C++ Einfuhrung

1. Allgemeines

2. Entwicklungsprozess

3. Gultigkeitsbereiche und Namespaces

4. Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

5. Elementare Typen und Strukturen

6. Vergleich Java/C++

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

2
C++ Literatur

m B. Stroustrup: Die C++ Programmiersprache. 4. Auflage i
Addison-Wesley, 2010. ISBN: 3827328233

m B. Stroustrup: Einfuhrung in die Programmierung mit C++
Pearson, 2010. ISBN: 978-3-8689-4005-3

Frei verfugbar:

m B. Eckel: Thinking in C++, Second Edition.
Volume I/Il. Prentice Hall. 2000/2003

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Abschreckend — Neugierig machend?

“C++ is a horrible language. It's made more horrible by the
fact that a lot of substandard programmers use it, to the
point where it's much much easier to generate total and utter
crap with it. Quite frankly, even if the choice of C were to do

nothing but keep the C++ programmers out, that in itself
would be a huge reason to use C.”*

* Linus Torvalds tGber C++ im Vergleich zu C, im Kontext von Git:
http://thread.gmane.org/gmane.comp.version-control.git/57643/focus=57918

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

. 4
Warum C++?

m Effiziente systemnahe (maschinennahe) Programmierung
= Betriebssysteme
= Eingebettete Systeme

= Dariber hinaus in unterschiedlichsten Anwendungsgebieten benutzt, z.B.:
= Graphik, 2D & 3D Visualisierung
= Numerische Berechnungen
= Server-Anwendungen
= Spieleprogrammierung
s Hoher Verbreitungsgrad

= Es existieren sehr viele (freie) Bibliotheken

m C++ kann auch mit anderen Programmiersprachen gekoppelt werden, z.B.
Visual Basic, C, Python, MATLAB, Java, Haskell, Go ...

Disclaimer: Fokus hier auf “klassischem” C++. C++11/17 nachrangig.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Wann C++ eher nicht?

= Um als Anfanger ,,mal schnell” die x-te Software zur Verwaltung
der privaten Musiksammlung zu entwickeln

— Eine der komplexesten Programmiersprachen.
= Kleine Projekte
= Skripte
= Schnelle Prototypenentwicklung
= Erhohte Sicherheitsanforderungen — Stichwort Sandboxing

= Bedingt durch die Moglichkeit direkt auf den Speicher zugreifen
zu kdnnen, ohne das dies liberwacht wird*, ist es leicht moglich
den Speicher zu korrumpieren oder kompromittierbaren Code
zu schreiben, der es erlaubt Schadfunktion einzuschleusen.

* Was aber andererseits heutige Betriebssysteme zumindest im Userspace einschranken durch
isolierte Speicherbereiche pro Prozess.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

C++ zusammengefasst

C C++

= C++ kein Superset von C, obwohl beide vieles gemein haben
= Streng typisiert
= Dynamisches als auch statisches Binden
= Modular — Strukturierung des Quellcodes durch:
= Separate Quellcode-Dateien, Namensbereiche, Klassen, Funktionen/Methoden
= Imperativ, systemnah
= Objektorientiert
= Kapselung, Polymorphie, Mehrfachvererbung, Unterscheidg. Objektidentitdt/-gleichheit

= Bietet Moglichkeiten der funktionalen Programmierung
= Methoden/Funktionen héherer Ordnung durch Funktionszeiger

= Uberschreiben von Methoden und Uberladen von Operatoren

= Ausnahmen (Exceptions) zur Fehlerbehandlung

= Templates zur generischen Programmierung

= Metaprogrammierung durch Makros (z.B. bedingtes Kompilieren)
= Designziel: zero-overhead abstractions™

* Stroustrup: What you don’t use, you don’t pay for. And further: What you do use, you couldn’t hand code any better.
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Stammbaum der OO-Sprachen

LISP
Algol Fortran

/ \

1960 ol
PLM
Simula

Prolog

1970) Smalltalk -72 A—
|
* ‘)\ Smalltalk-74
Pascal |
3 [Smalltalk-76 \
l
[Smalltalk-78 v
l\ \ \ -] [Loops]
Smalltalk-80 i

Quelle: http://upload.wikimedia.org/wikipedia/commons/d/db/Historie.png
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

1980 | Modula2 | ou,.lcmocl]
\ Ada83 / j
[Ob]octPascal] cLos]
1990
| 4 .
[Delphi J P rObjthObol \ ‘ /
Java

2000 | c#]t"‘"’r e Cotteminen)

22. Marz 2019

Schlusselworter in C++ und C

auto break case char
continue do double else
extern float for goto
if int long register return
short
switch void
volatile while Legende: Schwarz Syntax, Semantik ahnlich in Java
in der Vorlesung (nicht) behandelt
bool catch
explicit false
mutable
this throw true try
typeid

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Das klassische erste Programm

iostream: benotigt man, um das

cout (console output) Objekt fur
// it does what it do/ die Ausgabe auf der Konsole
<iostream> benutzen zu kdnnen.

main()

{

std::cout << "hello world!\n";

0;
} \ std::cout ist ein Standard-

Stream-Output zur Ausgabe

> g++ hello_world.cpp -o hello_world -

> ./hello_world

hello world!
Das Programm hello_world
wird ausgefiihrt

g++ ist der GNU C++ Compiler,
der eine C++ Datei kompiliert
und ein Executable erzeugt.

Zumeist wird ein Makefile benutzt, um den Ubersetzungsvorgang zu automatisieren.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Die spezielle main-Funktion

= Funktion zum Starten des Programms — der Einstiegspunkt

m Sagt dem Betriebssystem, wo der Einsprung in das Programm stattfindet
— nur eine main-Funktion pro Programm moglich.

Funktionsargumente kénnen auch

weggelassen werden (Uberladen),
wenn nicht genutzt.

main(argc, argv)

{
int x = 0;
X5

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Standard Ein- und Ausgabe

= cout wird zur Ausgabe auf die Konsole benutzt:

#include <iostream»
using namespace std;

it e f_‘ end of line
int i = 5;

cout << "the value of i is " << 1 << endl;
}

= cin wird zur Eingabe benutzt:

#include <iostream>
using namespace std;

int main() {
int i;
cout << "Enter a value for i "; cin wartet auf Eingabe
Ccln >> 1; »

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

// small example Kommentare
/*¥ A first program in C++ */ Mit /* und */ bzw. durch //.
<iostream>

main()
std::cout << "Welcome ";
std::cout << "to C++!\n";
@; //program ended successfully

} // end mgthod main

Welcome to C++!

return ist eine Moglichkeit, eine Funktion zu beenden.
return 0 teilt dem Vater-Prozess mit, dass das Programm erfolgreich beendet worden ist.

Praprozessor-Direktiven

Zeilen mit # sind Praprozessor-
Direktiven, also Befehle fiir den
C++ Praprozessor.

#include <iostream> teilt dem
Praprozessor mit, dass der Inhalt
der Datei <iostream> mit in die
C++ Datei eingebunden werden
soll.

Exkurs: Programm kann auch durch exit (int) jederzeit beendet werden

= Bekommt man durch #include <stdlib.h>
= Signatur (Prototyp) ist void exit(int);

= Parameter ist Rickgabewert flir Vater-Prozess (@ = normal exit)
= Achtung: ruft keine Destruktoren auf; dazu spater mehr
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Fortsetzung Beispiel

= Standard-Ausgabe Stream-Object

= “Verbunden” mit der Konsole

std: : ist der Namesbereich "namespace" von

std: : kann durch weggelassen werden

s Stream-Ausgabe Operator

= Wert auf der rechten Seite des Operator wird dem Output-Stream tibergeben
(welcher mit der Konsole verbunden ist)

m std::cout << "Welcome to C++!'\n";

m Stream-Eingabe Operator
m Zeichen des Input-Stream werden der rechten Seite des Operators zugewiesen

= ,Escape character”
= Besondere Zeichen zur Ausgabe

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

C++ Einfuhrung

Allgemeines
Entwicklungsprozess
Gultigkeitsbereiche und Namespaces

Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

Elementare Typen und Strukturen
Vergleich Java/C++

1.
2.
3.
4.

o

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Entwicklung mit mehreren Dateien

= |n C++ ist es Ublich, den Quelltext in mehreren Dateien zu halten
= Gruppierung logisch zusammengehorender Funktionen/Klassen/Strukturen
= Jede Datei bildet dadurch ein Modul

= Dateiname und Inhalt der Datei sind fiir den Compiler zusammenhangslos (im
Gegensatz zu z.B. Java); es ist aber Ublich dass der Name den Inhalt in
sinnvoller Weise reprasentiert.

int add(int a, int b); int add(int a, int b) {
return a + b;
int main(void) { }
int result, a=2, b=3;
std::cout << add(a,b); int sub(int a, int b) {
return O; return a - b;
} }

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Organisation des Quellcodes (i)

#include <iostream>
#include "Body.h" *=

. . Deklarationin =——
int main()
{

Body"a; -> \Was ist Body ?

std: :cout<<a.volume()<<std::endl;

return 0;) —» WasistBody::volume() ?

}

test.cpp: Hauptprogramm, das die Klasse Body
benutzt.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Organisation des Quellcodes (ii

#include <iostream> Body
#include "Body.h" {
int main() volume() const;
{ e
Body a; }s
std: :cout<<a.volume()<<std::endl;
return 0; Body.h: Header Datei in der die
} Klassen/Funktionen deklariert
werden.

test.cpp: Hauptprogramm, das die Klasse Body
benutzt. #include "Body.h"

Body: :volume() const

k = 1;

Body.cpp: Implementierung
(=Definition) der Klasse/Funktionen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Deklaration versus Definition

Deklarationen und Definitionen sind zwei unterschiedliche Konzepte!

= Alle Bezeichner (Symbole) missen dem Compiler bekannt gemacht werden, d.h.
sie mussen vor der ersten Verwendung deklariert werden.

Deklaration
= Bekanntgabe an Compiler Uber Existenz z.B. einer Funktion, einer Klasse usw.

= Bei Funktion liefert sie die Signatur: Rlickgabetyp und Liste der Argumente.
= Deklaration einer Funktion wird auch als Funktionsprototyp bezeichnet.

Definition
= Variable: Hier wird vom Compiler Code erzeugt, der fur sie Speicher reserviert.
= Klasse/Funktion: deren Implementierung.

Deklaration und Verwendung ohne Definition fuhrt zu Linker-Fehler. o

Beachte: Jede Definition einer Variablen ist auch eine Deklaration. A =
Q
Mehrfachdeklaration sind moéglich; Mehrfachdefinition jedoch nicht!

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Funktionsdeklaration

Aufbau der Deklaration — Funktionsprototyp
To F (Ty [Pi], T2 [P2]s) 5

T = Typ des Funktions-Ruckgabewertes

= Name (Bezeichner) der Funktion

P; = Formale Parameter (Variablen innerhalb der Funktion)
T; = Typen der formalen Parameter
Beispiele:
foo(X);
fool (s);
bar();
evalSquare (ao, al, a2,

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

a3);

22. Marz 2019

Funktionsdefinition

Syntax der Definition
To F (Ty Py, Ty Py o)
{

}

= Innerhalb { } stehen die Anweisungen und/oder Ausdriicke (function body)
= Formale Parameter werden wie andere Variablen innerhalb des Bodys verwendet
= return x beendet Funktion und gibt Funktionswert vom Typ Tg zurick

n Falls T, = void, verwendet man return ohne Argument
(nicht notig, falls return unmittelbar vor })

Beispiel: sign(x)
{

(x >= 9)
true;
false;

}

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Beispiel

#include <iostream>

#include "Body.h" €=

// declaration and definition
int global = ©;

int main()

{
Body a; // definition
int i=1, j; //defini (i), declar (3j)
int 1 = funcl(i,j); // compiler err
1 = func2(i,j);
std: :cout<<a.volume()<<std::endl;
return 0;

}

test.cpp: Hauptprogramm, das
die Klasse Body benutzt

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Body.h

int funci(int, int); //declaration
int func2(int k, int j); //declaration
class Body {

public:
int volume();

}s5
Body.cpp X
#include "Body.h"
//definition

int Body: :volume()

{

int MAX=19; //declar + defini

return MAX;

}
//definition

int funcl(int k, int j) {
return (k-j);

}

//definition

int func2(int k, int j) {
return (j+k);

}

22. Marz 2019

Kompilieren und Linken - Stufen

Preprocessor C++ Compiler Linker
Body.h | —p : :
1 I
HEE :' Body.o '. Executable
: : (ausfuhrbares
Body.cpp | —P Body.cpp' | —P» | Programm)
I
: test.o .:—P
test.cpp | —P> test.cpp > A : y
I I
Library.h _U)’
Souce-Code notwendig Object-Code notwendig
wenn statisch beim wenn statisch beim
Kompilieren eingebunden. Linken eingebunden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Praprozessor

= Wertet Makros bzw. Direktiven aus:

s Ein Makro/Direktive* ist eine an einen Softwareprozessor;
z.B. Textersetzung mittels #include-Anweisung durch Praprozessor.

Makros kdnnen Argumente haben; hier nicht behandelt.
m Hauptanwendungsgebiet von Makros ist das bedingte Kompilieren:

Plattformunabhangigkeit: plattformspezifischer Code wird nur dann
eingeflugt, wenn tatsachlich fur die betreffende Plattform kompiliert
wird (ansonsten nicht).

= Versteht” selbst kein C++ (bzw. C).
s Der erzeugte C++ Quelltext wird an den Compiler Ubergeben.

Merke: Makros/Direktiven sind Anwendungsfalle der
Meta-Programmierung — ,,Programm im Programm?®

* Es existieren auch Direktiven, welche Anweisungen an den Compiler oder Linker sind.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Praprozessor-Anweisung — Beispiel

= Fur die Arbeit mit mehreren Dateien wird meistes zu jeder Header-
Datei die folgende Anweisung hinzugeflgt:

#ifndef FILENAME_H
#define FILENAME_H

<header file body here>

#endif /* FILENAME H */ . i
int funcl(int, int);//declaration

int func2(int k,int j);//declaration

= Damit wird gewahrleistet, const int MAX=10; //decla + defini.
dass eine Header-Datei max. class Body {
public:

einmal beim Kompilieren

eingebunden wird. int volume();

}s

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Mehrfach-Einbindung von Headern

#ifndef BASIS H_
#def BASIS H_

// content of basis.h Header-Datei:
global=100; basis.h
volume() {return global++; }
#tendif
Header-Datei: statist.h: l l Header-Datei: graphen.h:
#include <iostream> #include <iostream>
#include "basis.h" #include "basis.h"

#include "statist.h"
#include "graphen.h"

HERLA Quelldatei:
anwendung.cpp

0;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Compiler

= Erwartet Quelltext (C++, C, usw.) ohne Praprozessoranweisungen
= Uberpriift Syntax
= Generiert und optimiert Maschinencode

m Erzeugt Objekt-Datei(en) fir den Linker

= Die Quelltext-Dateien, Zeilennummern und Bezeichner sind immer noch

bekannt.

= Je nach Compiler werde Letztere eventuell durch technische/interne Namen ersetzt

(engl. name mangling), bedingt durch Regeln der Namensauflosung.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

29
Objekt-Dateien

1. Objekt-Dateien enthalten Maschinencode flr:
s Funktionsdefinitionen,
= globale Variablen, plus initiale Werte falls initialisiert.

2. Index der benutzten Symbole (Bezeichner).
= nm (Linux) oder dumpbin (Windows) erzeugt diese Indexliste.

= Symbole sind noch keinen Adressen zugeordnet.
= Endung einer Objekt-Datei: .0 (Linux) bzw. .0obj (Windows)

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Linker (Binder)

= Linker
s Lost alle Abhangigkeiten der Objekt-Dateien auf.
m Erzeugt das ausfuhrbare Programm.
Dazu muissen u.a. Symbolen Adressen zugeordnet werden
s Macht keine weitere Code-Optimierung.
= Kennt keine Typen oder Variablen mehr.

m Auflésung (technischer/interner) Namen ist abhangig
vom Compiler. Es ist nicht garantiert, dass ein Linker
Objektdateien von unterschiedlichen Compilern linken

(binden) kann.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Statisches versus dynamisches Linken

s Statisches Linken: Alle Objektdateien werden in das
ausfuhrbare Programm gelinkt.

m Der Linker sucht in allen Objekt-Dateien nach entsprechenden
Symbolen und fliihrt eine Zuweisung zwischen definierten Symbolen
durch.

= Dynamisches Linken: Es gibt Symbole die erst zur Laufzeit
aufgelost und dynamisch gelinkt werden aus Bibliotheken.

= .dll (Windows) und .so (Linux) Bibliotheken, die aus Objekt-Dateien
bestehen und zur Laufzeit vom Betriebssystem eingebunden werden

= : Reduziert Grosse von ausfuhrbaren Dateien; Fehler in
Bibliothek erfordern nur erneutes Kompilieren der Bibliothek.

u . ,DLL Hell“ — Wenn neuere Version einer Bibliothek
inkompatibel ist mit Programm das von alterer Version abhangt.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Bibliotheken (Libraries)

= |dee: bereits sorgfaltig implementierte Software wiederverwenden.

= Library:

m Menge von thematisch zusammenhangenden kompilierten Sourcen
(Funktionen, Klassen, Typen, ...), zusammengefasst in einer Date:i.

= Ist kein eigenstandig lauffahiges Programm (enthalt kein main).
= System-Library:

m Library, die in bestimmten, vordefinierten Verzeichnissen installiert ist.

s Kommt typischerweise mit dem Betriebssystem
Linux: /usr/1ib

= Ein guter Programmierer kennt viele und die ,richtigen” Libraries ...

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Bibliotheken (Libraries)

= Wie verwendet man System-Libraries?
m |In der C++ Datei: Header-Datei inkludieren
m Beispiel: #include <math.h>

= Linken einer tGbersetzen Bibliothek (Objektdatei)

m Konvention unter Linux;:
-1m linkt 1ibm.so

m Beispiel Math-Library linken:
g++ -0 myprog filel.o file2.0 -1m

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Makefile

m Der Prozess des Kompilierens wird durch ein Makefile automatisiert.
= Ein Makefile fuhrt eine Liste der Abhangigkeiten der einzelnen Quelltext-

Dateien und liefert Direktiven und Befehle zum automatischen
Kompilieren des Projektes.

Body.o: Body.cpp, Body.h < Abhangigkeiten
g++ -c -o Body.o Body.cpp < Compile Befehl

test_body.o: test_body.cpp, Body.h, iostream <«——— Abhangigkeiten
g++ -c -0 test_body.o test_body.cpp = Compile Befehl

test: test.o, Body.o < Abhangigkeiten
g++ -0 test test.o Body.o < Link Befehl

m Das Erstellen und das Verwalten von Makefiles kann sehr aufwandig
sein. Es gibt Werkzeuge zum automatischen Erzeugen von Makefile:

m Tmake, QMake, CMake, SCons

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

TMake

TMake ist frei verfugbar unter:

“to create and maintain makefiles for software projects. It
can be a painful task to manage makefiles manually,

especially if you develop for more than one platform or use
more than one compiler. tmake automates and streamlines

this process and lets you spend your valuable time on writing
code, not makefiles.”

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

TMake - Beispiel

test_body.pro

HEADERS = Body.h
SOURCES = Body.cpp hello.cpp
TARGET = test_body

>: setenv TMAKEPATH /local/tmake/lib/linux-g++
>: setenv PATH $PATH:/local/tmake/bin
> test_body.pro -o Makefile

>

g++ -c -pipe -Wall -W -02 -0 Body.o Body.cpp
g++ -c -pipe -Wall -W -02 -0 hello.o hello.cpp
rm -f test_body

g++ -0 test_body Body.o hello.o

>

rm -f Body.o hello.o test_body

rm -f core *~

= TMake:

s Generiert automatisch ein Makefile.

= Die Anhangigkeiten zwischen den Dateien werden automatisch erkannt.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Dokumentation des C++ Codes

= Das Verwalten und Modifizieren von grossen C++ Paketen

kann sehr komplex sein.

m Gute Dokumentation ist deshalb sehr wichtig.

= Doxygen ist ein Werkzeug zur Dokumentation von C++
Quelltexten vergleichbar zu Javadoc.

m Doxygen ist frei verfligbar unter

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Doxygen

Beispiel: Dokumentation einer Funktion

/** Dokumentation of a function

*

* X ¥ X X ¥

*/

@param lower
@param upper
@return

@warning
@todo
@bug

lower bound of the range

upper bound of the range

A vector with the same size as this
vector and binary elements

some detail ..

FVector findInRange(float lower, float upper) const;

Doxygen analysiert die C++ Dateien und erzeugt html-Dateien mit der
entsprechenden Dokumentation.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

C++ Einfuhrung

Allgemeines
Entwicklungsprozess
Gultigkeitsbereiche und Namespaces

Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

Elementare Typen und Strukturen
Vergleich Java/C++

1.
2.
3.
4.

o

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Gultigkeitsbereiche in C++

s C++ benutzen
. Ein Scope wird u.A. durch einen Block gebildet.

= Ein Block ist ein Paar, bestehend aus {" und '}".

m Blocke konnen beliebig tief verschachtelt sein.

s Syntaxregeln definieren, an welchen Stellen im Programm Blocke gebildet
werden kdénnen.

= Bezeichner, die innerhalb eines Blocks deklariert sind, heissen lokal.

m Bezeichner, die ausserhalb aller Blocke und Funktionen definiert sind,
heissen global.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Globale Sichtbarkeit

= Globale Bezeichner sind in einem Block sichtbar (z.B. in einer
Funktion), wenn:
m die Deklaration vor der Funktion oder dem Block liegt,
m der Bezeichner anders heisst als die im Block,

m bei einer Funktion alle Parameter der Funktion
anders heissen als der Bezeichner,

= alle lokalen Bezeichner (Variablen, Typen, etc..)

anders benannt sind. v Stack

A

free

. . . v

= Globale Variablen liegen im A
heap
global

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Lokale Sichtbarkeit

= Bezeichner, die in einem Block (geschachtelten Block)
deklariert werden, sind sichtbar:
= nur innerhalb dieses Blocks, ab der Stelle der Deklaration bis zum Ende

des Blocks
m von Blocken, welche in diesen Block geschachtelt sind, falls sie nicht
selbst einen Bezeichner mit gleichem Name deklarieren.

= Die Sichtbarkeit einer Funktion entspricht der
eines Bezeichners ausserhalb aller Blocke stack
(Funktionen kdnnen in C++ nicht geschachtelt werden) 4 -
v
A
. . heap
= Lokale Variablen liegen auf dem :
global
text

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Globale Variablen

= Globale Variablen konnen von jedem Ort aus erreicht werden,
auch wenn sie durch lokale Bezeichner ,verdeckt” sind.

s Der zugehorige Operator : : heilRt Bereichsoperator
(engl. scope resolution operator)

m Seiteneffekte sind moglich, wenn die Variablen in verschiedenen
Funktionen verwendet werden.

m Globale Variablen sind in der Regel schlecht zu warten.

m |hre Initialisierung — Reihenfolge — ist nicht eindeutig.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

}
X

Sichtbarkeit: Beispiel

int x = 10; // Globale Variable
void f () { // Funktionsblock
int y = x; // Benutze globales x
int x = y - 10; // Lege lokales x an
1:X = 1:X - 9; // Benutze globales x
{ // verschachtelter Block

int y = x; // Welchen Wert hat y?

int x = 5;

// Wie oft wird diese Schleife durchlaufen?
for (int j =03 j < t:x3 ++3) { /* ... */ }

= X * 100; // Welches x wird hier verandert?

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Problem bei der Verwendung globaler Variablen ...

= Wieso wird sich der Compiler (beim Ubersetzen) mit
gcc -Wall util.cpp test.cpp -o test dariber beschweren?

/* util.cpp */
#include <iostream>
using namespace std;

g numCalls = O;

someFunc ()
{
cout << "someFunc:util "
<< g numCalls++
<< endl;;
}

/* test.cpp */
#include <iostream>
using namespace std;

someFunc(void);
g numCalls = 10;

main()

{

cout << "someFunc:main
<< g numCalls
<< endl;
someFunc();
someFunc();

}

= Beim Linken tritt zweimal die gleiche globale Variable auf !

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Speicherklasse von Objekten

= Die Deklaration eines Objektes legt neben Typ und Name
auch seine Speicherklasse fest.

= Diese bestimmt die Lebensdauer.
= Die Speicherklasse eines Objektes ist festgelegt durch:

1. Die Position der Deklaration innerhalb der Quelldatei
2. Die optionale Speicherklassen-Spezifikation:
extern/static siehe spater

auto (Default) beim Erreichen einer Definition wird das
Objekt auf dem Stack neu erzeugt und beim Verlassen
wieder zerstort (im Gegensatz zu static)

register Zur Beschleunigung der Programmausfihrung,
Variable wird im Register gehalten

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Der Modifier static

= Eine wesentliche Eigenschaft statischer Objekte ist ihre statische

(=permanente) Lebensdauer.

nicht auf dem Stack.

static hat hierbei drei verschiedene Bedeutungen:

1. Vor einer globalen Variable oder Funktion

static g someValue = 0O;
static g _someFunction()

= Weist den Linker an, diesen Bezeichner nicht zu exportieren.
s Beschrankt die Sichtbarkeit des Bezeichners auf die Datei.

(i)

Statische Objekte werden im Datensegment eines Programms gehalten,

= Der Linker wird ihn nicht verwenden, um Abhangigkeiten anderer Dateien

aufzulosen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Der Modifier static (

2. Vor einer lokalen Variable (in einer Funktion)

someFunc() {
static array[4000] ;

m Platziert die Variable nicht auf dem Stack

m Hat den Effekt, dass die Variable zwischen wiederholten Aufrufen
ihren Wert beibehalt

- Funktion mit Gedachtnis
(ohne auf global sichtbare Variablen zuriickgreifen zu miissen)

s Verwendung z.B. um zu vermeiden, dass grosse Objekte immer
wieder auf dem Stack angelegt werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

—_
[N]
s 0
o 0
E——

Der Modifier static

3. Vor einer Klassenvariable (oder Methode)
Whatever {

“Spater

static Whatever* getInstance ()3

= Definiert globale Variable/Funktion fiir eine Klasse
m Alle Instanzen einer Klasse teilen sich ihre statische Variablen
m Zugriff von aussen (falls): Class: :Member

m Statische Memberfunktionen kdnnen nur auf statische
Membervariablen zugreifen

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

50
Problem bei der Verwendung von globalen Variablen ...

Losung fiir das Problem der Mehrfachverwendung globaler Variablen (Folie 45):

/* util.cpp */ /* test.cpp */
#include <iostream> #include <iostream>
using namespace std; using namespace std;

static int g _numCalls = 10;

int g_numCalls = ©; tatic void someFunc(void)

void someFunc(void) cout<<"someFunc:test "

{ << g_numCalls++
cout << "someFunc:util " v @il
]
<< g numCalls++ }
<< endl;; int main(void)
} { mn Q mn
cout << "someFunc:mailn
gcc -Wall util.cpp test.cpp -o test << g numCalls
<< endl;
Ausgabe: someFunc:main 10 someFunc();
someFunc:test 10 someFunc();
someFunc:test 11 }

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Problem bei der Verwendung von globalen Variablen ...

s static kann hier helfen, aber:

= Die Variablen g numCalls aus util.cpp und
g numCalls aus test.cpp stehen in keiner
Beziehung zueinander (sind sozusagen 'privat' per
Datei).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

/* util.cpp */ /* test.cpp */
#include <iostream> #include <iostream>
using namespace std; using namespace std;

)) void someFunc(void);
void someFunc(void) (g

{ int main(void)
cout << "someRunc:util " {
<q:g;@umCa11§EE:> cout << "someFunc:main

gcc -Wall -ansi util.cpp
test.cpp -0 test

someFunc();
someFunc();

<< endl;; v\\\\\\\\\ << g numCalls
} << €endr;

Ausgabe: someFunc:main
someFunc:uti

someFunc:util

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Problem bei der Verwendung von globalen Variablen ...

Nochmals zum Problem der Mehrfachverwendung globaler Variablen (Folie 45):

. static int numCalls = 10;
1nt<§;EEmCallsE:§z) =

// declaration ot spmeFunc

22. Marz 2019

Problem bei der Verwendung von globalen Variablen ...

Nochmals zum Problem der Mehrfachverwendung globaler Variablen (Folie 45):

/* util.cpp */
#include <iostream>
using namespace std;

int g numCalls = 0O;

void someFunc(void)‘\\\\\\\\\\\\\

{
cout << "someFunc:util "
<< g numCalls++
<< endl;;
}

gcc -Wall -ansi util.cpp
test.cpp -o test

Ausgabe: someFunc:main @
someFunc:util ©

someFunc:util 1

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

/* test.cpp */
#include <iostream>
using namespace std;

extern int g numCalls;
void someFunc(void);

int main(void)

\\1$\23Ut~4$~"som- nc:main "
<@ mncalis>
<< endl,

someFunc();
someFunc();

extern: Variableistirgendwo
global definiert, kann

hier aber benutzt werden

22. Marz 2019

Globale Variablen: Weiteres Beispiel

= Was konnte hier Probleme verursachen ?

/* debug.h */ /* test.cpp */
#include "debug.h"

int debug_levéiz:> £

/* debug.cpp */ /* otherfile.cpp */

#include "debug.h" #include "debug.h"

Ubersetzung mit: gcc -Wall *.cpp -o test

Fehler: der Linker wird drei mal die gleiche globale Variable debug_level sehen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Weiteres Beispiel: Losung mit static?

static beseitigt zwar den Compilerfehler, verursacht aber ein neues Problem!

/* debug.h */ /* test.cpp */

. #include "debug.h"
static debug_level;
/* debug.cpp */ /* otherfile.cpp */
#include "debug.h" #include "debug.h"

Ubersetzung mit: gcc -Wall *.cpp -o test

Jede Datei bekommt ihre eigene Version der Variablen debug_level!

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Externe Bindung

= Forderung:
= die Variable int debug_level soll einmal (im Header) deklariert werden
m die Variable soll von verschiedenen Dateien aus benutzt werden kdnnen
= es soll nicht mehrfach Platz fur die Variable allokiert werden
= Deklaration der Variablen als extern

= Deklaration:
extern int debug level;

= Das bedeutet fir den Compiler:

“irgendwo existiert eine Variable debug_level vom Typ int,
aber der Speicher daftir liegt nicht hier; der Linker kiimmert sich
um die korrekte Einbindung!”

= Die Variable muss dann naturlich einmal in einer der . cpp-Dateien definiert
(angelegt und initialisiert) werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

angelegt).
/* debug.h */ /* test.cpp */
extern debug_level; #include “debug.h”
/* debug.cpp */ /* otherfile.cpp */
#include "debug.h" #include "debug.h"

int debug_level = 3;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Weiteres Beispiel: Losung mit extern

= Korrekte Variante: die Variable debug_level wird einmal in einem Header
als extern deklariert, im entsprechenden C++-File definiert (im Speicher

22. Marz 2019

Namensbereiche engl. namespace

= Beim Einbinden von Header-Dateien werden die darin
deklarierten globalen Bezeichner in den aktuellen
Programmkontext eingeflgt.

= Das kann Namenskollisionen fuhren, wenn die Bezeichner
bereits vergeben sind.

= Dies istinsbesondere dann ein Problem, wenn der
Programmierer auf die Namensgebung keinen Einfluss hat.

m z.B. bei Verwendung zweier kollidierender externer (third-party)
Bibliotheken

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Namensbereiche (ii)

= Losung: namespace-Mechanismus

= Syntax:

namespace <namespace-Name>

{

// Member-Deklaration bzw. Definition

= Namespace Members konnen Variablen, Typen, Funktion und
andere Namensbereiche sein.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Zugriff auf Namensbereich

= Members innerhalb eines namespace werden wie gewohnt
angesprochen.

= Von ausserhalb wird durch den qualifizierten Namen des
namespace Members zugegriffen.

= Qualifizierter Name (engl. fully qualified name)

<namespace-Name>: : <Member>

= Beispiel:

// std ist der Namensbereich der Standard-Bibliothek
std::cout << "some text " << std::endl;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Die using-Anweisung

= Es kann sehr lastig werden, haufig benutzte namespace
Members bei jeder Verwendung komplett zu qualifizieren.

= Innerhalb eines Giltigkeitsbereiches kann die using-
Anweisung den Zugriff lockern.

= Beispiel:

using <namespace-Name>: :<Member>;

oder

using <namespace-Name>; // alle Member des Namensbereich

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Namensbereiche: Beispiel

#include <iostream> Neuer Namensbereich MyStruct
nhamespace MyStruct { 1/////
struct Y {. // Zugriff namespace-Struct
static int Xx; MyStruct::Y varil;
}s5
int Y.x = 13; // Zugriff benutzen
} Erweiterung des Namensbereiches std
namespace std { ,/////
- - z Offne neuen Giiltigkeitsber.
< void newFunction (void) {} ~> /1
{

// in namespace von

. . e double x = 3.1415;
iostream einfugen.

} // -> Pi
int x = 10;

< X;
‘ :x; // -> 10
int main () { "——_—,,,,,————'
@g std: cou’> < MyStruct::Y.x <<
using std::endl;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

C++ Einfuhrung

Allgemeines
Entwicklungsprozess
Gultigkeitsbereiche und Namespaces

Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

Elementare Typen und Strukturen
Vergleich Java/C++

1.
2.
3.
4,

o

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Was passiert bei Funktionsaufrufen?

Wiederholung: Siehe Aufrufkonventionen im Kapitel zu Assembler.

1.
min(a, b)
(a<b a;)
b; '
main()
a = 42;
b = 137;
// addrl
std::cout << min(a, b) << endl;
9: 3.
b
4,
5.
6.
7.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Parameter auf dem Stack
ablegen, inkl. Platz fir
Ruckgabewert, falls vorhanden.

Rucksprungadresse auf dem
Stack ablegen.

top addri

t-1 return
t-2 a
t-3 b

Sprung zur Funktion min.
Funktion ausfihren.
Rucksprung hinter den Aufruf.
Parameter vom Stack nehmen.
Nachste Anweisung.

22. Marz 2019

Inline-Funktionen in C++

inline int min(int a, int b) Haufige Aufrufe von ,kleinen” Funktionen
{ beeintrachtigt das Laufzeitverhalten:
if(a < b) return aj; e Sicherung der Riicksprungadresse
return b; e Objekte kopieren/erzeugen
// (A < b?a:b) .)
} e Hin-/Ricksprung
int main() Deshalb kann man Funktionen als
{ inline definieren.
int a = 42;
int b = 137;

std::cout << min(a,b) << endl;
return 0;

Da min() als inline definiert ist, wird
eine Kopie der Funktion vom Compiler
an diese Stelle eingesetzt.

std::cout << (a < b ? a : b) <<endl;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Verwendung von
Inline-Funktionen/- Methoden

Inline-Funktionen bzw. -Methoden werden verwendet, wenn ...
= ... diese kurz sind und
= ... diese (sehr) haufig aufgerufen werden.

Vorteil:
Das Programm kann effizienter (schneller) werden.

Nachteil:

Das ausfuhrbare Programm wird grosser (durch
Codevervielfaltigung).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Globale Funktionen in C++

m In C++ konnen Funktionen global (ausserhalb von Klassen) definiert
werden. Solche Funktionen gehoren nicht zu einer bestimmten Klasse —
sie stellen in der Regel generell anwendbare Algorithmen zur Verfugung.

square(float x); // function declaration

square(float x) { // function definition

X*x;
}
main(int argc, char** argv) {
f = 5.0;
std::cout << "The square of " << f << " is " << square(f);
}

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Default-Argumente in C++

= |n C++ konnen Funktionen Default-Argumente besitzen

pow (base, exp=2); // function declaration

pow (base, exp) { // function definition
if (exp == @) return 1;
for (int i=1; i < exp; ++i) base *= base;
return base;

}
main(argc, ** argv) {
pow(5); // return 25
pow(5, 3); // return 125
}

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

C++ Einfuhrung

1. Allgemeines

2. Entwicklungsprozess

3. Gultigkeitsbereiche und Namespaces

4. Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

5. Elementare Typen und Strukturen

6. Vergleich Java/C++

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

short

int

Das Typsystem in C++

EIementare Strukturen Adressen
Datentypen /

Ganzzahlig

/AN

long

Referenzen
enum struct union cIass array Zeiger

Gleitkommazahlen

float double long double

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Elementare Datentypen in C++

char

unsigned char 1 Byte 0 bis +255

wchar_t 2 byte 0 bis +65'535 (Unicode)

int bis +2'147'483'647

unsigned int

short -32'768 bis +32'767

unsigned short |2 Byte 0 bis +65'535

long 8 byte —9'223'372'036'854'775'808 bis
+9'223'372'036'854'775'807

unsigned long 8 byte 0 bis +18'446'744'073'709'551'615

Mit Hilfe des Operators sizeof kann man den Speicherbedarf von Variablen bzw.
allen Arten von Datentypen bestimmen, also nicht nur von elementaren.
Beispiele: sizeof (char); /* liefert 1 */

short myShort;

sizeof (myShort) /* liefert 2 */

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

C++11 (und C11):

Portable Typen:

intmax_t uintmax_t Maximal von der Zielplattform unterstitzte Breite.
1nts_t uints_t Genau 8, 16, 32, 64 Bit breit.

intle_t uintlé_t : : - :
. - . - Je nach Zielplattform nicht definiert, wenn Typ mit
int32_t uint32_t dieser Breite nicht existiert

int64_t uinte4_t '

int_least8_t

int_leastl6_t
int_least32_t
int_least64_t

uint_least8_t

uint_leastl6_t
uint_least32_t
uint_least64_t

Mindestens 8, 16, 32, 64 Bit breit.
Kompaktester Typ, der mind. n Bit breit ist;
praktisch meist identisch mit int*_t bzw.
uint*_t

int_fast8_t

int_fastle6_t
int_fast32_t
int_faste4_t

uint_fast8_t

uint_fastle_t
uint_fast32_t
uint_fast64_t

Mindestens 8, 16, 32, 64 Bit breit.
Wenn breiterer Typ von Zielplattform
unterstitzt wird, dann wird dieser benutzt.?)

1) Beispiel: 64 Bit-Plattform: uint_fast16 // angefordert = uint64_t // tatsichlich

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Klassische C-Strings

= C-Strings sind aquivalent zu Arrays of char

= Endenimmer mit '\@' — man sagt sie sind O-terminiert.

a[5] = "abcd";

al lbl ICI Idl I\el

a[@] == 'a' /’

a[4] "\0' a

berlcksichtigen:
m O-Terminierung

m Speicherallokation

sizeof("abcd") == 5;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

= Bei der Verwendung klassischer C-Strings sind einige Details zu

m separate Funktionen fir Suche, Kopie, Teilstrings, etc ... in <string.h>

22. Marz 2019

50 |
C++-Strings

= Die C++ Standardbibliothek beinhaltet Klasse std: :string

#include <string> // Achtung: kein .h
using namespace std; // Programmierer sind schreibfaul

string textl = "A nice day"; // Die klassische Deklaration
string text2("A nice day"); // Aquivalent via Konstruktor

string copy = textl; // Erzeugen einer Kopie
cout << "Text: " << copy; // Ausgabe via C++ iostream
// Konvertierung in C-sytle string ist moglich, aber

// const verhindert, dass auf diesem Weg Daten verandert
// werden konnen

const char* text_p = copy.c_str();
text_p[0] = 'X'; // Fehler !

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Strings: Zeichensatz & Kodierung

engl. charset & character encoding

m Ein Zeichensatz ist eine nichtleere, endliche Menge an Zeichen.

= Die Kodierung ist eine Abbildung der Zeichen eines Zeichensatzes auf
tblicherweise Ganzahlen (zur Reprasentation dieser im Speicher).

1/0(1|1[0|1)|0

1/1(1|0|1|1)|0

a @7 Kodierung
= Internationale Standards wie (1963), (1964),
(1986), (1991) definieren einerseits einen Zeichensatz und

andererseits ein- oder mehrere verschiedene Kodierungen.

= Beide Begriffe werden haufig vermischt oder synonym verwandt,
sind aber strikt genommen nicht dasselbe.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Strukturen — struct

m Strukturen fassen logisch zusammengehorende Daten zusammen, z.B.:

Structure tag

A

struct student {

int id;
char name[80]; * Structure members

}s

= Fdr den Entwickler
= id und name gehdren nun zusammen
s struct student erzeugt ein gemeinsames Datenfeld

= Fur den Compiler
= id und name liegen ,nebeneinander”im Speicher

m struct student ist ein komplexer Datentyp, der an Funktionen
Ubergeben werden kann

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Syntax & Verwendung von struct

Syntax einer C-Struktur Definition (und Deklaration)
struct [name] { struct Foo foo;

<type> fieldl; struct point {

<type> field2; int a;

- double b;
} [instance list]; } objctl, objct2;

struct point objct3 = {1, 3.12}
Beispieldeklaration:

Datenzugriff:
struct Foo {
int fieldl; foo.fieldl;
char field2; “Zugriff auf Feld field1 der Instanz foo
}s5 der struct Foo”

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Forward-Declaration von struct

= Problem: wie deklariert man die folgenden beiden structs?

struct S

struct T int y int x

int X int y
S *s T *t

Lésung: Forward-Deklaration {

Vorgehensweise funktioniert nur fir. 5
Typen deren Grosse schon bekannt ist }s
(z.B. Zeiger und Methoden). - {

Analoge Vorgehensweise auch bei
Klassen.

}s

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

79

Speicherausrichtung (engl. alignment)

s Compiler richtet Member einer Struktur im Speicher an
vordefinierten Grenzen aus™:

= z.B. am Wortanfang: wenn sizeof(r) mod w != 0 (¢ ist Typ, w Wortbreite
in Bytes) dann werden Licken eingefigt (engl. padding).

----------- 32 bit =4 bytes >
foo { L : 7
char a; 1000 a L i c k e
int b; 1004 b - X
char c; _ _
}x; 1008 | ¢ L i ¢ k e

= Nachteil: Es geht Speicherplatz verloren.
= Vorteil: schneller Speicherzugriff da optimal durch Hardware unterstuitzt.

s Manche CPUs unterstlitzen nichtausgerichtete Anordnung, aber:
= Langsamer wenn mehr als ein Speicherzugriff und/oder Cache miss.
= Je nach Hardware kein atomares Lesen bei mehreren Speicherzugriffen.

* Details siehe z.B.: http://en.wikipedia.org/wiki/Data_structure_alignment#Typical _alignment_of C_structs_on_x86

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Aufzahlungen — enum

= Eine Aufzahlung ist ein selbst definierter ganzzahliger Typ mit
Schlisselwort enum

enum PrimaryColors { PrimaryColors color = GREEN;
RED = 2, switch(color)
GREEN, {
BLUE case RED:

}s5

case GREEN:

= Default: Erster Wert (RED) wird mit 0 initialisiert

= Jeder weitere Konstante hat einen um eins erhéhten Wert zum
Vorganger

= Man kann aber auch den ersten Wert beliebig wahlen (RED = 2)

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Syntax von enum

Deklaration
enum name {
OptionName
OptionName

int],
int],

} [instance list];

Definition
enum Color { Alle Werte konnen aber auch explizit
RED = -3, vorgegeben werden

GREEN = 4,
BLUE = 12
} color *color ptr;

-~ Zeigervariable: Variable, die im
enum Color c; Speicher auf eine Speicherstelle
void drawCircle verweist, die einen Wert vom Typ

(enum Color c); Color beinhaltet.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Unions —union

= Struktur bei der alle Member an der gleichen Adresse beginnen.

= Anwendungsfalle:

m Speicherbereich den man mit Werten verschiedener Datentypen belegen
will; z.B. Knoten in Baum der Werte vom Typ int oder double enthalten

kann; d.h. Wertebereich ist: int U double
m Eher selten: Uminterpretation von Daten

foo { X.1

=3;
int i; // 4 bytes inty = x.i; // y =3
double d; // 8 bytes x.d = 3.5;
} x; int z = x.i; // z =
/

niederwertige 32 bits von 3.5
interpretiert als 32-bit Integer

?

= Grosse eines Union im Speicher entspricht Grosse seines grossten

Member; im Beispiel: sizeof(x) = 8

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Zusammenfsg. syntaktischer Varianten

1. Deklaration benannte Struktur/Union/Enum:
name { /* ... */ };

2. Deklaration anonyme Struktur/Union/Enum und Definition Variable(n) dieses Typs:
{/* ... */ } var_1, ..., var_n;

3. Deklaration benannte Struktur/Union/Enum und Definition Variable(n) dieses Typs:
name { /* ... */ } var_1, ..., var_n;

4. Variablendefinition(en) einer zuvor deklarierten Struktur/Union/Enum:

name var_1, ..., var_n;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Schlusselwort typedef (i)

= Typedef bietet die Moéglichkeit, Typen einen neuen Namen zu geben

unsigned char mybyte; typedef wunsigned char BYTE;
BYTE mybyte;

= BYTE ist nun ein Alias fir unsigned char

= Beide Definitionen von mybyte sind nun aquivalent fir den
Compiler

= Vorteile der typdef Definition:

m Aussagekraftiger (Lesbarkeit)

m Maschinenabhangige Typen kdonnen isoliert werden. Bei der Portierung
muss nur der Alias ,,umgehangen® werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Schlusselwort typedef

Anwendung auf Strukturen:

struct Student {
int id;
char name[80];

}s

struct Student st;

typedef struct {
int id;
char name[80];
} STUDENT;

STUDENT st;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

(ii)

22. Marz 2019

Schlusselwort typedef

Vorteil
Man kann schnell an einer Stelle im Code den Type einer

bestimmten Variablen andern.

Wird haufig in Verbindung mit struct verwendet

struct point {
int a;
double b;
¥

struct point objct2;

int normalNumber;
int smallNumber;

int normalNumber;
short smallNumber;

typedef struct point {
int a;
double b;

} POINT;

POINT objct2;

typedef int MYINT
int normalNumber;
MYINT smallNumber;

typedef short MYINT
int normalNumber;
MYINT smallNumber;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

(iii)

22. Marz 2019

Schlusselwort typedef

(

V)

= Die Lesbarkeit eines Programms wird durch typedef verbessert,

vor allem bei komplexen Datentypen, z.B. Funktionszeigern:

char* (*search)(float, int);

search ist ein Zeiger auf eine Funktion, die zwei Eingabe-

Parameter vom Typ float und int besitzt und die einen Zeiger

auf char liefert
(spater mehr Gber Zeiger in C++)

typedef char* (*PTR_TO _FUNC) (float, int);

Besser (klirzer):
PTR_TO _FUNC search;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

C++ Einfuhrung

Allgemeines
Entwicklungsprozess
Gultigkeitsbereiche und Namespaces

Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

Elementare Typen und Strukturen
Vergleich Java/C++

1.
2.
3.
4.

o U

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Elementare Datentypen in Java/C++

Elementare Datentypen in Java

= boolean
= byte

= char

= short

= int

= long

= float

= double

Elementare Datentypen in C++

= bool

= (unsigned) char
= wchar_t

= (unsigned) short
= (unsigned) int

= (unsigned) long
= float

= double

= long double

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

In Java ist das Verhalten von In C++ ist das Verhalten von
elementaren Datentypen und elementaren Datentypen und
Objekten unterschiedlich Objekten identisch
Java C++
inta=0; // Creation of an integer inta=0; // Creation of an integer
intb = a; // b holds a copy of a intb = a; // b holds a copy of a
b =42; // only b is changed b =42; // only b is changed
Body x; // no object creation ¢ Body x; // the object x is created
Bodyy = x; // y holds a reference to x ¢ Body y = x; // y holds a copy of x
y.setVol(42); //y and x are changed ¢ y.setVol(42); //onlyy is changed
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Vergleich Java/C++ — Referenzen

In C++ gibt es die Moglichkeit, explizit Referenzen zu benutzen —
damit verhalten sich dann Objekte wie Objekte in Java

Java C++
Body vy = x; // y holds a Body& y = x; // y holds a
// reference to x // reference to x
y.setVol(42); //y and x are y.setVol(42); //y and x are
// changed // changed

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

Vergl. Java/C++ — Funktionsaufrufe

Funktions-Deklaration in Java Funktions-Deklaration in C++

Java C++
void f1(int a) // ais a copy void f1(int a) // ais a copy
{ {
a=142; a=42;
} }
void f2(Body x) // x is a reference void f2(Body x) // x is a copy
{
x.setVol(42); F x.setVol(42);
} }
// Call // Call
f1(b); // b is not modified fi(b); // b is not modified
f2(y); // vy is modified ¢ f2(y); //yis not modified

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

22. Marz 2019

Vergl. Java/C++ — Call by Reference

Funktions-Deklaration in Java Funktions-Deklaration in C++
Java C++

void f2(Body x) // x is a reference void f2(Body& x) // x is a reference

{ {

x.setVol(42); x.setVol(42);

} }

// Call // Call

f2(y); // vy is modified f2(y); // vy is modified

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

94 |
Vergleich Java/C++ — Referenz

nach der Erzeugung nicht mehr andern

// nowhere

Objekt.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Achtung: In C++ kann man eine Referenz auf ein Objekt

Java C++
Body a; Body a;
Body b; Body b;
Bodyc=a; //creferstoa Body& c=a; //creferstoa
c=b; // now, c - c=h; // b is copied to c
// refersto b // (which is a)

Body& d; // ERROR! d points

In C++ ist eine Referenz ein anderer Name (“Aliasname”) fiir ein bereits existierendes

22. Marz 2019

C++

= Compiler: Quelltext wird kompiliert
(= Ubersetzt in Maschinencode):

+ Optimale Leistung moglich.

— Wenn das Programm auf unter-
schiedlichen Betriebssystemen
(Linux, Windows, Mac, ...) oder
Architekturen (Sparc, ARM, X86)
laufen soll, dann muss man auch
unterschiedliche Varianten
verwalten.

Vergleich Java/C++ — Ausfihrung

Java

= Interpreter/Just-in-time Compiler: Java
Byte-Code ist Grundlage der Ausfiihrung
durch die Java Virtual Machine:

+ Der Byte-Code kann (ohne weiteres)
auf allen Architekturen ausgefiihrt
werden, fur die eine JVM verflgbar ist.

+ Moderne JVMs haben Just-in-time
Compiler: wird Byte-Code oft genug
ausgefuhrt, dann wird er zur Laufzeit
kompiliert und danach als Maschi-
nencode ausgefiihrt 2 optimale
Leistung nach einer gewissen Laufzeit.

— Overhead durch Speicherverwaltung
und geprufte Speicherzugriffe.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf 22. Marz 2019

