/\l/\

0N

UNIVERSITAT BASEL

N/
>/ |\/ N\
\

Thorsten Moller
Maarten Schenk - maarten.schenk@unibas.ch

UNI
Michael Pliiss - m.pluess@unibas.ch BASEL
Programming Paradigms — Haskell FS 2019
Exercise 4 Due: 12.05.2019 23:59:59

Upload answers to the questions and source code before the delivery deadline
via courses.cs.unibas.ch. In addition, running programs have to be demonstrated
during the exercise slots until Friday, 17.05.2019 the latest. Also note, of all
mandatory exercises given throughout the course, you must score at least 2/3 of
their total sum of points to get accepted in the final exam.

Modalities of work: The exercise can be completed in groups of at the most
2 people. Do not forget to provide the full name of all group members together
with the submitted solution.

Question 1: Bite-sized Haskell Tasks (8 points)

For each of the following task descriptions write a Haskell function that completes the
task.

We do want to keep the solutions to these problems bite-sized; so an additional restriction
is that they must not make use of additional helper functions other than functions that
are already predefined in Haskell.

a) Append and prepend the same value to a given list.
(1 points)

b) Generate a list of tuples (n, s) where 0 < n < 100 and n mod 2 = 0, and where s =
Z?:1 t; i.e., the output should be the list [(0,0),(2,3),(4,10),...,(100,5050)].

(1 points)
¢) Swap the values at two specifiable positions in a list.

(2 points)
d) Count the number of prime factors of an integer value.

(1 points)


mailto:maarten.schenk@unibas.ch
mailto:m.pluess@unibas.ch

e) Calculate the euclidean norm (/>-norm) of a list of floats. For reference:
https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

(1 points)

f) Split a list into two lists, such that the first list’s length is the third of the length of
the original list, rounded up. Eg. [1,2,3,4,5] is split into [1,2] and [3,4,5].

(1 points)

g) Return, as a Boolean, whether the first and the second last element in a list are not
the same.

(1 points)

Question 2: Lazy Evaluation (Call-By-Need) (3 points)

a) Using the concept of lazy evaluation, write a function that returns the infinite list of
natural numbers.

(1 points)

b) Now create from the above infinite list a new one consisting of tuples. Calculate the
tuples the following way: [(1,1/1),(2,1/2),...,(i,1/1), ...].

(1 points)

c) As a last step, write a function using the above infinite list of tuples that takes a

number and returns a list of all the tuples where the second element is greater or
equal to the given number.

(1 points)

Hint: The functions iterate, map and takeWhile might be useful to solve this question.


https://en.wikipedia.org/wiki/Norm_(mathematics)#Euclidean_norm

Question 3: Guards and Pattern Matching (5 points)

You are tasked to implement a recursively defined function. The function takes three
parameters. Here is the definition:

flr—4y—1,2—2)+|x+2 ifzx>2andy>10and z >3

fag ) =7 ifz+y+2<0

r,Y,z) = .

’ flr,y+1,2=5)+z ifr<2andy>10and z>3andx+y+2>0
fle—=1y—1,2-1)+3 if(y<l0orz<3)andz+y+2z>0

a) Implement this function using guards. Notice that you can simplify the function.
Think about the order and structure of the conditions. Implement a simplified version
of the function.

Hint: The keyword where might help.
(3 points)

b) Write a function that takes a list of integers and returns a list of integers according
to the following definition using pattern matching;:
42 if s = ()
F(s) = q (f(=5,y,-5)) if s = (y)
(f(x,5,5))"F(...) ifs=(z,..)

Where 7 is the list concatenation.

(2 points)

Question 4: Sorting (6 points)

a) Write a function sorted that takes a list of comparable values and returns whether
the list is sorted or not.
(2 points)
b) Now, implement a function cocktailsort, which takes a list of comparable values
and returns the sorted list, sorted using cocktail sort
(https://en.wikipedia.org/wiki/Cocktail_shaker_sort).
The algorithm should stop as soon as the list is sorted.

(4 points)

Question 5: Recursion, Map and Fold (7 points)

The function map takes an unary function and a list of values and returns a list containing
the result of applying the given function to each element in the original list individually.


https://en.wikipedia.org/wiki/Cocktail_shaker_sort

Similarly, the function filter takes a predicate (i.e., a function that returns a Boolean)
and a list of values and returns a list only containing the values that satisfy the predicate
(i.e., for which the return value of the predicate is True).

In this question you will write your own implementations of map and filter and use them.
For obvious reasons, you are not allowed to use the built-in Haskell map and filter
function, but it may be helpful to look up their function signatures with the :type
command when in the Haskell interpreter.

Hint: Recursion is a commonly used concept in Haskell and may prove very useful in
solving the following tasks.

a)

b)

c)

Write your own implementation of the map function.

(1 points)

Write your own implementation of the filter function.

(1 points)

Consider the following list of grades a musician got. The list of hours corresponds to
how many hours of work this person put into preparation.

grades: [3.2, 5.6, 5.9, 4.1, 5.7, 1.8, 3.6, 4.1, 5.7, 5.0, 1.3, 4.5, 1.7, 3.7, 4.2, 4.1, 3.2, 5.4,
5.6,5.6,1.1, 4.6, 1.1, 3.7, 2.2, 5.2, 2.4, 5.4, 4.6, 3.5, 3.1, 5.3, 2.1, 4.3, 4.6, 5.0, 2.2, 5.7,
1.2,1.9,3.8,3.9, 35,44, 44,47, 1.8,4.9, 4.2, 4.9]

hours: [2, 11, 1, 9, 4, 7, 5, 10, 2, 19, 10, 3, 9, 1, 11, 3, 8, 2, 18, 10, 10, 18, 1, 3, 4, 19,
12,6,7,3,16,13,8,1,10,2,7, 1,6, 3,9, 19, 5, 4, 8, 1, 6, 15, 8, 4]

For each grade the musician prepared in another way and is now interested which
method was the 'best’. To answer this we will look at the grades-hours ratio, to see
how his practice method influences the return in grades.

Write a main function that uses your implementation of the map to calculate the
ratio grades/hours of these grades-hours pairs. Then use your filter implementation
to find the indexes of the times where the practice method did not pay off (ratio < 1),
and separately the times where the method yielded a good result (ratio > 4). Print
both the list of ratios as well as the two lists of indexes.

Hint: The functions zip and zipWith might be useful. To retrieve the index of the
individuals in the original list it might be a good idea to pair each data point with
its index and using list comprehension to extract only the indexes.

(4 points)

Write a function that calculates the average value in a list and use it to calculate the
average grade, hours and ratio in the given data.

Hint: You might want to use the function foldl or foldr. Keep the differences of
the two functions in mind.

(1 points)



Question 6: Currying (6 points)

In this exercise, you will concern yourself with the idea of currying, a central idea in the
way Haskell works as a functional programming language.

a)

Explain the concept of currying.

You should also include in your answer why it is possible to generate a curried version
of any function, regardless of it’s arity.

(3 points)

Explain how currying manifests itself in the way functions are declared and defined
in Haskell.

Include in your answer what the Prelude functions curry and uncurry do (you might
want to have a look at them before answering the first part of this question, as they
could help your understanding).

(3 points)



Question 7: Steganography (8 points)

Steganography (https://en.wikipedia.org/wiki/Steganography) is the practice of
concealing information within another kind of information. In this question you will write
a Haskell program to uncover a single hidden message from the following three integer
arrays:

X = [18, 68, 36, 36, 20, 67, 36, 20, 36, 35, 68, 20, 20, 36, 68, 33, 65, 20, 20, 35, 36, 17, 36,
65, 36, 17, 68, 20, 68, 33, 33, 19, 20, 35, 67, 33, 35, 18, 68, 20, 68, 36, 63, 19, 36, 65, 68,
36, 20, 68, 35, 20, 20, 35, 17, 36, 68, 17, 68, 36, 33]

Y = [19, 34, 66, 32, 34, 20, 67, 19, 65, 36, 35, 33, 34, 66, 19, 19, 17, 18, 34, 22, 35, 65, 34,
36, 19, 65, 18, 34, 64, 65, 17, 68, 19, 33, 68, 33, 64, 64, 18, 36, 67, 33, 18, 71, 16, 65, 32
36, 16, 66, 36, 17, 35, 37, 65, 19, 66, 17, 64, 34, 33]

7 = [34, 65, 32, 67, 20, 66, 33, 66, 35, 18, 65, 16, 17, 32, 64, 36, 66, 33, 16, 35, 70, 18, 32,
35, 17, 66, 65, 16, 33, 34, 18, 67, 18, 36, 64, 34, 66, 66, 16, 33, 70, 20, 65, 20, 33, 34, 65
64, 65, 20, 20, 32, 16, 65, 18, 33, 33, 66, 35, 17, 19]

The information is hidden as follows: each array X = [X1,..., X,,], Y = [V1,...,¥,] and
Z =2, ..., Zy,] contains information about the hidden message. The arrays are in order,
that means X;,Y; and Z; contain information about one part of the message. Find the
correct list of integers calculated from XY, Z and use the ASCII encoding to generate a
string. X, Y and Z encode the solution list S =[Sy, ..., S;,] in base 5 where X encodes the
highest digit and Z the lowest. A digit that is higher than the given base is still correct
in this encoding. A 7 in the second digit is equivalent to 7 * 5'. You additionally get a
decipher key that holds further instructions:

e Ignore any bits of X;,Y;, Z; that are higher valued than the 4th bit. That means for
example, that for any X; only the lowest valued four bits x4, x;3, T2, x;; matter. As
such a 67 corresponds to a 3.

e Important: Remove the encodings where the unimportant/throwaway bits of Y;
and Z; are the same.

Decoding a single character from hand with all these instructions looks like this:
X, =66, V=7 Z, =17 — S = 2x5°+7*5'+1x5° — 'V

a) Write a function getAsciiChars that takes a list of integers and returns a list of
the corresponding ASCII characters. You might want to use the function chr from
Data.Char.

(2 points)

b) Write a function uncover that extracts the hidden information from the three integer
lists. This task is easiest with the (.&.) (bitwise-and) from Data.Bits. The data
above should result in a recognizable string.

Hint: You need a bit mask to extract the important bits.
(6 points)


https://en.wikipedia.org/wiki/Steganography

