EinfUhrung — Teil Il

Programmiersprache
2. Softwareprozessor bzw. Ubersetzer

Compiler versus Interpreter

3. Typ, Typsystem, Typumwandlungen
Bezeichner, Gultigkeitsbereich

5. Anweisung, Ausdruck

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Was ist eine Programmiersprache?

Informell:

Eine Programmiersprache ist eine kinstliche Sprache
zur Notation von Programmen.?

Etwas genauer:

Eine Programmiersprache ist eine Menge von Wortern
Uuber einem endlichen Alphabet. Sie dient der Umsetzung
von Algorithmen in eine maschinenverarbeitbare Form.?

11SO/IEC 2382-1:1993 — Information technology — Vocabulary — Part 1: Fundamental terms

2 nach R. Dumke

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Definition Programmiersprache

Formell:
Sei G=(V, %, R, o) eine (i.d.R. kontextfreie) Grammatik, bestehend aus
m J, eine endliche Menge der Nichtterminale (Variablen),
m 2, eine endliche Menge — das Alphabet (Terminale) —sodass VX =,
m R, die Menge der Ableitungsregeln (Produktionsregeln), sowie
m 6 € V, dem Startsymbol.

Eine Programmiersprache ist ein Tripel L., = (L(G), S, 1) wobei

m L(G)={weX*|o = w} die Sprache ist, die durch die Grammatik G
generiert wird (die Menge der ableitbaren Worter Gber G),

m S die Menge der Interpretationsregeln ist — Semantik — und
m /: R — Seine berechenbare Funktion ist — Implementierung.

nach R. Dumke

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Softwareprozessor bzw. Ubersetzer

= Informell: Ein Softwareprozessor/Ubersetzer verarbeitet ein gegebenes
Programm in einer wohldefinierten Art und Weise indem er es:

= transformiertin ein i.d.R. aquivalentes Programm, meist einer anderen
Sprache.

m Oberbegriff fur:

m Praprozessor, Postprozessor, Compiler, Generator, Disassembler, ...

Formell:
Seien Ly, L, und L, formale Sprachen; (L= L, Ly = L, bzw. L = L, moglich). Dann ist
ein Softwareprozessor ein Tripel

p =Ly Ly, Ly)

welcher ein gegebenes Ly-Programm in ein L{-Programm transformiert und welcher
selbst in L, geschrieben ist. M.a.W.: Abbildung von L, auf L,, implementiert durch L,.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Beispiel — Compiler

Sei L, die Programmiersprache C++ (“hohere” Sprache mit einer machtigeren
und abstrakteren Befehlsmenge), L; die Intel x86 Maschinensprache

(,,einfache” Sprache), und sei L, die Programmiersprache C
(Implementierungssprache).

Dann ist ein C++-Compiler fir x86 Prozessoren der selbst in C geschrieben ist
ein Software-Prozessor

p=(Ly, L1, Ly).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Grafische Darstellung

McKeeman-Diagramm (auch Tombstone-Diagramm)

p = (LO 9L1 , L2) Ausgangssprache —» LO

(Eingabe)

L,

L | «+— Zielsprache

(Ausgabe)

<+«— |mplementierungssprache
von p

Bei einem Interpreter i gibt es die Zielsprache L, nicht, deshalb:

Ausgangssprache —»

i = (LO . L2) (Eingabe)

Lo
L,

<+«— |mplementierungssprache
von i

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Verknupfung von S'prozessoren

1. Komposition

PP =P

Ly Ly

p; und p, werden hintereinander ausgefuhrt und damit zu p

= (L, L;, L,) zusammengefasst

Beispiel: Java (L,) =2 Bytecode (L,) > Maschinencode (L;)
p Bytecode Compiler, p, Just-in-time Compiler

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

Verknupfung von S'prozessoren

2. Applikation D>

Pi

p1(p2)=p; L

L

L,

p; wird auf p, in der Weise angewandt, dass er die Imple-
mentierungssprache von L, auf L, andert p’, = (L3, L4, L»)

Beispiel: Bootstrapping eines C++ Compiler der
in C++ geschrieben ist durch einen C++ Compiler
der in C geschrieben ist.

C++

C++

C++

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

Interpretation:

Es wird ein (standig laufendes)
L,—Programm (Interpreter) vorgegeben.
Dieses Programm nimmt das
L,—Programm als Eingabe, Gberflhrt jeden
L,—Befehl in eine Folge von

L,—Befehlen und fuhrt diese sofort aus.

Benutzer-
Lo programm
Eingabe-
Daten
A 4
L, Interpreter | «=———— Ausfihrung

Ubersetzung:

Interpreter versus Compiler

Das komplette L;—Programm wird in eine
Folge von L,—Befehlen (L,—Programm)
ubersetzt. Dieses Programm kann dann direkt

ausgefihrt werden. Das urspring-

liche Ly—Programm wird nicht mehr

benotigt.
L Benutzer-
0 programm
- A Y
Eingabe- \\
Daten \
g B
.. . ubersetztes
L, Ubersetzer Benutzerprogr.
R

N 7
Ausfihrung

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

Typsystem und Typ (i)

= Objekte, die mit einem Programm manipuliert werden,
unterteilt man intuitiv in disjunkte Mengen.

Beispiele:
: (ganze) Zahlen, Zeichenketten, Datum, Zeit, E-Mail, ...
: Listen, Matrizen, Graphen, ...

int->int, ...

Xint XList<int> X2d—matrix<int> Xfunction int -> int

5 € Xint [5 72] < XList<int> [[5 ,1] a[l 92]] < X2d—matrix<int>

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Typsystem und Typ (ii)

= Objekte verschiedener Mengen haben unterschiedliche
Eigenschaften (aber innerhalb einer Menge dieselben),

und demzufolge sind fur Objekte verschiedener Mengen
unterschiedliche Operationen sinnvoll.

Beispiele:
: Addition, Subtraktion, ...

. Konstruktor, Konkatenation, (indizierte) Selektion, ...
: Aufruf, Komposition f(g(x))

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

o 0
o 0
s 0
E——

Typsystem und Typ (

Definition Typ:

Ein Typ ist ein 2-Tupel T = (X, O), wobei X eine Menge!
von gleichartigen Objekten x € X, und O eine Menge von
Operationen o e O ist, die auf X definiert sind.?

Beispiele:
Thootean = ({true, false}, {&&, |], 1})
T32—bitunsignedint — ({09 1929 '"3232'1}9 {+"a*a /})

1 X kann theoretisch unendlich sein; praktisch ist X aber immer endlich, da heutige
Maschinen endliche Ressourcen haben (z.B. Speicher). Leere Menge fir X, O u.U. sinnvoll.
2 Jede Operation o € O isti.d.R. total, kann aber auch partiell sein. Stelligkeit von Oper-
ationen meist unar oder binar. Definitionsbereich D einer Operation o € O allgemein:
DC X x..xX mitn>0.Fallsn>1dann3X;: X,;=X (0 <i<n)und alle anderen
X; (i #j) nicht notwendigerweise gleich X.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Typsystem und Typ (iv)

Definition Typsystem:
Ein Typsystem ist ein 2-Tupel S = (A, R), wobei A eine

Funktion ist, die einem Term ¢ einer Programmiersprache
einen Typ T zuordnet — ¢ ist mit T assoziiert —, und R eine
Menge von Regeln ist, mit denen man das Vorhandensein

bzw. Nichtvorhandensein von Typfehlern zwischen zwei
Termen ¢, u beweisen bzw. zusichern kann.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

Typ versus Wert engl. value

m Die Reprdsentation eines Objektes x € X eines Typs T wird
Wert genannt.

s Der Wert einer Variable ist somit letztlich eine Abbildung auf
die Reprasentation in der Umgebung (z.B. dem Arbeits-
speicher) und wird meist durch die Hardware realisiert.

= Bei Sprachen mit veranderlichen Variablen (wie z.B. C, C++),
d.h. deren Wert (jederzeit) durch Zuweisung verandert
werden kann, wird zusatzlich zwischen L-values und R-values
unterschieden.
--> Dazu spater genauer.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Wesentliche Typklassen

= Datentypen
= Zusammengesetzte Typen (Datenstrukturen)

= Zeigertypen
= Funktionstypen
.. u.a.

= Primitive Datentypen (auch elementar genannt) sind integraler Bestandteil einer
Programmiersprache und i.d.R. gegeben durch die Maschine (CPU) fir die eine
Sprache implementiert ist, d.h. fir die ein Compiler/Interpreter existiert.

= Benutzerdefinierte Typen werden durch Ableitung oder Konstruktion aus
primitiven Typen gebildet und sind, wie der Name andeutet, nicht integraler
Bestandteil einer Programmiersprache. Die Ableitungs- bzw. Konstruktionsarten
sind i.d.R. durch die jeweilige Programmiersprache vorgegeben und endlich.
Nichtsdestotrotz lassen sich i.d.R. unendlich viele benutzerdefinierte Typen, die
u.U. aber strukturell gleich sind oder identische Wertebereiche habe, definieren.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Aufgaben von Typsystemen (i)

1. Erkennen von — nicht erlaubte oder
nicht sinnvolle ,,Dinge“ verhindern, z.B.:

= Anwendung einer Operation, die auf einem Datentyp nicht
definiert ist.

= Falsche Argumentanzahl und/oder -typ bei Funktions-
/Methodenaufruf.

> Erkennen erlaubter Werte
> Erkennen erlaubter Operationen

Verhinderung der (unbeabsichtigten) Nutzung einer Operation, die fir
einen Typ nicht definiert ist.

Eindeutige Auswahl einer Operation aus Menge von moglichen
Operationen; insbesondere wenn Operationsnamen uberladen sind.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Aufgaben von Typsystemen (ii)

2. Definition der Semantik (und Implementierung) von Typumwandlungen.

Es existieren im Wesentlichen drei Arten von Typumwandlungen:

1. Upcast Promotion / Generalisierung
2. Down cast Demotion / Spezialisierung
3. Type coercion Allgemein eine Konvertierung zwischen

moglicherweise disjunkten Typen.

Typumwandlung konnen auf zwei Arten implementiert werden:

1. Materiell Reprasentation eines anderen Typs wird (temporar
im Speicher oder einem Register)

2. Virtuell Gegebene Reprasentation wird lediglich als
Reprasentation eines andern Typs ,

ohne dass dabei neue Reprasentation erzeugt wird.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Typumwandlung: cast

Wird fur Datentypen verwendet. Beteiligt sind zwei Typen:
Supertyp Tup = Kups Ogup)
Su btyp Tsub = (Xsub’ Osub) so dass Xsub - Xsup

1. Demotion: down cast xg,, —> Xgp explizit anzufordern

2. Promotion: up cast Xsub —> Xsup meist implizit
Beispiele:
Java: explicit down cast Java: implicit up cast
X = 5; y = 5_000_000_0001; X = 5; y = 5_000_000_0001;

y4

X + (int) y; ; z=x+y;©

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Implizite Umwandlung: type coercion

Wie bei Casts sind auch hier zwei Typen T, T, beteiligt. Im Allgemeinen wird
aber nicht X; < X, gefordert; d.h. type coercion kann insbesondere auch fur
X, N X, = @ definiert sein.

Meist automatisch/implizit vom Compiler/Interpreter durchgefiihrt.

Beispiele:

Operator in JavaScript C, C++ u.a.
(true == 1) // = true 54+ 2.2 // =7.5; 5 coerced to float
(false == "") // > true
(false == []) // = true X =-1, y = 5;

if (x = y) { /* executed */ }

// crazy things in JavaScript
(true == {}) // > false JavaScript
(false == {}) // > false
if ({}) { /* executed */ } "2" + 2 // ="22"; 2 coerced to string

if ([]) { /* executed */ }

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Typsysteme

= Im weiteren Verlauf der Vorlesung werden wir
weitere Begriffe vertiefen:

Typisierung ...

m ... nominativ versus strukturell Typgleichheit
m ... statisch versus dynamisch Typuberprufung)
m ... sSchwach versus stark Typsicherheit
m ... explizit versus implizit Typbestimmung

Nichtorthogonale Dimensionen, d.h. es bestehen Zusammenhange. Z.B. ist schwache Typisierung
in einigen dynamischen Sprachen einhergehend mit einem implizitem dynamischen Typ. Starke
Typisierung in vielen Sprachen einhergehend mit einer expliziten statischen Typdeklaration.

J

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

Bezeichner (Symbol) engl. identifier

= Ein Bezeichner ist der Name eines
Programmelementes; z.B.:

= Variable / Zeigervariable / Referenz
s Funktion / Methode / Prozedur

s Struktur / Klasse / Aufzahlung

= Alias

s Atom / Pradikat

= In systemnahen bzw. imperativen Sprachen ist ein
Bezeichner meist fest mit einem Speicherbereich
assoziiert, insbesondere ist dies fur Variablen der
Fall.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Bezeichner (ii)

= Meist unterliegen Bezeichner bestimmten
lexikalischen Regeln (sind also nicht beliebig wahlbar):

= Langenbegrenzung
= SchlUsselworter nicht (Gberall) erlaubt, z.B.

= Alphabet erlaubter (Start-)Zeichen, z.B.
d..Z 0..9 uoaeée _-%5@&

= Beachte: Viele Sprachen bieten die Moglichkeit fur
Elemente, die also nicht benannt sind, und
nur aus ihrem Kontext heraus identifizierbar sind.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Namensauflosu NEg engl. name resolution

= Eindeutige Abbildung von Bezeichnern/Namen auf
Programmelemente (z.B. Speicherbereich, Speicheradresse).

= Realisiert/implementiert durch Compiler, Linker oder Interpreter.

s Assemblersprachen

m Bezeichner werden durch eine simple Lookup-Tabelle auf
Programmelemente, abgebildet

s Hohere Sprachen

= Mehr oder weniger komplexe Mechanismen/Regeln.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Beispiel: Namensauflosung in C++

s C++ gilt als eine der komplexesten Sprachen hinsichtlich der
Regeln zur Namensauflosung.

= |n C++ist die Namensauflosung beeinflusst durch:

m Namespaces —identische Bezeichner konnen je nach Kontext
unterschiedlichen Programmelementen zugeordnet sein.

m lexical Scope — Programmabschnitt.

m Visibility — Regeln, die innerhalb Vererbungshierarchien zum Tragen
kommen.

m Overloading — Regeln, die gestatten, dass unterschiedliche Elemente

(insbesondere Funktionen) tber identische Bezeichner angesprochen
werden kdénnen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Gultigkeitsbereich engl. scope

= Programmabschnitt™, in dem ein Bezeichner
nutzbar bzw. sichtbar ist.
= Nicht notwendigerweise zusammenhangend!

= Bei Variablen: nicht notwendigerweise identisch mit
Lebensdauer, d.h. Zeitraum in dem fur Variable
Speicher reserviert ist! (z.B. static in C, C++, Java)

* Gemeint sind damit Abschnitte des Quelltextes, nicht zeitliche Abschnitte zur Laufzeit.
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Gultigkeitsbereich (ii)

s Es existieren im Wesentlichen zwei unterschied-
liche Regeltypen, die die Sichtbarkeit definieren:

1. Gultigkeitsbereich engl. lexical scope

Der (d.h. der umgebende
Programmtext) bestimmt den Gultigkeitsbereich.

Gultigkeit unabhangig vom Aufruf-Stack.
Heutzutage am verbreitetsten.

- Kann vor der Laufzeit (also statisch) bestimmt werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Gultigkeitsbereich (iii)

2. Dynamischer Gultigkeitsbereich engl. dynamic scope

= Der Programmablauf und der Programmzustand zur
(d.h. die Programmausfiihrungsgeschichte bis zum
momentanen Zeitpunkt) bestimmen den Gultigkeitsbereich.

= Gultigkeit gekoppelt an Aufruf-Stack; d.h. sie leitet sich direkt
von den Regeln ab, wann auf dem Stack ein neuer Aufruf-
Frame erzeugt wird und wann dieser wieder geléscht wird.
(Lasst sich dadurch leichter implementieren als static scope,
wo im Wesentlichen der Compiler verantwortlich ist).

- Kann im Allgemeinen nur zur Laufzeit (also dynamisch)
bestimmt werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Gultigkeitsbereich - Beispiel (iv)

JavaScript — lexical scope Bash — dynamic scope

var x=1; x=1

function g() { console.log(x); x=2; } function g() { echo $x; x=2; }
function f() { var x=3; g(); } function f() { local x=3; g; }
f(); // Ausgabe 1, oder 3? f # Ausgabe 1, oder 3?
console.log(x); // Ausgabe 1, oder 2? echo $x # Ausgabe 1, oder 2?

g () gibt globale Variable x aus, da g() gibt £()‘s lokales x aus

in erster Zeile definiert. und modifiziert dieses.
Ausgabe auf Konsole: Ausgabe auf Konsole:
1 3
2 1

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

Anweisung

engl. statement

= Befehl mit wohldefinierter Semantik
s Entweder direkt ausfihrbar (Maschinenbefehl), oder
= Ubersetzung in eine Menge von Maschinenbefehlen.
m Charakteristisch flir imperativen Sprachen

= Wesentliche Anweisungsarten:

Deklaration
Zuweisung
Kontrollstruktur

int x;

X = 10;

if (x == true) { ... }
else { ... }

while (x > 0) { ... }

Sprunganweisung goto, return, break, ()

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

Ausdruck engl. expression

= Liefert bei Auswertung einen Wert (Ergebnis)

= Auswertung gemass:
math. Kalkihl/Theorie (z.B. sukzessive Termersetzung)
Auswertungsstrategie (z.B. lazy oder eager; dazu spater mehr)
m Charakteristisch fur deklarative Sprachen

= Manche Anweisungen sind auch Ausdrlicke, z.B. Zuweisung,
Prozeduraufruf

= Wesentliche Ausdrucksarten:

s Arithmetische 3*3 X+ (*y) f.g X
= Aussagenlogische al|b ==3 Ic
m Pradikatenlogische birthplace(J.S.Bach,Eisenach)

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf 01. Marz 2019

If you really care about software
then you have to care about hard-
ware.

Steve Wozniak, so oder so ahnlich

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/01-einfuehrung-teilll.pdf

01. Marz 2019

