
K01

1. Programmiersprache
2. Softwareprozessor bzw. Übersetzer
• Compiler versus Interpreter

3. Typ, Typsystem, Typumwandlungen
4. Bezeichner, Gültigkeitsbereich
5. Anweisung, Ausdruck

Einführung – Teil II

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Was ist eine Programmiersprache?

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Informell:
Eine Programmiersprache ist eine künstliche Sprache
zur Notation von Programmen.1

Etwas genauer:
Eine Programmiersprache ist eine Menge von Wörtern
über einem endlichen Alphabet. Sie dient der Umsetzung
von Algorithmen in eine maschinenverarbeitbare Form.2

1 ISO/IEC 2382-1:1993 – Information technology – Vocabulary – Part 1: Fundamental terms
2 nach R. Dumke

2

Definition Programmiersprache

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Formell:

Sei G = (V, Σ, R, σ) eine (i.d.R. kontextfreie) Grammatik, bestehend aus
n V, eine endliche Menge der Nichtterminale (Variablen),

n Σ, eine endliche Menge – das Alphabet (Terminale) – so dass V Ç Σ = Æ,

n R, die Menge der Ableitungsregeln (Produktionsregeln), sowie

n σ Î V, dem Startsymbol.

Eine Programmiersprache ist ein Tripel Lprog = (L(G), S, I) wobei

n L(G) = {w Î Σ* | σ ÞG w} die Sprache ist, die durch die Grammatik G
generiert wird (die Menge der ableitbaren Wörter über G),

n S die Menge der Interpretationsregeln ist – Semantik – und

n I : R ® S eine berechenbare Funktion ist – Implementierung.
nach R. Dumke

*

3

Softwareprozessor bzw. Übersetzer

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Informell: Ein Softwareprozessor/Übersetzer verarbeitet ein gegebenes
Programm in einer wohldefinierten Art und Weise indem er es:
n transformiert in ein i.d.R. äquivalentes Programm, meist einer anderen

Sprache.

n Oberbegriff für:
n Präprozessor, Postprozessor, Compiler, Generator, Disassembler, ...

Formell:
Seien L0, L1 und L2 formale Sprachen; (L0 = L1, L0 = L2 bzw. L1 = L2 möglich). Dann ist
ein Softwareprozessor ein Tripel

p = (L0, L1, L2)

welcher ein gegebenes L0-Programm in ein L1-Programm transformiert und welcher
selbst in L2 geschrieben ist. M.a.W.: Abbildung von L0 auf L1, implementiert durch L2.

4

Beispiel – Compiler

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Sei L0 die Programmiersprache C++ (“höhere” Sprache mit einer mächtigeren

und abstrakteren Befehlsmenge), L1 die Intel x86 Maschinensprache

(„einfache“ Sprache), und sei L2 die Programmiersprache C

(Implementierungssprache).

Dann ist ein C++-Compiler für x86 Prozessoren der selbst in C geschrieben ist

ein Software-Prozessor

p = (L0, L1, L2) .

5

Grafische Darstellung

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

McKeeman-Diagramm (auch Tombstone-Diagramm)

Bei einem Interpreter i gibt es die Zielsprache L1 nicht, deshalb:

L1
L2

L0 Zielsprache
(Ausgabe)

Implementierungssprache
von p

Ausgangssprache
(Eingabe)

p = (L0,L1,L2)

i = (L0,L2)
L0
L2 Implementierungssprache

von i

Ausgangssprache
(Eingabe)

6

Verknüpfung von S'prozessoren

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

1. Komposition

p1 und p2 werden hintereinander ausgeführt und damit zu p
= (L0, L3, L1) zusammengefasst

p2 ! p1 = p
L2

L1

L0 L3
L1

L2

Beispiel: Java (L0) à Bytecode (L2) à Maschinencode (L3)
p1 Bytecode Compiler, p2 Just-in-time Compiler

p1 p2

7

Verknüpfung von S'prozessoren

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

2. Applikation

p1 wird auf p2 in der Weise angewandt, dass er die Imple-
mentierungssprache von L1 auf L2 ändert p'2 = (L3, L4, L2)

p1(p2) = p2!
L4

L1

L3

L2

L

L1

Beispiel: Bootstrapping eines C++ Compiler der
in C++ geschrieben ist durch einen C++ Compiler
der in C geschrieben ist.

p2
p1

M

C++

C++

M

C

C++

L4

L2

L3

p'2

8

Interpreter versus Compiler

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

AusführungL1

L0

Interpreter

Benutzer-
programm

Eingabe-

Daten

Interpretation:

Es wird ein (ständig laufendes)

L1–Programm (Interpreter) vorgegeben.

Dieses Programm nimmt das

L0–Programm als Eingabe, überführt jeden

L0–Befehl in eine Folge von

L1–Befehlen und führt diese sofort aus.

Ausführung

L1

L0

Übersetzer

Benutzer-
programm

Eingabe-

Daten

übersetztes
Benutzerprogr.

Übersetzung:

Das komplette L0–Programm wird in eine

Folge von L1–Befehlen (L1–Programm)

übersetzt. Dieses Programm kann dann direkt

ausgeführt werden. Das ursprüng-

liche L0–Programm wird nicht mehr

benötigt.

9

Typsystem und Typ (i)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Objekte, die mit einem Programm manipuliert werden,
unterteilt man intuitiv in disjunkte Mengen.

Beispiele:
Daten: (ganze) Zahlen, Zeichenketten, Datum, Zeit, E-Mail, ...
Datenstrukturen: Listen, Matrizen, Graphen, ...
Funktionen: int -> int , ...

Xint XList<int> X2d-matrix<int> Xfunction int -> int
5 Î Xint [5,2] Î XList<int> [[5,1],[1,2]] Î X2d-matrix<int>

10

Typsystem und Typ (ii)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Objekte verschiedener Mengen haben unterschiedliche
Eigenschaften (aber innerhalb einer Menge dieselben),
und demzufolge sind für Objekte verschiedener Mengen
unterschiedliche Operationen sinnvoll.

Beispiele:
Zahlen: Addition, Subtraktion, ...
Listen: Konstruktor, Konkatenation, (indizierte) Selektion, ...
Funktionen: Aufruf, Komposition f(g(x))

11

Typsystem und Typ (iii)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Definition Typ:

Ein Typ ist ein 2-Tupel T = (X, O), wobei X eine Menge1

von gleichartigen Objekten x Î X, und O eine Menge von
Operationen o Î O ist, die auf X definiert sind.2

Beispiele:
Tboolean = ({true, false}, {&&, ||, !})
T32-bit unsigned int = ({0, 1, 2, ..., 232-1}, {+, -, *, /})

12

1 X kann theoretisch unendlich sein; praktisch ist X aber immer endlich, da heutige
Maschinen endliche Ressourcen haben (z.B. Speicher). Leere Menge für X, O u.U. sinnvoll.
2 Jede Operation o Î O ist i.d.R. total, kann aber auch partiell sein. Stelligkeit von Oper-
ationen meist unär oder binär. Definitionsbereich D einer Operation o Î O allgemein:
D ⊆ X1 × ... × Xn mit n ≥ 0. Falls n ≥ 1 dann ∃Xi: Xi = X (0 ≤ i ≤ n) und alle anderen
Xj (i ≠ j) nicht notwendigerweise gleich X.

Typsystem und Typ (iv)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Definition Typsystem:

Ein Typsystem ist ein 2-Tupel S = (A, R), wobei A eine

Funktion ist, die einem Term t einer Programmiersprache

einen Typ T zuordnet – t ist mit T assoziiert –, und R eine

Menge von Regeln ist, mit denen man das Vorhandensein

bzw. Nichtvorhandensein von Typfehlern zwischen zwei

Termen t, u beweisen bzw. zusichern kann.

13

Typ versus Wert engl. value

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Die Repräsentation eines Objektes x Î X eines Typs T wird
Wert genannt.

n Der Wert einer Variable ist somit letztlich eine Abbildung auf
die Repräsentation in der Umgebung (z.B. dem Arbeits-
speicher) und wird meist durch die Hardware realisiert.

n Bei Sprachen mit veränderlichen Variablen (wie z.B. C, C++),
d.h. deren Wert (jederzeit) durch Zuweisung verändert
werden kann, wird zusätzlich zwischen L-values und R-values
unterschieden.
--> Dazu später genauer.

14

Wesentliche Typklassen

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Datentypen
n Zusammengesetzte Typen (Datenstrukturen)
n Zeigertypen
n Funktionstypen
... u.a.

n Primitive Datentypen (auch elementar genannt) sind integraler Bestandteil einer
Programmiersprache und i.d.R. gegeben durch die Maschine (CPU) für die eine
Sprache implementiert ist, d.h. für die ein Compiler/Interpreter existiert.

n Benutzerdefinierte Typen werden durch Ableitung oder Konstruktion aus
primitiven Typen gebildet und sind, wie der Name andeutet, nicht integraler
Bestandteil einer Programmiersprache. Die Ableitungs- bzw. Konstruktionsarten
sind i.d.R. durch die jeweilige Programmiersprache vorgegeben und endlich.
Nichtsdestotrotz lassen sich i.d.R. unendlich viele benutzerdefinierte Typen, die
u.U. aber strukturell gleich sind oder identische Wertebereiche habe, definieren.

15

Aufgaben von Typsystemen (i)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

1. Erkennen von Typverletzungen – nicht erlaubte oder

nicht sinnvolle „Dinge“ verhindern, z.B.:

n Anwendung einer Operation, die auf einem Datentyp nicht

definiert ist.

n Falsche Argumentanzahl und/oder -typ bei Funktions-

/Methodenaufruf.

à Erkennen erlaubter Werte

à Erkennen erlaubter Operationen

à Verhinderung der (unbeabsichtigten) Nutzung einer Operation, die für

einen Typ nicht definiert ist.

à Eindeutige Auswahl einer Operation aus Menge von möglichen

Operationen; insbesondere wenn Operationsnamen überladen sind.

16

Aufgaben von Typsystemen (ii)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

2. Definition der Semantik (und Implementierung) von Typumwandlungen.

Es existieren im Wesentlichen drei Arten von Typumwandlungen:
1. Up cast Promotion / Generalisierung
2. Down cast Demotion / Spezialisierung
3. Type coercion Allgemein eine Konvertierung zwischen

möglicherweise disjunkten Typen.

Typumwandlung können auf zwei Arten implementiert werden:
1. Materiell Repräsentation eines anderen Typs wird (temporär

im Speicher oder einem Register) erzeugt.
2. Virtuell Gegebene Repräsentation wird lediglich als

Repräsentation eines andern Typs reinterpretiert,
ohne dass dabei neue Repräsentation erzeugt wird.

17

Typumwandlung: cast

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Wird für Datentypen verwendet. Beteiligt sind zwei Typen:

Supertyp Tsup = (Xsup, Osup)
Subtyp Tsub = (Xsub, Osub) so dass Xsub Í Xsup

1. Demotion: down cast xsup ® xsub explizit anzufordern

2. Promotion: up cast xsub ® xsup meist implizit

18

int x = 5; long y = 5_000_000_000l;
int z = x + (int) y;

int x = 5; long y = 5_000_000_000l;
long z = x + y;

Beispiele:

Java: explicit down cast Java: implicit up cast

Implizite Umwandlung: type coercion

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

Wie bei Casts sind auch hier zwei Typen T1, T2 beteiligt. Im Allgemeinen wird

aber nicht X1 Í X2 gefordert; d.h. type coercion kann insbesondere auch für

X1 ∩ X2 = ∅	definiert sein.

Meist automatisch/implizit vom Compiler/Interpreter durchgeführt.

Beispiele:

== Operator in JavaScript C, C++ u.a.

JavaScript

19

(true == 1) // à true
(false == "") // à true
(false == []) // à true

// crazy things in JavaScript
(true == {}) // à false
(false == {}) // à false
if ({}) { /* executed */ }
if ([]) { /* executed */ }

5 + 2.2 // =7.5; 5 coerced to float

int x = -1, y = 5;
if (x = y) { /* executed */ }

"2" + 2 // ="22"; 2 coerced to string

Typsysteme

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Im weiteren Verlauf der Vorlesung werden wir
weitere Begriffe vertiefen:

Typisierung ...
n ... nominativ versus strukturell Typgleichheit
n ... statisch versus dynamisch Typüberprüfung
n ... schwach versus stark Typsicherheit
n ... explizit versus implizit Typbestimmung

20

Nichtorthogonale Dimensionen, d.h. es bestehen Zusammenhänge. Z.B. ist schwache Typisierung
in einigen dynamischen Sprachen einhergehend mit einem implizitem dynamischen Typ. Starke

Typisierung in vielen Sprachen einhergehend mit einer expliziten statischen Typdeklaration.

Bezeichner (Symbol) engl. identifier

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

21

n Ein Bezeichner ist der Name eines
Programmelementes; z.B.:
n Variable / Zeigervariable / Referenz

n Funktion / Methode / Prozedur

n Struktur / Klasse / Aufzählung

n Alias

n Atom / Prädikat

n In systemnahen bzw. imperativen Sprachen ist ein
Bezeichner meist fest mit einem Speicherbereich
assoziiert, insbesondere ist dies für Variablen der
Fall.

foo blah

Bezeichner (ii)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

22

n Meist unterliegen Bezeichner bestimmten
lexikalischen Regeln (sind also nicht beliebig wählbar):
n Längenbegrenzung

n Schlüsselwörter nicht (überall) erlaubt, z.B.
do if for while switch class struct ...

n Alphabet erlaubter (Start-)Zeichen, z.B.
a..z 0..9 üöäéè _-%$@&

n Beachte: Viele Sprachen bieten die Möglichkeit für
anonyme Elemente, die also nicht benannt sind, und
nur aus ihrem Kontext heraus identifizierbar sind.

Namensauflösung engl. name resolution

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

23

n Eindeutige Abbildung von Bezeichnern/Namen auf
Programmelemente (z.B. Speicherbereich, Speicheradresse).
n Realisiert/implementiert durch Compiler, Linker oder Interpreter.

n Assemblersprachen
n Bezeichner werden durch eine simple Lookup-Tabelle auf

Programmelemente, abgebildet

n Höhere Sprachen
n Mehr oder weniger komplexe Mechanismen/Regeln.

Beispiel: Namensauflösung in C++

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

24

n C++ gilt als eine der komplexesten Sprachen hinsichtlich der
Regeln zur Namensauflösung.

n In C++ ist die Namensauflösung beeinflusst durch:
n Namespaces – identische Bezeichner können je nach Kontext

unterschiedlichen Programmelementen zugeordnet sein.
n Lexical Scope – Programmabschnitt.
n Visibility – Regeln, die innerhalb Vererbungshierarchien zum Tragen

kommen.
n Overloading – Regeln, die gestatten, dass unterschiedliche Elemente

(insbesondere Funktionen) über identische Bezeichner angesprochen
werden können.

Gültigkeitsbereich engl. scope

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

25

n Programmabschnitt*, in dem ein Bezeichner
nutzbar bzw. sichtbar ist.
n Nicht notwendigerweise zusammenhängend!
n Bei Variablen: nicht notwendigerweise identisch mit

Lebensdauer, d.h. Zeitraum in dem für Variable
Speicher reserviert ist! (z.B. static in C, C++, Java)

Gültigkeitsbereich ≤ Lebensdauer

Sichtbarkeit unterliegt präzise definierten Regeln.

* Gemeint sind damit Abschnitte des Quelltextes, nicht zeitliche Abschnitte zur Laufzeit.

Gültigkeitsbereich (ii)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

26

n Es existieren im Wesentlichen zwei unterschied-
liche Regeltypen, die die Sichtbarkeit definieren:

1. Lexikalischer Gültigkeitsbereich engl. lexical scope
n Der Programmkontext (d.h. der umgebende

Programmtext) bestimmt den Gültigkeitsbereich.

n Gültigkeit unabhängig vom Aufruf-Stack.

n Heutzutage am verbreitetsten.

à Kann vor der Laufzeit (also statisch) bestimmt werden.

Gültigkeitsbereich (iii)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

27

2. Dynamischer Gültigkeitsbereich engl. dynamic scope
n Der Programmablauf und der Programmzustand zur Laufzeit

(d.h. die Programmausführungsgeschichte bis zum

momentanen Zeitpunkt) bestimmen den Gültigkeitsbereich.

n Gültigkeit gekoppelt an Aufruf-Stack; d.h. sie leitet sich direkt

von den Regeln ab, wann auf dem Stack ein neuer Aufruf-

Frame erzeugt wird und wann dieser wieder gelöscht wird.

(Lässt sich dadurch leichter implementieren als static scope,

wo im Wesentlichen der Compiler verantwortlich ist).

à Kann im Allgemeinen nur zur Laufzeit (also dynamisch)

bestimmt werden.

Gültigkeitsbereich - Beispiel (iv)

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

28

JavaScript – lexical scope Bash – dynamic scope

g() gibt globale Variable x aus, da
in erster Zeile definiert.

x=1
function g() { echo $x; x=2; }
function f() { local x=3; g; }
f # Ausgabe 1, oder 3?
echo $x # Ausgabe 1, oder 2?

var x=1;
function g() { console.log(x); x=2; }
function f() { var x=3; g(); }
f(); // Ausgabe 1, oder 3?
console.log(x); // Ausgabe 1, oder 2?

1
2

Ausgabe auf Konsole:
3
1

Ausgabe auf Konsole:

g() gibt f()‘s lokales x aus
und modifiziert dieses.

Anweisung engl. statement

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Befehl mit wohldefinierter Semantik
n Entweder direkt ausführbar (Maschinenbefehl), oder
n Übersetzung in eine Menge von Maschinenbefehlen.
n Charakteristisch für imperativen Sprachen

n Wesentliche Anweisungsarten:
n Deklaration int x;
n Zuweisung x = 10;
n Kontrollstruktur if (x == true) { ... }

else { ... }
while (x > 0) { ... }

n Sprunganweisung goto, return, break, ()

29

Ausdruck engl. expression

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

n Liefert bei Auswertung einen Wert (Ergebnis)
n Auswertung gemäss:

n math. Kalkühl/Theorie (z.B. sukzessive Termersetzung)
n Auswertungsstrategie (z.B. lazy oder eager; dazu später mehr)

n Charakteristisch für deklarative Sprachen
n Manche Anweisungen sind auch Ausdrücke, z.B. Zuweisung,

Prozeduraufruf

n Wesentliche Ausdrucksarten:
n Arithmetische 3*3 x+(*y) f.g x
n Aussagenlogische a||b 4==3 !c
n Prädikatenlogische birthplace(J.S.Bach,Eisenach)

30

01. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilII.pdf

31

If you really care about software
then you have to care about hard-
ware.

Steve Wozniak, so oder so ähnlich

