
UNIVERSITÄT BASEL

Prof. Dr. Thomas Vetter
Departement Mathematik und Informatik

Spiegelgasse 1
CH – 4051 Basel

Patrick Kahr (patrick.kahr@unibas.ch)
Clemens Büchner (clemens.büchner@unibas.ch)

Computer Grafik 2019 - Übungsblatt 6

Ausgabe in Woche 12 (09.05.2019).

Vorführung der laufenden Programme im Tutorium Woche 14 (Abgabe 23.05.2019).

Zu erreichende Punktzahl: 27

Zusätzlich enthält dieses Blatt 3 nicht-obligatorische Bonusaufgaben welche maximal

9 Punkte ergeben.

In der Vorlesung wurde ein alternatives Verfahren zur Erzeugung von realistischen

Bildern vorgestellt: Raytracing bzw. Raycasting. Worin unterscheidet sich dieses

Verfahren vom auf den Blättern 1-5 verfolgten Ansatz?

Ziel dieses Aufgabenblattes ist es einen einfachen Raytracer zu implementieren.

Aufgabe 1 - Schnitt Strahl - Dreieck / Kugel (5 Punkte ?)

Implementieren Sie das Intersectable Interface in den Klassen Sphere und Tri-

angle. Vervollständigen Sie dazu jeweils die intersect Methode, sodass diese den

Schnittpunkt eines Strahls mit dem jeweiligen Objekt berechnet (siehe Folien). Da

ein solcher nicht immer existiert, gibt die Funktion zwecks intuitiver Code-Semantik

eine Instanz der Container-Klasse java.Optional<T> zurück.

Ergänzen Sie als nächstes die Methode rayCastScene in der Klasse Scene. Sie soll

die Schnittpunkte eines Strahls mit allen Objekten der Szene berechnen und – sofern

existent – denjenigen zurückgeben, der am nächsten zum Ursprungspunkt des Strahls

liegt.

Hinweis: 1 Beachten Sie den zweiten Parameter der Methoden intersect und ray-

CastScene: Er beschreibt eine Mindestdistanz, die Schnittpunkte vom Ursprung des

Strahls haben müssen.

Hinweis: 2 Es bietet sich an die Schnittpunktberechnung der Klasse Triangle mit-

hilfe der Methode barycentricCoords zu implementieren.

Benötigte Dateien: utils.Sphere, utils.Triangle, raycasting.Scene

Mögliche Tests: Raycasting 101: Intersections, Depth-Sorted Intersections



2

Aufgabe 2 - Raycasting (5 Punkte ?)

Nun werden wir eine Szene mittels einfachen Raycastings entsprechend der Vorle-

sungsfolien rendern. Hierzu benötigen wir die Klasse RayTracer.

Schicken Sie in der Methode render mit Hilfe von followRay für jedes Pixel einen

Strahl von der Kamera (Position (0, 0, 0)T ) durch die virtuelle Position des Pixels

auf der Near-Clipping-Plane, welche durch die PinholeProjection gegeben ist. Im

Grunde wenden Sie dabei die Transformations- und Projektionspipeline rückwärts

an und berechnen auf diese Weise die Rücktransformation der Pixel- zu Welt-

Koordinaten.

Untersuchen Sie unter Zuhilfename der Funktion rayCastScene aus Aufgabe 1 ob

der Strahl ein Objekt in der Szene trifft. Ist dies der Fall, färben Sie das Pixel in

der Farbe des getroffenen Objekts ein – andernfalls färben Sie es grau. Die Far-

be eines Szenenobjekts ist durch seine Materialeigenschaften gegeben, auf welche

Sie mit SceneObject.getMaterial zugreifen können. Sofern eine gerichtete Licht-

quelle durch lightSource definiert ist, färben Sie das Pixel gemäß dem Lambert-

Beleuchtungsmodell ein:

Farbe
(
Strahl(Pixel)

)
= c ·

(
max{−〈n, l〉, 0}+ a

)
Dabei beschreibt c die Farbe und n die Normale der getroffenen Fläche. Die Licht-

richtung ist durch l gegeben und a beschreibt den ambienten Lichtanteil. Dieser ist

im Code durch die Membervariable ambientLight definiert.

Verglichen mit den vorhergehenden Übungen wird Ihnen sicherlich die längere Ren-

derzeit aufgefallen sein, die unser RayTracer zur Bildberechnung benötigt. Überlegen

Sie sich, was das Verfahren so rechenintensiv macht und wieso es nicht so einfach

ist, den Renderingprozess zu beschleunigen. Konzeptbedingt verzichtet die Klasse

RayTracer auf das Rendering eines Korrespondenzbildes und färbt die Pixel des

Framebuffers direkt in ihren finalen Farben ein. Überlegen Sie sich, wieso ein Korre-

spondenzbild nicht sinnvoll mit Raytracing kombinierbar ist und weshalb insbeson-

dere Deferred-Shading in diesem Kontext keine Vorteile mit sich bringt.

Hinweis: 1 Beachten Sie die Orientierung der Kamera bei der Richtungsberechnung

der Strahlen. In allen Tests werden die Objekte in die negative Z-Richtung verscho-

ben, sodass die Kamera ebenfalls entlang der negativen Z-Achse ausgerichtet ist.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Ray-Cast Scene (Unlit), Ray-Cast Scene



3

Aufgabe 3 - Raytracing (5 Punkte ?)

Verfolgen Sie nun die Strahlen rekursiv weiter, um auf diese Weise spiegelnde Ober-

flächen darzustellen. Es werden ideal spiegelnde Oberflächen angenommen. Beziehen

Sie Reflexionen in die Simulation ein, indem Sie einen Reflexionsterm zum Beleuch-

tungsmodell der vorherigen Aufgabe addieren:

Farbe
(
Strahl(Pixel)

)
= c · Il + r · Ir

Il = max{−〈n, l〉, 0}+ a (Lambert-Term)

Ir = Farbe
(
Strahl(Reflexion)

)
(Reflexionsterm)

Dabei beschreibt r den Reflexionsgrad der getroffenen Oberfläche und Ir die Farbe

des aus der Reflexionsrichtung (gemäß dem Reflexionsgesetz) eintreffenden Lichts.

Der Reflexionsgrad ist im RayTracingMaterial durch ein RGBA-Tupel für alle drei

Grundfarben individuell definiert.

Verwenden Sie als initiale Rekursionstiefe rayTraceDepth und wenden Sie den Re-

kursionsschritt nur an, wenn die Membervariable rayTracingEnabled auf true ge-

setzt ist. Berechnen Sie die Pixelfarben andernfalls wie in Aufgabe 2.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Ray-Traced Scene

Aufgabe 4 - Environment Mapping (1 Punkt)

Nun betrachten wir den Fall genauer, in dem ein Strahl kein Szenenobjekt trifft.

Bisher haben wir die Pixel solcher Strahlen lediglich grau eingefärbt. Nun wollen

wir eine konkrete Hintergrundfarbe aus einer Environment-Map – genauer einer

Cube-Map – entnehmen.

Überprüfen Sie zunächst ob die Membervariable environmentMap eine konkrete In-

stanz enthält und entnehmen Sie ihr in diesem Fall eine Farbe für alle Strahlen,

die auf kein Objekt treffen. Sie können die Richtung des Strahls (Ray.direction)

direkt an die access-Methode der Environment-Map übergeben. Es wird angenom-

men, dass dieser Hintergrund unendlich weit entfernt ist, darum kommt es auf den

Ursprungspunkt des Strahls nicht an.

Hinweis: 1 Falls Sie auf Probleme, wie OutOfMemoryError-Exceptions oder besonders

langsame Programmausführung, stossen, versuchen Sie die Environment-Maps in

einer niedrigeren Auflösung zu laden, indem Sie Ex6TestSuite.USE HD CUBEMAPS

auf false setzen.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Environment Mapping



4

Aufgabe 5 - Schatten (4 Punkte)

Momentan werfen die Objekte in unseren Bildern noch keine Schatten. Für den

Realismus der gerenderten Bilder sind glaubwürdige Schatten jedoch unerlässlich.

Um dem nachzukommen, ändern wir unsere Beleuchtungsgleichung wie folgt ab:

Farbe(Strahl(Pixel)) = v · c · Il + r · Ir
Il = max{−〈n, l〉, 0}+ a (Lambert-Term)

Ir = Farbe
(
Strahl(Reflexion)

)
(Reflexionsterm)

Der Vorfaktor v beschreibt, ob der vom Strahl(Pixel) getroffene Punkt p eines Ob-

jekts von der Lichtquelle aus sichbar ist. Um dies zu ermitteln, schicken Sie einen

Strahl(Schatten) von p aus in die Richtung l des einfallenden Lichts. Der Punkt p liegt

genau dann im Schatten eines Objekts, wenn der Strahl(Schatten) auf ein solches trifft.

Implementieren Sie Ihr neues Beleuchtungsmodell so, dass die Schattenberechnung

durch shadowsEnabled ein- und ausgeschaltet werden kann.

Hinweis: 1 Indem Sie die Methode rayCastSceneAny implementieren und für die

Schattierung nutzen, können Sie den Renderingprozess ein wenig beschleunigen.

Benötigte Dateien: raytracing.RayTracer, raytracing.Scene

Mögliche Tests: Shadows

Aufgabe 6 - Weiche Schatten (2 Punkte)

Unsere Lichtquellen werden momentan als unendlich klein angenommen und wer-

fen entsprechend harte Schatten. Um weiche Schatten zu simulieren, können wir

mehrere, leicht ausgelenkte Strahlen zu verschieden Punkten in der Umgebung der

Lichtquelle schicken und die Resultate mitteln.

Sie können die Methode sampleStandardNormal3D der Klasse RandomHelper ver-

wenden, um die Lichtrichtung zur Schattenberechnung stochastisch auszulenken.

Skalieren Sie die Auslenkung mit shadowSoftness, um die Simulation unterschied-

lich grosser Lichtquellen zu erlauben. Der Effekt soll mit softShadowsEnabled ein-

und ausschaltbar sein, wobei die Anzahl der verwendeten Strahlen über softShadowSamples

variierbar sein soll.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Shadows (Soft)



5

Aufgabe 7 - Brechung (5 Punkte)

Raytracing ist eine sehr universelle Rendering-Technik und erlaubt es uns sogar

transparente Materialien realistisch darzustellen. Wir erweitern unser Modell erneut:

Farbe(Strahl(Pixel)) = v · c · Il + r · Ir + t · Ib
Il = max{−〈n, l〉, 0}+ a (Lambert-Term)

Ir = Farbe
(
Strahl(Reflexion)

)
(Reflexionsterm)

Ib = Farbe
(
Strahl(Brechungsrichtung)) (Refraktionsterm)

Die Brechungsrichtung bestimmen wir auf Grundlage des Brechungsgesetzes:

sin(θ1) · n1 = sin(θ2) · n2

θi ist dabei der Winkel zur Normalen auf der Seite i, und ni ist der Brechungsindex

des Materials auf dieser Seite.

Erweitern Sie ihren Raytracer ein weiteres Mal, um auch die gebrochenen Strahlen

zu verfolgen, die auf eine transparente Fläche treffen. Letzteres können Sie mittels

RayTracingMaterial.isTransparent überprüfen. Die optische Dichte des trans-

parenten Materials erhalten wir durch RayTracingMaterial.getDensity. Analog

zum Reflexionsgrad ist auch die transparenz für alle drei Grundfarben individuell

definiert und über RayTracingMaterial.getTransparency abfragbar.

Es ist wichtig, dass Sie unterscheiden, ob ein Strahl in ein Objekt eindringt oder

es verlässt. Vergleichen Sie dazu die Richtung des Strahls mit der Normalen der

getroffenen Oberfläche. In unseren Tests werden die Normalen immer vom Objekt

nach aussen zeigen. Darüberhinaus werden sich transparente Objekte in unseren

Tests nie überlappen. Insofern ist einer der beiden Brechungsindizes ni stets 1.0 und

entspricht somit in etwa dem Brechungsindex von Luft.

Hinweis: 1 Beachten Sie, dass unter gewissen Bedingungen eine Totalreflexion der

Strahlen auftreten kann.

Hinweis: 2 Für unsere Gold-Standard-Renderings wurden Reflexionen für alle Strah-

len unterbunden, wenn sie ein optisch dichtes Objekt mit Brechungsindex grösser 1

verlassen. Hiervon ausdrücklich ausgenommen sind Effekte der Totalreflexion.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Refraction



6

Aufgabe 8 - Diffuse Reflexionen (Bonusaufgabe 3 Punkte)

Unsere als ideal modellierten Reflexionen lassen die Oberflächen unserer Objekte

noch sehr glatt wirken. Als nächstes wollen wir unseren Raytracer so erweitern, dass

wir auch raue Oberflächen und diffusere Reflexionen darstellen können.

Dazu berechnen wir den Reflexionsterm nun auf Grundlage von mehreren leicht

ausgelenkten Reflexionsstrahlen, anstatt nur eines einzigen. Variieren Sie zur Be-

rechnung jedes Reflexionsstrahls die Richtung der Oberflächennormale. Dadurch si-

mulieren Sie ein Material mit mikroskopisch kleinen Oberflächenunebenheiten. Sie

können die Methode RandomHelper.samplePointOnUnitSphere verwenden, um die

Richtung der Normalen stochastisch auszulenken. Skalieren Sie die Auslenkungen

mit dem Produkt aus roughReflectionRoughness, sowie der Materialeigenschaft

RayTracingMaterial.getRoughness und einer standardnormalverteilten Zufallsva-

riable RandomHelper.sampleStandardNormal1D. Die Anzahl der Reflexionsstrahlen

können Sie der Membervariablen roughReflectionSamples entnehmen. Mitteln Sie

zuletzt die Farben aller Reflexionsstrahlen um die Farbe der diffusen Reflexion zu er-

mitteln. Implementieren Sie den Effekt so, dass er über roughReflectionsEnabled

ein- und ausgeschaltet werden kann.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Rough Reflections

Aufgabe 9 - Tiefenschärfe (Bonusaufgabe 3 Punkte)

Falls Sie Gefallen an Raytracing gefunden haben, können Sie auch sehr einfach einen

Tiefenschärfe-Effekt implementieren. Dazu schicken Sie für jeden Pixel mehrere,

leicht ausgelenkte Strahlen in die Szene und berechnen den Durchschnitt der re-

sultierenden Farben.

Die Strahlen werden dabei in ihrem Ursprungspunkt so ausgelenkt, dass sich alle

Strahlen eines Pixels, in einem bestimmten Abstand – der sogenannten Brennweite –

treffen. Punkte, die sich in genau diesem Abstand befinden, werden scharf abgebildet,

während die Szene sowohl davor, als auch dahinter zunehmend verwaschen wirkt.

Die Brennweite ist gegeben durch depthOfFieldFocalLength, die Anzahl der Strah-

len pro Pixel wird durch depthOfFieldSamples definiert. Nutzen Sie für die Auslen-

kung der Strahlen die Methode sampleStandardNormal3D der Klasse RandomHelper

und skalieren Sie diese mit dem Wert der Membervariablen depthOfField. Imple-

mentieren Sie den Effekt so, dass er über depthOfFieldEnabled ein- und ausge-

schaltet werden kann.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Depth of Field



7

Aufgabe 10 - Antialiasing (Bonusaufgabe 3 Punkte)

Zu guter Letzt wollen wir noch etwas gegen den Treppeneffekt tun, der sich an den

Kanten unserer gerenderten Objeke bemerkbar macht.

Wir erreichen dies mit der Supersampling-Technik, die bereits am Anfang der Vor-

lesung vorgestellt wurde. Das heißt, dass wir für jeden Pixel mehrere Strahlen in die

Szene schicken und deren Resultate mitteln. Um den notwendigen Rechenaufwand

in Grenzen zu halten wenden wir diese Technik jedoch nur auf diejenigen Bildpixel

an, die zu einer Kante im Bild gehören.

Berechnen Sie zu diesem Zweck zunächst wie gehabt ein Bild mit Ihrem Raytracer

und ermitteln Sie in einem zweiten Schritt alle Bildpixel, die Teil einer Kante sind.

Vergleichen Sie dazu die Farben benachbarter Pixel komponentenweise. Nehmen Sie

an, dass zwei benachbarte Pixel genau dann zu einer Kante gehören, wenn die Summe

der absoluten Farbkomponenten ihrer Differenzen ein Schwellenwert überschreitet,

der durch die Membervariable adaptiveSupersamplingThreshold festgelegt wird.

Wenden Sie nun für jedes Pixel einer Kante die Supersampling-Technik an, indem

Sie es in n× n Subpixel unterteilen und den Raytracing-Algorithmus für jedes Sub-

pixel erneut ausführen. Mitteln Sie die so berechneten Farben und färben Sie das

ursprüngliche Pixel in deren Durchschnitt ein.

Der Wert für n ist im Code durch das Memberfeld adaptiveSupersamplingSamples

gegeben.

Benötigte Dateien: raytracing.RayTracer

Mögliche Tests: Adaptive Supersampling


