
K01 Einführung – Teil I

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf
(frei adaptiert nach http://xkcd.com/927/)

http://xkcd.com/927/

Verbreitete Programmiersprachen

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

n Etwa 2500 Programmiersprachen bekannt1

n TIOBE programming community index2

n Indikator für Popularität einer Programmiersprache

n Misst nicht
n welche die beste ist,
n oder welche die meisten lines of code (LOC) hat.

n Andere Indices
n Language Popularity Index3

n PYPL – PopularitY of Programming Language4

1 http://people.ku.edu/~nkinners/LangList/Extras/langlist.htm
2 http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
3 http://lang-index.sourceforge.net/
4 https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language

2

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

TIOBE
Top 20
Stand:
02/2019

3

Scala?
TypeScript?
Haskell: 39 (43)
Prolog: 35 (37)

TIOBE - Langzeitverlauf

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

4

Github-Programmiersprachenstatistik

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

http://githut.info

5

http://githut.info

Was ist ein Programmierparadigma?

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Es existiert keine präzise, formale (mathematische) Definition. ill-defined

Duden Fremdwörterbuch: griechisch parádeigma - Beispiel, Muster

Wikipedia: Set of practices that define a scientific discipline
during a particular period of time.

Heute wird der Begriff im Sinne von
Denkmuster, bzw. das Prinzip nach dem man vorgeht

benutzt.

Begriff des Programmierparadigma und Begriff des wissenschaftlichen Paradigma
sind verwandt. Letzteres wird nach T. S. KUHN als eine Lehrmeinung aufgefasst. Neue
Erkenntnisse führen i.d.R. zur Aufgabe veralteter Lehrmeinungen (Umbruch =
Paradigmenwechsel). Bei Programmierparadigmen kann dies prinzipiell auch
passieren (wenn auch noch nicht geschehen).

6

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

7

Analogie zur Architektur

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

n Holzbau: man denkt in Balken und Brettern
n Ziegelbau: man kalkuliert mit der Anzahl, Länge, Stärke von

Ziegeln
n Manche Gebäude sind nur nach einem Paradigma errichtbar:

Hochhäuser können z.B. nur bis zu einer bestimmter Grösse
aus Holz errichtet werden

n Wichtig: Architekt soll die verschiedenen Paradigmen kennen
und gezielt einsetzen, je nach Zweckmässigkeit für das
jeweilige Ziel.

8

Progr'paradigma – 2er Versuch

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

„Ein Programmierparadigma ist das einer Programmiersprache
oder einer Programmiertechnik zu Grunde liegende Prinzip ent-
weder zur Beschreibung von Arbeitsabläufen für einen Computer
oder zur Beschreibung der Aufgabenstellung.“*

* Quelle: P. Forbig, I.O. Kerner. Programmierung – Paradigmen und Konzepte.

9

Progr'paradigma – 3er Versuch

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Sei C die endliche Menge aller bekannten Programmiersprachen-
konzepte; z.B. call-by-value, call-by-need, statisch typisiert, Operator-
überladung, referentielle Transparenz, strikte Auswertung, Pointer,
Templates, Multiple Dispatch, strukturelle Typisierung ...

Syntax, kognitive Aspekte, Vorlieben und prinzipbedingte Eigen-
schaften ausser Acht lassend, ist ein Programmierparadigma P eine
nichtleere Teilmenge P Í C.

Zwei Programmierparadigmen P1, P2 können disjunkt sein
(P1 Ç P2 = Æ), oder in Teilen dieselben Konzepte beinhalten
(P1Ç P2 ¹Æ).

10

Klassifikation von Progr'sprachen

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Ziel (jeder Klassifikation):

n Verstehen der Gemeinsamkeiten & Unterschiede

n Liefert:

n Abgrenzung, Ordnung

n Vokabular bzw. Terminologie – in unserem Fall sind

dies Programmiersprachen...

...generationen (zeitlich)

...konzepte (ideell)

...klassen (kategorisch)

11

Klassifikation nach Generation

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Grenzen unscharf

tGeneration 1 und 2

ab 1950

Generation 3

ab 1954

Generation 4

ab 1960

Generation 5

ab 1978

1957 FORTRAN, 1958 ALGOL, 1960 LISP, 1960 COBOL, 1967 SIMULA
1964 BASIC, 1970 Pascal, 1972 C, 1972 Prolog, 1975 Scheme,
1980 Smalltalk-80, 1980 Ada, 1983 C++, 1986 Eiffel, 1988 Mathematica,
1990 Haskell, Java 1995

12

Generation 1 und 2

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Generation 1:
n Binäre, prozessorspezifische Codes
n Meist kombiniert mit zu verarbeitenden Daten

1011 0000 0110 0011
(hex B0 63; lade den Wert 63h in Register AL, Intel x86 CPU)

Generation 2:
n Assemblersprachen
n Codes werden ersetzt durch benannte Befehle (Mnemonics)
n Benötigen schon (einfachen) Compiler

mov al, 63h
(Intel Syntax)

13

Generation 3 bis 5

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Generation 3:
n „höhere“ Programmiersprachen
n Abstraktion vom Prozessorbefehlssatz

Generation 4:
n Keine klar erkennbare Grenze zur 3. Generation
n Wurde oft als Marketinginstrument verwendet
n Zahlreiche nicht-Turing-vollständiger Sprachen (z.B. SQL)
n Zunehmende Bedeutung von Werkzeugen (IDE, GUI builder)

Generation 5:
n Probleme werden durch Rand- bzw. Zwangsbedingungen implizit

beschrieben
n System muss selbst eine Lösung finden/suchen unter Einhaltung der

Bedingungen; siehe auch nachfolgende Klassifikation

14

Stammbaum

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Einen chronologischen Überblick der wichtigsten
Programmiersprachen liefert:

http://www.levenez.com/lang/lang.pdf

15

http://www.levenez.com/lang/lang.pdf

Klassifikation nach Prinzip

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Programmierer beschreibt Ablauf

n wie ist das Problem zu lösen

n Schritt für Schritt

n mittels Anweisungen der Pro-

grammiersprache; nicht not-

wendigerweise der Maschine

Programmierparadigma

imperativ deklarativ

Programmierer beschreibt Problem

n was ist das Problem

n Basis math. Kalkül bzw. Theorie

n Problem + Kalkül ergibt

ausführbare Lösungsschritte

n abstrahiert immer von Maschine

Viele Progr'sprachen lassen sich einer der beiden Kategorien zuordnen. Ausnahmen

sind hybride Sprachen (beide Kategorien).

lat. imperare = befehlen lat. declarare = erklären

16

Beispiel (plakativ)

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Nimm den Schlüsselbund vom Schlüssel-
brett, geh zur Wohnungstür, öffne diese,
schliesse diese beim Verlassen der Woh-
nung, geh die Treppe hinunter zur Haus-
tür, öffne diese, schliesse diese beim
Verlassen des Hauses, geh zum Auto,
öffne die Autotür mit dem passenden
Schlüssel, setzte dich auf den Fahrersitz,
nimm den Zündschlüssel, ... usw. usf.

Programmierparadigma

imperativ deklarativ

Im Kühlschrank ist keine Milch mehr.

Die Lösung ist ein Programm durch dessen
Ausführung der Kühlschrank wieder mit
frischer Milch gefüllt ist.

17

Relevante Subtypen

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

Programmierparadigma

imperativ deklarativ

funktional logikorientiert
Haskell Prolog

objektorientiert

Java

C#, C++, Scala

Oz

Escher, Curry

18

Weitere Dimensionen?

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

20

n Wikipedia* nennt derzeit 27 Top Level Paradigmen.
n Event-driven
n Data-driven
n Agent-oriented
n Parallel
n Probabilistic
n …

Nicht alle sind disjunkt/orthogonal.

* http://en.wikipedia.org/wiki/Programming_paradigm

Zwischenfazit

22. Februar 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilI.pdf

n Es gibt kein universelles Programmierparadigma.
n Die Menge der Programmiersprachenkonzepte ist endlich.
n Paradigmen haben konzeptbedingt bzw. situativ Vor- und Nachteile.
n Hat man sich ein Paradigma angeeignet, fällt das Umdenken auf ein

anderes Paradigma oft schwer.
n Vorsicht: Uninformierte neigen zu Subjektivität, Unsachlichkeit, bis hin zur

Verblendung in Bezug auf ihr „Vorzugsparadigma“.

n Trend geht (seit Jahren) zu Multiparadigmen-Sprachen.

Deshalb sollten wir die wichtigsten kennen um:
n Systematisch beurteilen zu können wann (in welcher Situation) bzw. für

welches Problem welches Paradigma besser geeignet wäre.

21

