UNIVERSITAT BASEL N
\/|_/|\/
ANIAIZA
Thorsten Moller /|\,\/|\

Maarten Schenk - maarten.schenk@unibas.ch
Michael Pliiss - m.pluess@unibas.ch

=]
>C
w2

Programming Paradigms — C++ FS 2019

Exercise 3 Due: 28.04.2019 23:59:59

Upload answers to the questions and source code before the deadline via
courses.cs.unibas.ch. In addition, running programs have to be demonstrated dur-
ing the exercise slots until Friday, 03.05.2019 the latest. Also note, of all manda-
tory exercises given throughout the course, you must score at least 2/3 of their
total sum of points to get accepted in the final exam.

Modalities of work: The exercise can be completed in groups of at the most
2 people. Do not forget to provide the full name of all group members together
with the submitted solution.

Question 1: Constructors, Destructors (12 points)

In this question you will implement a AVL tree based on a binary tree. If you don’t know
what a AVL tree or a binary tree is or how they work, you can look them up here:
https://en.wikipedia.org/wiki/AVL_treee
https://en.wikipedia.org/wiki/Binary_tree

We are going to use this tree to save zip codes with their respective places. You can use
any zip codes, but if you want real data:
http://www.geonames.org/postalcode-search.html?q=&country=CH

a) Write a class AVLNode (with a header file) implementing a single node of a AVL tree
with a key as integer and a value as string and an integer balance.

Each element should contain a integer key, its string value, integer balance and
pointers to the parent, the left child and the right child nodes. Each node should
also have functions to get its string value and to check if it is a leaf node in the tree.

(3 points)
b) Write two constructors for the AVLNode class:

1. A constructor taking the key/value pair and the pointer to the parent node of
an AVL node as an argument.

2. A constructor taking the key/value pair, the pointers to the parent node, left
child and right child node of an AVL node as an argument.

mailto:maarten.schenk@unibas.ch
mailto:m.pluess@unibas.ch
https://courses.cs.unibas.ch
https://en.wikipedia.org/wiki/AVL_treee
https://en.wikipedia.org/wiki/Binary_tree
http://www.geonames.org/postalcode-search.html?q=&country=CH

(2 points)

c) Write a class AVLTree (with a header file) that uses the AVLNode class internally to
store the key/value pairs.

Your implementation should contain:
e A pointer to the root of the tree stored in a private variable.
e A method insert which adds key/value pairs to the AVL tree.

e A method search which returns the value to the corresponding key or returns
an empty string if the value was not found inside the tree.

A method rebalance which checks depending on the node, if the tree needs to
be rebalanced and if true does the rebalancing.

A method printBalance which prints the balance of each node in layers of the
tree (use | to denote a layer), if a node is not a leaf but has only one child print
an x for the missing child. (E.g. 0 10]0x00)

e A destructor that makes sure all nodes are deleted.

Note: It’s adviced to write also a method for each of the four different rotations
(rotateLeft, rotateRight, rotateLeft ThenRight, rotateRight ThenLeft). You don’t have
to implement a delete method.

(6 points)
d) Write a main method to test your implementation.

You should insert at least 10 different zip codes with ther respective place and print
the balance of the tree. Also make some searches for at least one value which is inside
the tree and for one that isn’t.

(1 points)

Question 2: Classes and Inheritance (12 points)

In this task you will implement classes for different sorting algorithms based on inheri-
tance.

a) Create a header file sort.h declaring a class Sort, that should act like a Java in-
terface, containing only purely virtual functions getName taking no arguments and
returning a string, and sort taking and returning a vector of integers.

(1 points)

b) Create a class CocktailShakerSort that inherits from Sort and implements the
cocktail shaker sort algorithm. The cocktail shaker sort algorithm works like a bidi-
rectional bubble sort, where after every pass of the normal bubble sort, a pass in the
other direction of the list is performed. The details can be found here:
https://en.wikipedia.org/wiki/Cocktail_shaker_sort

https://en.wikipedia.org/wiki/Cocktail_shaker_sort

getName should return the name of the sorting algorithm and sort should return the
sorted vector using your CocktailShakerSort implementation.

(4 points)

Create a class QuickSort that inherits from Sort and implements the quick sort
algorithm. The choice of the pivot element can greatly influence the efficiency of the
algorithm. For example, always chosing the last element of an already-sorted array
will result in O(n?) performance. A common approach to resolve this issue, is to first
shuffle the array. More details on the exact implementation possibilities can be found
here:

https://en.wikipedia.org/wiki/Quicksort

getName should return the name of the sorting algorithm and sort should return the
sorted vector using your QuickSort implementation.

(4 points)
Write a main function to test your sorting classes.

Sort a vector of at least length 20 that is not already sorted and print the result to
the standard output.

(1 points)

Functors in C++ are classes and structs that overload the () operator and can
therefore be called like a function even though they are variables.

In this task you will expand your sorting classes to be functors, so they can be used
like functions. If you were unable to complete the previous exercise you can implement
a new class and use the C++ sorting method sort.

Extend your classes CocktailShakerSort and QuickSort with the () operator such
that they can be used as indicated in the following example code:

https://en.wikipedia.org/wiki/Quicksort

#include <vector>

#include "CocktailShakerSort.h"
#include "QuickSort.h"

using namespace std;

int main() {
CocktailShakerSort shakerSort;
QuickSort quickSort;
vector<int> list;

// Fill vector here

vector<int> sortedShaker = shakerSort(list);
vector<int> sortedQuick = quickSort(list);

cout << sortedShaker << endl;
cout << sortedQuick << endl;

return O;

(2 points)

Question 3: C++ Templates (6 points)

In question one of this exercise you have implemented a AVL tree for zip codes and their
places. If it turned out that you needed a AVL tree which has the year as a key and the
average temperature (as double) of this given year as value in addition to the AVL tree for
zip codes then a naive approach would be to write an entirely new class and copy-paste
the AVL tree and replace the string value with a double value. Of course, solving the
problem this way is very bad coding practice, which is why templates exist in C++ — a
concept for generic programming.

A generic class is a class in which variables and function return types can be defined
to be template types. These template types can only be used in ways any type could be
used. Because of this, the compiler can substitute in the right type and create individual
classes for different types without the programmer having to write the same code multiple
times.

Write a generic version of the AVLNode and the AVLTree class from question one and test
your implementation in a main function as described in question 1 ¢). You can use made
up values for your test, but use atleast 8 values.

Question 4: Python Go (12 points)

In this task you have to implement a simplified version of Go on the command line written
entirely in the Python programming language (https://en.wikipedia.org/wiki/Go_
(game)).

Write a Python program that allows you to play the game Go on the command line.
You don’t need to implement the Ko and Suicide rules. It is sufficient to only implement
the basic rule (the rule of liberty) and area scoring to decide who’s winning. A normal
Go board has a grid size of 19x19. For our purposes, the smaller version of a 9x9 board
suffices.

Your program should have the following features:
e The entire Go board should be printed after or before each turn.
e Players take turns to make moves.
e A player can place one of their pieces during their turn onto an intersection.

e After each placement of a stone, the rule of liberty should be checked and groups
of stones that do not obey the rule have to be removed.

e A player cannot place pieces on already occupied intersections.
e Players input their moves during runtime through the command line.

e After each turn, the score of each player should be calculated via area scoring and
the scores should be displayed.

e You do not have to program a win condition. It is sufficient to treat it as an endless
game.

An example game session might start like this:

ABCDEFGHTI
0 +++++++++ 0
1 +++++++++ 1
2 +++++++++ 2
3 +++++++++ 3
4 +++++++++ 4
5 +++++++++ 5
6 +++++++++ 6
7T +++++++++ 7
8 +++++++++ 8

ABCDEFGHTI

Scores: player 0: 0, player 1: O
Current player: O
Choose where to place your stone: Eb5

https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Go_(game)

ABCDEFGHTI
0 +++++++++ 0
1 +++++++++ 1
2 +++++++++ 2
3 +++++++++ 3
4 +++++++++ 4
5 ++++0++++ 5
6 +++++++++ 6
7 +++++++++ 7
8 +++++++++ 8

ABCDEFGHTI

Scores: player 0: 5, player 1: 0
Current player: 1
Choose where to place your stone: D5

If you need help to get started with Python, take a look at the Python tutorial:
https://docs.python.org/3/tutorial/index.html

Question 5: The Ultimate Game (Optional) (0 points)

In addition to the grand sum of 0 points, you will also earn the tutor’s respect for
completing this optional exercise.

Extend your Go implementation from the previous task such that the full rules are im-
plemented. As such, it should not be possible to repeat previous constellations (Ko rule).

Also, use colors on the command line instead of the passionless white on black that is
standard. Or, if you are really ambitious, you may even code a GUI for the game. Be
creative!

https://docs.python.org/3/tutorial/index.html

