt.

Hinweis: 1 Beachten Sie den zweiten Parameter der Methoden intersect und ray-
CastScene: Er beschreibt eine Mindestdistanz, die Schnittpunkte vom Ursprung des
Strahls haben miissen.

Hinweis: 2 Es bietet sich an die Schnittpunktberechnung der Klasse Triangle mit-
hilfe der Methode barycentricCoords zu implementieren.

Benotigte Dateien: utils.Sphere, utils.Triangle, raycasting.Scene

Mogliche Tests: Raycasting 101: Intersections,Depth-Sorted Intersections



Aufgabe 2 - Raycasting (5 Punkte %)

Nun werden wir eine Szene mittels einfachen Raycastings entsprechend der Vorle-
sungsfolien rendern. Hierzu bendtigen wir die Klasse RayTracer.

Schicken Sie in der Methode render mit Hilfe von followRay fiir jedes Pixel einen
Strahl von der Kamera (Position (0,0,0)7) durch die virtuelle Position des Pixels
auf der Near-Clipping-Plane, welche durch die PinholeProjection gegeben ist. Im
Grunde wenden Sie dabei die Transformations- und Projektionspipeline riickwérts
an und berechnen auf diese Weise die Riicktransformation der Pixel- zu Welt-
Koordinaten.

Untersuchen Sie unter Zuhilfename der Funktion rayCastScene aus Aufgabe 1 ob
der Strahl ein Objekt in der Szene trifft. Ist dies der Fall, fairben Sie das Pixel in
der Farbe des getroffenen Objekts ein — andernfalls farben Sie es grau. Die Far-
be eines Szenenobjekts ist durch seine Materialeigenschaften gegeben, auf welche
Sie mit SceneObject.getMaterial zugreifen konnen. Sofern eine gerichtete Licht-
quelle durch lightSource definiert ist, firben Sie das Pixel geméfl dem Lambert-
Beleuchtungsmodell ein:

Farbe(Strahl(Pixel)) = c- (max{—(n,1),0} +a)

Dabei beschreibt ¢ die Farbe und n die Normale der getroffenen Fliche. Die Licht-
richtung ist durch [ gegeben und a beschreibt den ambienten Lichtanteil. Dieser ist
im Code durch die Membervariable ambientLight definiert.

Verglichen mit den vorhergehenden Ubungen wird Thnen sicherlich die lingere Ren-
derzeit aufgefallen sein, die unser RayTracer zur Bildberechnung benétigt. Uberlegen
Sie sich, was das Verfahren so rechenintensiv macht und wieso es nicht so einfach
ist, den Renderingprozess zu beschleunigen. Konzeptbedingt verzichtet die Klasse
RayTracer auf das Rendering eines Korrespondenzbildes und fiarbt die Pixel des
Framebuffers direkt in ihren finalen Farben ein. Uberlegen Sie sich, wieso ein Korre-
spondenzbild nicht sinnvoll mit Raytracing kombinierbar ist und weshalb insbeson-
dere Deferred-Shading in diesem Kontext keine Vorteile mit sich bringt.

Hinweis: 1 Beachten Sie die Orientierung der Kamera bei der Richtungsberechnung
der Strahlen. In allen Tests werden die Objekte in die negative Z-Richtung verscho-
ben, sodass die Kamera ebenfalls entlang der negativen Z-Achse ausgerichtet ist.

Benotigte Dateien: raytracing.RayTracer

Mogliche Tests: Ray-Cast Scene (Unlit), Ray-Cast Scene



Aufgabe 3 - Raytracing (5 Punkte %)

Verfolgen Sie nun die Strahlen rekursiv weiter, um auf diese Weise spiegelnde Ober-
flichen darzustellen. Es werden ideal spiegelnde Oberflichen angenommen. Beziehen
Sie Reflexionen in die Simulation ein, indem Sie einen Reflexionsterm zum Beleuch-
tungsmodell der vorherigen Aufgabe addieren:

Farbe(Strahl(Pixel)) =c-Ij+r- I
I; = max{—(n,1),0} +a (Lambert-Term)
I, = Farbe(Strahl(ReﬁeXion)) (Reflezionsterm)

Dabei beschreibt r» den Reflexionsgrad der getroffenen Oberfliche und I,. die Farbe
des aus der Reflexionsrichtung (gemifl dem Reflexionsgesetz) eintreffenden Lichts.
Der Reflexionsgrad ist im RayTracingMaterial durch ein RGBA-Tupel fiir alle drei
Grundfarben individuell definiert.

Verwenden Sie als initiale Rekursionstiefe rayTraceDepth und wenden Sie den Re-
kursionsschritt nur an, wenn die Membervariable rayTracingEnabled auf true ge-
setzt ist. Berechnen Sie die Pixelfarben andernfalls wie in Aufgabe 2.

Benotigte Dateien: raytracing.RayTracer
g y g.hay

Mogliche Tests: Ray-Traced Scene

Aufgabe 4 - Environment Mapping (1 Punkt)

Nun betrachten wir den Fall genauer, in dem ein Strahl kein Szenenobjekt trifft.
Bisher haben wir die Pixel solcher Strahlen lediglich grau eingefirbt. Nun wollen
wir eine konkrete Hintergrundfarbe aus einer Environment-Map — genauer einer
Cube-Map — entnehmen.

Uberpriifen Sie zunichst ob die Membervariable environmentMap eine konkrete In-
stanz enthéilt und entnehmen Sie ihr in diesem Fall eine Farbe fiir alle Strahlen,
die auf kein Objekt treffen. Sie konnen die Richtung des Strahls (Ray.direction)
direkt an die access-Methode der Environment-Map iibergeben. Es wird angenom-
men, dass dieser Hintergrund unendlich weit entfernt ist, darum kommt es auf den
Ursprungspunkt des Strahls nicht an.

Hinweis: 1 Falls Sie auf Probleme, wie Out0fMemoryError-Exceptions oder besonders
langsame Programmausfithrung, stossen, versuchen Sie die Environment-Maps in
einer niedrigeren Auflésung zu laden, indem Sie Ex6TestSuite.USE_HD_CUBEMAPS
auf false setzen.

Benotigte Dateien: raytracing.RayTracer

Mogliche Tests: Environment Mapping



Aufgabe 5 - Schatten (4 Punkte)

Momentan werfen die Objekte in unseren Bildern noch keine Schatten. Fiir den
Realismus der gerenderten Bilder sind glaubwiirdige Schatten jedoch unerlésslich.

Um dem nachzukommen, &ndern wir unsere Beleuchtungsgleichung wie folgt ab:

Farbe(StrahlP>*V) = . c. I, + 7 - I,
I; = max{—(n,1),0} +a (Lambert-Term)
I, = Farbe(Strahl(ReﬂeXion)) (Reflexionsterm)

Der Vorfaktor v beschreibt, ob der vom Strahl®e) getroffene Punkt p eines Ob-
jekts von der Lichtquelle aus sichbar ist. Um dies zu ermitteln, schicken Sie einen
Strahl(Schatten) yon p aus in die Richtung [ des einfallenden Lichts. Der Punkt p liegt
genau dann im Schatten eines Objekts, wenn der Strahl(Schatten) gy f ein solches trifft.

Implementieren Sie Ihr neues Beleuchtungsmodell so, dass die Schattenberechnung
durch shadowsEnabled ein- und ausgeschaltet werden kann.

Hinweis: 1 Indem Sie die Methode rayCastSceneAny implementieren und fiir die
Schattierung nutzen, konnen Sie den Renderingprozess ein wenig beschleunigen.

Bendtigte Dateien: raytracing.RayTracer, raytracing.Scene

Mogliche Tests: Shadows

Aufgabe 6 - Weiche Schatten (2 Punkte)

Unsere Lichtquellen werden momentan als unendlich klein angenommen und wer-
fen entsprechend harte Schatten. Um weiche Schatten zu simulieren, kénnen wir
mehrere, leicht ausgelenkte Strahlen zu verschieden Punkten in der Umgebung der
Lichtquelle schicken und die Resultate mitteln.

Sie konnen die Methode sampleStandardNormal3D der Klasse RandomHelper ver-
wenden, um die Lichtrichtung zur Schattenberechnung stochastisch auszulenken.
Skalieren Sie die Auslenkung mit shadowSoftness, um die Simulation unterschied-

lich grosser Lichtquellen zu erlauben. Der Effekt soll mit softShadowsEnabled ein-

und ausschaltbar sein, wobei die Anzahl der verwendeten Strahlen {iber softShadowSamples
variierbar sein soll.

Benotigte Dateien: raytracing.RayTracer

Mogliche Tests: Shadows (Soft)



Aufgabe 7 - Brechung (5 Punkte)

Raytracing ist eine sehr universelle Rendering-Technik und erlaubt es uns sogar
transparente Materialien realistisch darzustellen. Wir erweitern unser Modell erneut:

Farbe(Strahl(Pixel)) =v-c- L} +r- I, +t- I
I} = max{—(n,),0} +a (Lambert-Term,)
I, = Farbe(Strahl(ReﬂeXion)) (Reflexionsterm,)

I = Farbe(Strahl(BreChungsriCht“ng)) (Refraktionsterm)
Die Brechungsrichtung bestimmen wir auf Grundlage des Brechungsgesetzes:
sin(61) - ny = sin(f) - no

0; ist dabei der Winkel zur Normalen auf der Seite ¢, und n; ist der Brechungsindex
des Materials auf dieser Seite.

Erweitern Sie ihren Raytracer ein weiteres Mal, um auch die gebrochenen Strahlen
zu verfolgen, die auf eine transparente Fliche treffen. Letzteres konnen Sie mittels
RayTracingMaterial.isTransparent iiberpriifen. Die optische Dichte des trans-
parenten Materials erhalten wir durch RayTracingMaterial.getDensity. Analog
zum Reflexionsgrad ist auch die transparenz fiir alle drei Grundfarben individuell
definiert und {iber RayTracingMaterial.getTransparency abfragbar.

Es ist wichtig, dass Sie unterscheiden, ob ein Strahl in ein Objekt eindringt oder
es verldsst. Vergleichen Sie dazu die Richtung des Strahls mit der Normalen der
getroffenen Oberfliche. In unseren Tests werden die Normalen immer vom Objekt
nach aussen zeigen. Dariiberhinaus werden sich transparente Objekte in unseren
Tests nie iiberlappen. Insofern ist einer der beiden Brechungsindizes n; stets 1.0 und
entspricht somit in etwa dem Brechungsindex von Luft.

Hinweis: 1 Beachten Sie, dass unter gewissen Bedingungen eine Totalreflexion der
Strahlen auftreten kann.

Hinweis: 2 Fiir unsere Gold-Standard-Renderings wurden Reflexionen fiir alle Strah-
len unterbunden, wenn sie ein optisch dichtes Objekt mit Brechungsindex grosser 1
verlassen. Hiervon ausdriicklich ausgenommen sind Effekte der Totalreflexion.

Benotigte Dateien: raytracing.RayTracer

Mogliche Tests: Refraction



Aufgabe 8 - Diffuse Reflexionen (Bonusaufgabe 3 Punkte)

Unsere als ideal modellierten Reflexionen lassen die Oberflichen unserer Objekte
noch sehr glatt wirken. Als néchstes wollen wir unseren Raytracer so erweitern, dass
wir auch raue Oberflichen und diffusere Reflexionen darstellen kénnen.

Dazu berechnen wir den Reflexionsterm nun auf Grundlage von mehreren leicht
ausgelenkten Reflexionsstrahlen, anstatt nur eines einzigen. Variieren Sie zur Be-
rechnung jedes Reflexionsstrahls die Richtung der Oberflichennormale. Dadurch si-
mulieren Sie ein Material mit mikroskopisch kleinen Oberflichenunebenheiten. Sie
konnen die Methode RandomHelper . samplePointOnUnitSphere verwenden, um die
Richtung der Normalen stochastisch auszulenken. Skalieren Sie die Auslenkungen
mit dem Produkt aus roughReflectionRoughness, sowie der Materialeigenschaft
RayTracingMaterial .getRoughness und einer standardnormalverteilten Zufallsva-
riable RandomHelper . sampleStandardNormaliD. Die Anzahl der Reflexionsstrahlen
konnen Sie der Membervariablen roughReflectionSamples entnehmen. Mitteln Sie
zuletzt die Farben aller Reflexionsstrahlen um die Farbe der diffusen Reflexion zu er-
mitteln. Implementieren Sie den Effekt so, dass er iiber roughReflectionsEnabled
ein- und ausgeschaltet werden kann.

Bendtigte Dateien: raytracing.RayTracer

Mogliche Tests: Rough Reflections

Aufgabe 9 - Tiefenschirfe (Bonusaufgabe 3 Punkte)

Falls Sie Gefallen an Raytracing gefunden haben, kénnen Sie auch sehr einfach einen
Tiefenschérfe-Effekt implementieren. Dazu schicken Sie fiir jeden Pixel mehrere,
leicht ausgelenkte Strahlen in die Szene und berechnen den Durchschnitt der re-
sultierenden Farben.

Die Strahlen werden dabei in ihrem Ursprungspunkt so ausgelenkt, dass sich alle
Strahlen eines Pixels, in einem bestimmten Abstand — der sogenannten Brennweite —
treffen. Punkte, die sich in genau diesem Abstand befinden, werden scharf abgebildet,
wahrend die Szene sowohl davor, als auch dahinter zunehmend verwaschen wirkt.

Die Brennweite ist gegeben durch depthOfFieldFocalLength, die Anzahl der Strah-
len pro Pixel wird durch depthOfFieldSamples definiert. Nutzen Sie fiir die Auslen-
kung der Strahlen die Methode sampleStandardNormal3D der Klasse RandomHelper
und skalieren Sie diese mit dem Wert der Membervariablen depthOfField. Imple-
mentieren Sie den Effekt so, dass er iiber depthOfFieldEnabled ein- und ausge-
schaltet werden kann.

Benotigte Dateien: raytracing.RayTracer

Mogliche Tests: Depth of Field



Aufgabe 10 - Antialiasing (Bonusaufgabe 3 Punkte)

Zu guter Letzt wollen wir noch etwas gegen den Treppeneffekt tun, der sich an den
Kanten unserer gerenderten Objeke bemerkbar macht.

Wir erreichen dies mit der Supersampling-Technik, die bereits am Anfang der Vor-
lesung vorgestellt wurde. Das heifit, dass wir fiir jeden Pixel mehrere Strahlen in die
Szene schicken und deren Resultate mitteln. Um den notwendigen Rechenaufwand
in Grenzen zu halten wenden wir diese Technik jedoch nur auf diejenigen Bildpixel
an, die zu einer Kante im Bild gehoren.

Berechnen Sie zu diesem Zweck zunéchst wie gehabt ein Bild mit IThrem Raytracer
und ermitteln Sie in einem zweiten Schritt alle Bildpixel, die Teil einer Kante sind.
Vergleichen Sie dazu die Farben benachbarter Pixel komponentenweise. Nehmen Sie
an, dass zwei benachbarte Pixel genau dann zu einer Kante gehoren, wenn die Summe
der absoluten Farbkomponenten ihrer Differenzen ein Schwellenwert iiberschreitet,
der durch die Membervariable adaptiveSupersamplingThreshold festgelegt wird.

Wenden Sie nun fiir jedes Pixel einer Kante die Supersampling-Technik an, indem
Sie es in n x n Subpixel unterteilen und den Raytracing-Algorithmus fiir jedes Sub-
pixel erneut ausfithren. Mitteln Sie die so berechneten Farben und farben Sie das
urspriingliche Pixel in deren Durchschnitt ein.

Der Wert fiir n ist im Code durch das Memberfeld adaptiveSupersamplingSamples
gegeben.

Benotigte Dateien: raytracing.RayTracer

Mogliche Tests: Adaptive Supersampling



