
K03

1. Allgemeines
2. Entwicklungsprozess
3. Gültigkeitsbereiche und Namespaces
4. Prozedur-/Funktionsaufrufe, Inlining,

Default-Argumente
5. Elementare Typen und Strukturen
6. Vergleich Java/C++

C++ Einführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

C++ Literatur

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n B. Stroustrup: Die C++ Programmiersprache. 4. Auflage
Addison-Wesley, 2010. ISBN: 3827328233

n B. Stroustrup: Einführung in die Programmierung mit C++
Pearson, 2010. ISBN: 978-3-8689-4005-3

Frei verfügbar:
n B. Eckel: Thinking in C++, Second Edition.

Volume I/II. Prentice Hall. 2000/2003

2

Abschreckend – Neugierig machend?

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

3

“C++ is a horrible language. It's made more horrible by the
fact that a lot of substandard programmers use it, to the
point where it's much much easier to generate total and utter
crap with it. Quite frankly, even if the choice of C were to do
nothing but keep the C++ programmers out, that in itself
would be a huge reason to use C.”*

* Linus Torvalds über C++ im Vergleich zu C, im Kontext von Git:
http://thread.gmane.org/gmane.comp.version-control.git/57643/focus=57918

Warum C++?

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n Effiziente systemnahe (maschinennahe) Programmierung
n Betriebssysteme
n Eingebettete Systeme

n Darüber hinaus in unterschiedlichsten Anwendungsgebieten benutzt, z.B.:
n Graphik, 2D & 3D Visualisierung
n Numerische Berechnungen
n Server-Anwendungen
n Spieleprogrammierung

n Hoher Verbreitungsgrad
n Es existieren sehr viele (freie) Bibliotheken

n C++ kann auch mit anderen Programmiersprachen gekoppelt werden, z.B.
Visual Basic, C, Python, MATLAB, Java, Haskell, Go …

4

Disclaimer: Fokus hier auf “klassischem” C++. C++11/17 nachrangig.

Wann C++ eher nicht?

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n Um als Anfänger „mal schnell“ die x-te Software zur Verwaltung
der privaten Musiksammlung zu entwickeln
à Eine der komplexesten Programmiersprachen.

n Kleine Projekte
n Skripte
n Schnelle Prototypenentwicklung
n Erhöhte Sicherheitsanforderungen – Stichwort Sandboxing

n Bedingt durch die Möglichkeit direkt auf den Speicher zugreifen
zu können, ohne das dies überwacht wird*, ist es leicht möglich
den Speicher zu korrumpieren oder kompromittierbaren Code
zu schreiben, der es erlaubt Schadfunktion einzuschleusen.

* Was aber andererseits heutige Betriebssysteme zumindest im Userspace einschränken durch
isolierte Speicherbereiche pro Prozess.

5

C++ zusammengefasst

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n C++ kein Superset von C, obwohl beide vieles gemein haben
n Streng typisiert
n Dynamisches als auch statisches Binden
n Modular – Strukturierung des Quellcodes durch:

n Separate Quellcode-Dateien, Namensbereiche, Klassen, Funktionen/Methoden
n Imperativ, systemnah
n Objektorientiert

n Kapselung, Polymorphie, Mehrfachvererbung, Unterscheidg. Objektidentität/-gleichheit
n Bietet Möglichkeiten der funktionalen Programmierung

n Methoden/Funktionen höherer Ordnung durch Funktionszeiger
n Überschreiben von Methoden und Überladen von Operatoren
n Ausnahmen (Exceptions) zur Fehlerbehandlung
n Templates zur generischen Programmierung
n Metaprogrammierung durch Makros (z.B. bedingtes Kompilieren)
n Designziel: zero-overhead abstractions*

C C++

6

* Stroustrup: What you don’t use, you don’t pay for. And further: What you do use, you couldn’t hand code any better.

Stammbaum der OO-Sprachen

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf
Quelle: http://upload.wikimedia.org/wikipedia/commons/d/db/Historie.png

7

Schlüsselwörter in C++ und C

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

8

Schlüsselwörter in C und C++

auto break case char const

continue default do double else

enum extern float for goto

if int long register return

short signed sizeof static struct

switch typedef union unsigned void

volatile while Legende: Schwarz Syntax, Semantik ähnlich in Java
Braun in der Vorlesung (nicht) behandeltSchlüsselwörter (nur C++)

asm bool catch class const_cast

delete dynamic_cast explicit false friend

inline mutable namespace new operator

private protected public reinterpret_cast static_cast

template this throw true try

typeid typename using virtual wchar_t

Das klassische erste Programm

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

// it does what it does
#include <iostream>
int main()
{
std::cout << "hello world!\n";
return 0;

}

hello_world.cpp

> g++ hello_world.cpp -o hello_world
> ./hello_world
hello world!

iostream: benötigt man, um das
cout (console output) Objekt für
die Ausgabe auf der Konsole
benutzen zu können.

std::cout ist ein Standard-
Stream-Output zur Ausgabe

Das Programm hello_world
wird ausgeführt

g++ ist der GNU C++ Compiler,
der eine C++ Datei kompiliert
und ein Executable erzeugt.

Zumeist wird ein Makefile benutzt, um den Übersetzungsvorgang zu automatisieren.

9

Die spezielle main-Funktion

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n Funktion zum Starten des Programms – der Einstiegspunkt
n Sagt dem Betriebssystem, wo der Einsprung in das Programm stattfindet

– nur eine main-Funktion pro Programm möglich.

int main(int argc, char** argv)
{

int x = 0;
return x;

}

test.cpp

Funktionsargumente können auch
weggelassen werden (Überladen),
wenn nicht genutzt.

10

Standard Ein- und Ausgabe

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n cout wird zur Ausgabe auf die Konsole benutzt:

n cin wird zur Eingabe benutzt:

#include <iostream>
using namespace std;

int main() {
int i;
cout << "Enter a value for i ";
cin >> i;

}

cin wartet auf Eingabe

#include <iostream>
using namespace std;

int main() {
int i = 5;
cout << "the value of i is " << i << endl;

}

end of line

11

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

1 // small example

2 /* A first program in C++ */

3 #include <iostream>

4

5 int main()

6 {

7 std::cout << "Welcome ";

8 std::cout << "to C++!\n";

9 return 0; //program ended successfully

10 } // end method main

Welcome to C++!

Präprozessor-Direktiven

Zeilen mit # sind Präprozessor-
Direktiven, also Befehle für den
C++ Präprozessor.

#include <iostream> teilt dem
Präprozessor mit, dass der Inhalt
der Datei <iostream> mit in die
C++ Datei eingebunden werden
soll.

Kommentare

Mit /* und */ bzw. durch //.

return ist eine Möglichkeit, eine Funktion zu beenden.
return 0 teilt dem Vater-Prozess mit, dass das Programm erfolgreich beendet worden ist.

12

§ Exkurs: Programm kann auch durch exit(int) jederzeit beendet werden
§ Bekommt man durch #include <stdlib.h>
§ Signatur (Prototyp) ist void exit(int);
§ Parameter ist Rückgabewert für Vater-Prozess (0 = normal exit)
§ Achtung: ruft keine Destruktoren auf; dazu später mehr

Fortsetzung Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

13

n std::cout
n Standard-Ausgabe Stream-Object
n “Verbunden” mit der Konsole
std:: ist der Namesbereich "namespace" von cout
std:: kann durch using std weggelassen werden

n <<
n Stream-Ausgabe Operator
n Wert auf der rechten Seite des Operator wird dem Output-Stream übergeben

(welcher mit der Konsole verbunden ist)
n std::cout << "Welcome to C++!\n";

n >>
n Stream-Eingabe Operator
n Zeichen des Input-Stream werden der rechten Seite des Operators zugewiesen

n \
n „Escape character“
n Besondere Zeichen zur Ausgabe

K03

1. Allgemeines

2. Entwicklungsprozess
3. Gültigkeitsbereiche und Namespaces

4. Prozedur-/Funktionsaufrufe, Inlining,
Default-Argumente

5. Elementare Typen und Strukturen

6. Vergleich Java/C++

C++ Einführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Entwicklung mit mehreren Dateien

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

15

n In C++ ist es üblich, den Quelltext in mehreren Dateien zu halten

n Gruppierung logisch zusammengehörender Funktionen/Klassen/Strukturen

n Jede Datei bildet dadurch ein Modul

n Dateiname und Inhalt der Datei sind für den Compiler zusammenhangslos (im

Gegensatz zu z.B. Java); es ist aber üblich dass der Name den Inhalt in

sinnvoller Weise repräsentiert.

int add(int a, int b);

int main(void) {
int result, a=2, b=3;
std::cout << add(a,b);
return 0;

}

int add(int a, int b) {
return a + b;

}

int sub(int a, int b) {
return a - b;

}

main.cpp utils.cpp

Organisation des Quellcodes (i)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

16

#include <iostream>
#include "Body.h"

int main()
{

Body a;
std::cout<<a.volume()<<std::endl;
return 0;

}

test.cpp: Hauptprogramm, das die Klasse Body

benutzt.

Deklaration in

Was ist Body ?

Was ist Body::volume() ?

Organisation des Quellcodes (ii)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

17

class Body
{
public:

int volume() const;
...
};

Body.h: Header Datei in der die
Klassen/Funktionen deklariert
werden.

#include "Body.h"

int Body::volume() const
{

return int k = 1;
}
...

Body.cpp: Implementierung
(=Definition) der Klasse/Funktionen.

#include <iostream>
#include "Body.h"

int main()
{

Body a;
std::cout<<a.volume()<<std::endl;
return 0;

}

test.cpp: Hauptprogramm, das die Klasse Body
benutzt.

Deklaration versus Definition

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

18

Deklarationen und Definitionen sind zwei unterschiedliche Konzepte!

n Alle Bezeichner (Symbole) müssen dem Compiler bekannt gemacht werden, d.h.

sie müssen vor der ersten Verwendung deklariert werden.

Deklaration
n Bekanntgabe an Compiler über Existenz z.B. einer Funktion, einer Klasse usw.

n Bei Funktion liefert sie die Signatur: Rückgabetyp und Liste der Argumente.

n Deklaration einer Funktion wird auch als Funktionsprototyp bezeichnet.

Definition
n Variable: Hier wird vom Compiler Code erzeugt, der für sie Speicher reserviert.

n Klasse/Funktion: deren Implementierung.

Beachte: Jede Definition einer Variablen ist auch eine Deklaration.

Deklaration und Verwendung ohne Definition führt zu Linker-Fehler.

Mehrfachdeklaration sind möglich; Mehrfachdefinition jedoch nicht!

Funktionsdeklaration

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

19

Aufbau der Deklaration – Funktionsprototyp
T0 F (T1 [P1], T2 [P2], …) ;

T0 = Typ des Funktions-Rückgabewertes

F = Name (Bezeichner) der Funktion
Pi = Formale Parameter (Variablen innerhalb der Funktion)
Ti = Typen der formalen Parameter

Beispiele:

int foo(int x);
int foo1 (int, float);
void bar();
float evalSquare (float a0, float a1, float a2, float a3);

Funktionsdefinition

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

20

Syntax der Definition
T0 F (T1 P1, T2 P2, …)
{

. . .
}

n Innerhalb { } stehen die Anweisungen und/oder Ausdrücke (function body)
n Formale Parameter werden wie andere Variablen innerhalb des Bodys verwendet

n return x beendet Funktion und gibt Funktionswert vom Typ T0 zurück
n Falls T0 = void, verwendet man return ohne Argument

(nicht nötig, falls return unmittelbar vor })

Beispiel: bool sign(int x)
{

if (x >= 0)
return true;

else
return false;

}

Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

21

int func1(int, int);
int func2(int k, int j);
class Body {
public:

int volume();
};

Body.h

#include "Body.h"

int Body::volume()
{

int MAX=10;
return MAX;

}

int func1(int k, int j) {
return (k-j);

}

int func2(int k, int j) {
return (j+k);

}

Body.cpp

#include <iostream>
#include "Body.h"

int global = 0;

int main()
{
Body a;
int i=1, j; //defini (i), declar (j)
int l = func1(i,j); // compiler err
l = func2(i,j);
std::cout<<a.volume()<<std::endl;
return 0;

}

test.cpp: Hauptprogramm, das
die Klasse Body benutzt

//declaration
//declaration

//definition

//declar + defini

//definition

//definition

// declaration and definition

// definition

Kompilieren und Linken - Stufen

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

23

Body.h

Body.cpp

test.cpp

Executable
(ausführbares
Programm)

Preprocessor C++ Compiler Linker

Body.o

test.o

Body.h'

Body.cpp'

test.cpp'

LibraryLibraryLibraryLibrary.hLibrary.hLibrary.h

Object-Code notwendig
wenn statisch beim
Linken eingebunden.

Souce-Code notwendig
wenn statisch beim
Kompilieren eingebunden.

Präprozessor

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

24

n Wertet Makros bzw. Direktiven aus:
n Ein Makro/Direktive* ist eine Anweisung an einen Softwareprozessor;

z.B. Textersetzung mittels #include-Anweisung durch Präprozessor.
n Makros können Argumente haben; hier nicht behandelt.

n Hauptanwendungsgebiet von Makros ist das bedingte Kompilieren:
n Plattformunabhängigkeit: plattformspezifischer Code wird nur dann

eingefügt, wenn tatsächlich für die betreffende Plattform kompiliert
wird (ansonsten nicht).

n „Versteht“ selbst kein C++ (bzw. C).

n Der erzeugte C++ Quelltext wird an den Compiler übergeben.

Merke: Makros/Direktiven sind Anwendungsfälle der
Meta-Programmierung – „Programm im Programm“

* Es existieren auch Direktiven, welche Anweisungen an den Compiler oder Linker sind.

Präprozessor-Anweisung – Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

25

n Für die Arbeit mit mehreren Dateien wird meistes zu jeder Header-
Datei die folgende Anweisung hinzugefügt:

#ifndef FILENAME_H
#define FILENAME_H

<header file body here>

#endif /* FILENAME_H */

n Damit wird gewährleistet,
dass eine Header-Datei max.
einmal beim Kompilieren
eingebunden wird.

#ifndef BODY_H
#define BODY_H
int func1(int, int);//declaration
int func2(int k,int j);//declaration
const int MAX=10; //decla + defini.
class Body {
public:

int volume();
};
#endif /* BODY_H */

Mehrfach-Einbindung von Headern

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

27

#ifndef _BASIS_H_
#def _BASIS_H_
// content of basis.h
int global=100;
int volume() {return global++; }
#endif

Header-Datei:
basis.h

#include <iostream>
#include "basis.h"

Header-Datei: statist.h:

#include <iostream>
#include "basis.h"

Header-Datei: graphen.h:

#include "statist.h"
#include "graphen.h"
int main()
{

. . .
return 0;

}

Quelldatei:
anwendung.cpp

Compiler

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

28

n Erwartet Quelltext (C++, C, usw.) ohne Präprozessoranweisungen

n Überprüft Syntax

n Generiert und optimiert Maschinencode

n Erzeugt Objekt-Datei(en) für den Linker

n Die Quelltext-Dateien, Zeilennummern und Bezeichner sind immer noch

bekannt.

n Je nach Compiler werde Letztere eventuell durch technische/interne Namen ersetzt

(engl. name mangling), bedingt durch Regeln der Namensauflösung.

Objekt-Dateien

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

29

1. Objekt-Dateien enthalten Maschinencode für:

n Funktionsdefinitionen,

n globale Variablen, plus initiale Werte falls initialisiert.

2. Index der benutzten Symbole (Bezeichner).

n nm (Linux) oder dumpbin (Windows) erzeugt diese Indexliste.

n Symbole sind noch keinen Adressen zugeordnet.

n Endung einer Objekt-Datei: .o (Linux) bzw. .obj (Windows)

Linker (Binder)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

30

n Linker
n Löst alle Abhängigkeiten der Objekt-Dateien auf.

n Erzeugt das ausführbare Programm.
n Dazu müssen u.a. Symbolen Adressen zugeordnet werden

n Macht keine weitere Code-Optimierung.

n Kennt keine Typen oder Variablen mehr.

n Auflösung (technischer/interner) Namen ist abhängig
vom Compiler. Es ist nicht garantiert, dass ein Linker
Objektdateien von unterschiedlichen Compilern linken
(binden) kann.

Statisches versus dynamisches Linken

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

31

n Statisches Linken: Alle Objektdateien werden in das
ausführbare Programm gelinkt.
n Der Linker sucht in allen Objekt-Dateien nach entsprechenden

Symbolen und führt eine Zuweisung zwischen definierten Symbolen
durch.

n Dynamisches Linken: Es gibt Symbole die erst zur Laufzeit
aufgelöst und dynamisch gelinkt werden aus Bibliotheken.
n .dll (Windows) und .so (Linux) Bibliotheken, die aus Objekt-Dateien

bestehen und zur Laufzeit vom Betriebssystem eingebunden werden
n Vorteile: Reduziert Grösse von ausführbaren Dateien; Fehler in

Bibliothek erfordern nur erneutes Kompilieren der Bibliothek.
n Nachteil: „DLL Hell“ – Wenn neuere Version einer Bibliothek

inkompatibel ist mit Programm das von älterer Version abhängt.

Bibliotheken (Libraries)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

32

n Idee: bereits sorgfältig implementierte Software wiederverwenden.

n Library:
n Menge von thematisch zusammenhängenden kompilierten Sourcen

(Funktionen, Klassen, Typen, …), zusammengefasst in einer Datei.
n Ist kein eigenständig lauffähiges Programm (enthält kein main).

n System-Library:
n Library, die in bestimmten, vordefinierten Verzeichnissen installiert ist.
n Kommt typischerweise mit dem Betriebssystem

Linux: /usr/lib

n Ein guter Programmierer kennt viele und die „richtigen“ Libraries ...

Bibliotheken (Libraries)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

33

n Wie verwendet man System-Libraries?

n In der C++ Datei: Header-Datei inkludieren

n Beispiel: #include <math.h>

n Linken einer übersetzen Bibliothek (Objektdatei)

n Konvention unter Linux:

-lm linkt libm.so
n Beispiel Math-Library linken:

g++ -o myprog file1.o file2.o –lm

Makefile

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

34

n Der Prozess des Kompilierens wird durch ein Makefile automatisiert.
n Ein Makefile führt eine Liste der Abhängigkeiten der einzelnen Quelltext-

Dateien und liefert Direktiven und Befehle zum automatischen
Kompilieren des Projektes.

Body.o: Body.cpp, Body.h
g++ -c -o Body.o Body.cpp

test_body.o: test_body.cpp, Body.h, iostream
g++ -c -o test_body.o test_body.cpp

test: test.o, Body.o
g++ -o test test.o Body.o

Abhängigkeiten
Compile Befehl
Abhängigkeiten
Compile Befehl
Abhängigkeiten
Link Befehl

n Das Erstellen und das Verwalten von Makefiles kann sehr aufwändig
sein. Es gibt Werkzeuge zum automatischen Erzeugen von Makefile:
n Tmake, QMake, CMake, SCons

TMake

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

35

TMake ist frei verfügbar unter:
http://tmake.sourceforge.net/

“to create and maintain makefiles for software projects. It
can be a painful task to manage makefiles manually,
especially if you develop for more than one platform or use
more than one compiler. tmake automates and streamlines
this process and lets you spend your valuable time on writing
code, not makefiles.”

TMake - Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

36

n TMake:
n Generiert automatisch ein Makefile.
n Die Anhängigkeiten zwischen den Dateien werden automatisch erkannt.

HEADERS = Body.h
SOURCES = Body.cpp hello.cpp
TARGET = test_body

test_body.pro

>: setenv TMAKEPATH /local/tmake/lib/linux-g++
>: setenv PATH $PATH:/local/tmake/bin
>: tmake test_body.pro -o Makefile
>: make
g++ -c -pipe -Wall -W -O2 -o Body.o Body.cpp
g++ -c -pipe -Wall -W -O2 -o hello.o hello.cpp
rm -f test_body
g++ -o test_body Body.o hello.o
>: make clean
rm -f Body.o hello.o test_body
rm -f core *~

Dokumentation des C++ Codes

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

37

n Das Verwalten und Modifizieren von grossen C++ Paketen
kann sehr komplex sein.
n Gute Dokumentation ist deshalb sehr wichtig.

n Doxygen ist ein Werkzeug zur Dokumentation von C++
Quelltexten vergleichbar zu Javadoc.
n Doxygen ist frei verfügbar unter
http://www.doxygen.org

Doxygen

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

38

Beispiel: Dokumentation einer Funktion

/** Dokumentation of a function
* @param lower lower bound of the range
* @param upper upper bound of the range
* @return A vector with the same size as this
* vector and binary elements
* @warning some detail ..
* @todo ...
* @bug ...
*/

FVector findInRange(float lower, float upper) const;

Doxygen analysiert die C++ Dateien und erzeugt html-Dateien mit der
entsprechenden Dokumentation.

K03

1. Allgemeines
2. Entwicklungsprozess
3. Gültigkeitsbereiche und Namespaces
4. Prozedur-/Funktionsaufrufe, Inlining,

Default-Argumente
5. Elementare Typen und Strukturen
6. Vergleich Java/C++

C++ Einführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Gültigkeitsbereiche in C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

40

n C++ (und viele andere Programmiersprachen) benutzen lexikalischen

Scope. Ein Scope wird u.A. durch einen Block gebildet.

n Ein Block ist ein Paar, bestehend aus `{´ und `}´.
n Blöcke können beliebig tief verschachtelt sein.

n Syntaxregeln definieren, an welchen Stellen im Programm Blöcke gebildet

werden können.

n Bezeichner, die innerhalb eines Blocks deklariert sind, heissen lokal.
n Bezeichner, die ausserhalb aller Blöcke und Funktionen definiert sind,

heissen global.

Globale Sichtbarkeit

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

41

n Globale Bezeichner sind in einem Block sichtbar (z.B. in einer

Funktion), wenn:

n die Deklaration vor der Funktion oder dem Block liegt,

n der Bezeichner anders heisst als die im Block,

n bei einer Funktion alle Parameter der Funktion

anders heissen als der Bezeichner,

n alle lokalen Bezeichner (Variablen, Typen, etc..)

anders benannt sind.

n Globale Variablen liegen im

globalen Segment.

stack

free

global

text

heap

Lokale Sichtbarkeit

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

42

n Bezeichner, die in einem Block (geschachtelten Block)
deklariert werden, sind sichtbar:
n nur innerhalb dieses Blocks, ab der Stelle der Deklaration bis zum Ende

des Blocks

n von Blöcken, welche in diesen Block geschachtelt sind, falls sie nicht
selbst einen Bezeichner mit gleichem Name deklarieren.

n Die Sichtbarkeit einer Funktion entspricht der
eines Bezeichners ausserhalb aller Blöcke
(Funktionen können in C++ nicht geschachtelt werden)

n Lokale Variablen liegen auf dem Stack.

stack

free

global

text

heap

Globale Variablen

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

43

n Globale Variablen können von jedem Ort aus erreicht werden,

auch wenn sie durch lokale Bezeichner „verdeckt“ sind.

n Der zugehörige Operator :: heißt Bereichsoperator

(engl. scope resolution operator)

n Globale Variablen sollten möglichst vermieden werden!

n Seiteneffekte sind möglich, wenn die Variablen in verschiedenen

Funktionen verwendet werden.

n Globale Variablen sind in der Regel schlecht zu warten.

n Ihre Initialisierung – Reihenfolge – ist nicht eindeutig.

Sichtbarkeit: Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

44

int x = 10; // Globale Variable

void f () { // Funktionsblock

int y = x; // Benutze globales x
int x = y - 10; // Lege lokales x an
::x = ::x – 9; // Benutze globales x

{ // verschachtelter Block
int y = x; // Welchen Wert hat y?
int x = 5;
// Wie oft wird diese Schleife durchlaufen?
for (int j = 0; j < ::x; ++j) { /* ... */ }

}
x = x * 100; // Welches x wird hier verändert?

}

Problem bei der Verwendung globaler Variablen …

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

45

/* util.cpp */

#include <iostream>

using namespace std;

int g_numCalls = 0;

void someFunc(void)

{

cout << "someFunc:util "

<< g_numCalls++

<< endl;;

}

/* test.cpp */
#include <iostream>

using namespace std;

void someFunc(void);
int g_numCalls = 10;

int main(void)
{

cout << "someFunc:main "
<< g_numCalls

<< endl;
someFunc();
someFunc();

}

§ Wieso wird sich der Compiler (beim Übersetzen) mit
gcc –Wall util.cpp test.cpp -o test darüber beschweren ?

§ Beim Linken tritt zweimal die gleiche globale Variable auf !

Speicherklasse von Objekten

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

46

n Die Deklaration eines Objektes legt neben Typ und Name
auch seine Speicherklasse fest.

n Diese bestimmt die Lebensdauer.
n Die Speicherklasse eines Objektes ist festgelegt durch:

1. Die Position der Deklaration innerhalb der Quelldatei

2. Die optionale Speicherklassen-Spezifikation:

n extern/static siehe später

n auto (Default) beim Erreichen einer Definition wird das
Objekt auf dem Stack neu erzeugt und beim Verlassen
wieder zerstört (im Gegensatz zu static)

n register Zur Beschleunigung der Programmausführung,
Variable wird im Register gehalten

Der Modifier static (i)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

47

n Eine wesentliche Eigenschaft statischer Objekte ist ihre statische
(=permanente) Lebensdauer.

n Statische Objekte werden im Datensegment eines Programms gehalten,
nicht auf dem Stack.

static hat hierbei drei verschiedene Bedeutungen:

1. Vor einer globalen Variable oder Funktion

static int g_someValue = 0;
static void g_someFunction(void);

n Weist den Linker an, diesen Bezeichner nicht zu exportieren.
n Beschränkt die Sichtbarkeit des Bezeichners auf die Datei.
n Der Linker wird ihn nicht verwenden, um Abhängigkeiten anderer Dateien

aufzulösen.

Der Modifier static (ii)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

48

2. Vor einer lokalen Variable (in einer Funktion)

void someFunc(void) {
static int array[4000];

}

n Platziert die Variable nicht auf dem Stack
n Hat den Effekt, dass die Variable zwischen wiederholten Aufrufen

ihren Wert beibehält
à Funktion mit Gedächtnis

(ohne auf global sichtbare Variablen zurückgreifen zu müssen)
n Verwendung z.B. um zu vermeiden, dass grosse Objekte immer

wieder auf dem Stack angelegt werden.

Der Modifier static (iii)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

49

3. Vor einer Klassenvariable (oder Methode)

class Whatever {
private:

static Whatever* instance;
public:

static Whatever* getInstance (void);
}

n Definiert globale Variable/Funktion für eine Klasse
n Alle Instanzen einer Klasse teilen sich ihre statische Variablen
n Zugriff von aussen (falls public): Class::Member
n Statische Memberfunktionen können nur auf statische

Membervariablen zugreifen

später

Problem bei der Verwendung von globalen Variablen …

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

50

/* util.cpp */
#include <iostream>
using namespace std;

int g_numCalls = 0;

void someFunc(void)
{

cout << "someFunc:util "
<< g_numCalls++
<< endl;;

}

/* test.cpp */
#include <iostream>
using namespace std;

static int g_numCalls = 10;
static void someFunc(void)
{

cout<<"someFunc:test "
<< g_numCalls++
<< endl;

}
int main(void)
{

cout << "someFunc:main "
<< g_numCalls
<< endl;

someFunc();
someFunc();

}

someFunc:main 10
someFunc:test 10
someFunc:test 11

gcc -Wall util.cpp test.cpp -o test

Ausgabe:

Lösung für das Problem der Mehrfachverwendung globaler Variablen (Folie 45):

Problem bei der Verwendung von globalen Variablen …

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

51

n static kann hier helfen, aber:
n Die Variablen g_numCalls aus util.cpp und
g_numCalls aus test.cpp stehen in keiner
Beziehung zueinander (sind sozusagen 'privat' per
Datei).

Problem bei der Verwendung von globalen Variablen …

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

52

Nochmals zum Problem der Mehrfachverwendung globaler Variablen (Folie 45):
/* util.cpp */
#include <iostream>
using namespace std;

int g_numCalls = 0;

void someFunc(void)
{

cout << "someFunc:util "
<< g_numCalls++
<< endl;;

}

/* test.cpp */
#include <iostream>
using namespace std;

static int g_numCalls = 10;
// declaration of someFunc
void someFunc(void);

int main(void)
{

cout << "someFunc:main "
<< g_numCalls
<< endl;

someFunc();
someFunc();

}
gcc -Wall -ansi util.cpp

test.cpp -o test

someFunc:main 10
someFunc:util 0
someFunc:util 1

Ausgabe:

Problem bei der Verwendung von globalen Variablen …

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

53

Nochmals zum Problem der Mehrfachverwendung globaler Variablen (Folie 45):
/* util.cpp */
#include <iostream>
using namespace std;

int g_numCalls = 0;

void someFunc(void)
{

cout << "someFunc:util "
<< g_numCalls++
<< endl;;

}

/* test.cpp */
#include <iostream>
using namespace std;

extern int g_numCalls;
void someFunc(void);

int main(void)
{

cout << "someFunc:main "
<< g_numCalls
<< endl;

someFunc();
someFunc();

}
gcc -Wall -ansi util.cpp

test.cpp -o test

someFunc:main 0
someFunc:util 0
someFunc:util 1

extern: Variable ist irgendwo
global definiert, kann
hier aber benutzt werden

Ausgabe:

Globale Variablen: Weiteres Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

54

n Was könnte hier Probleme verursachen ?

/* test.cpp */

#include "debug.h"
…

Übersetzung mit: gcc -Wall *.cpp -o test

/* debug.cpp */

#include "debug.h"
…

/* otherfile.cpp */

#include "debug.h"
…

/* debug.h */

int debug_level;
…

§ Fehler: der Linker wird drei mal die gleiche globale Variable debug_level sehen.

Weiteres Beispiel: Lösung mit static?

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

55

n static beseitigt zwar den Compilerfehler, verursacht aber ein neues Problem!

§ Jede Datei bekommt ihre eigene Version der Variablen debug_level!

/* test.cpp */

#include "debug.h"
…

Übersetzung mit: gcc -Wall *.cpp -o test

/* debug.cpp */

#include "debug.h"
…

/* otherfile.cpp */

#include "debug.h"
…

/* debug.h */

static int debug_level;
…

Externe Bindung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

56

n Forderung:
n die Variable int debug_level soll einmal (im Header) deklariert werden
n die Variable soll von verschiedenen Dateien aus benutzt werden können

n es soll nicht mehrfach Platz für die Variable allokiert werden
n Deklaration der Variablen als extern

n Deklaration:

extern int debug_level;

n Das bedeutet für den Compiler:

“irgendwo existiert eine Variable debug_level vom Typ int,
aber der Speicher dafür liegt nicht hier; der Linker kümmert sich
um die korrekte Einbindung!“

n Die Variable muss dann natürlich einmal in einer der .cpp-Dateien definiert
(angelegt und initialisiert) werden.

Weiteres Beispiel: Lösung mit extern

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

57

n Korrekte Variante: die Variable debug_level wird einmal in einem Header
als extern deklariert, im entsprechenden C++-File definiert (im Speicher
angelegt).

/* debug.h */

extern int debug_level;
…

/* test.cpp */

#include "debug.h"
…

/* debug.cpp */

#include "debug.h"
int debug_level = 3;
…

/* otherfile.cpp */

#include "debug.h"
…

Namensbereiche engl. namespace

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

58

n Beim Einbinden von Header-Dateien werden die darin
deklarierten globalen Bezeichner in den aktuellen
Programmkontext eingefügt.

n Das kann Namenskollisionen führen, wenn die Bezeichner
bereits vergeben sind.

n Dies ist insbesondere dann ein Problem, wenn der
Programmierer auf die Namensgebung keinen Einfluss hat.

n z.B. bei Verwendung zweier kollidierender externer (third-party)
Bibliotheken

Namensbereiche (ii)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

59

n Lösung: namespace-Mechanismus

n Syntax:

n Namespace Members können Variablen, Typen, Funktion und
andere Namensbereiche sein.

namespace <namespace-Name>
{

// Member-Deklaration bzw. Definition
}

Zugriff auf Namensbereich

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

60

n Members innerhalb eines namespace werden wie gewohnt
angesprochen.

n Von ausserhalb wird durch den qualifizierten Namen des
namespace Members zugegriffen.

n Qualifizierter Name (engl. fully qualified name)

n Beispiel:

<namespace-Name>::<Member>

// std ist der Namensbereich der Standard-Bibliothek
std::cout << "some text " << std::endl;

Die using-Anweisung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

61

n Es kann sehr lästig werden, häufig benutzte namespace
Members bei jeder Verwendung komplett zu qualifizieren.

n Innerhalb eines Gültigkeitsbereiches kann die using-
Anweisung den Zugriff lockern.

n Beispiel:

oder

using <namespace-Name>::<Member>;

using <namespace-Name>; // alle Member des Namensbereich

Namensbereiche: Beispiel

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

62

#include <iostream>
namespace MyStruct {
struct Y {

static int x;
};
int Y.x = 13;

}
namespace std {

void newFunction (void) {}
// in namespace von

iostream einfügen.
}
int x = 10;
int main () {

using std::cout;
using std::endl;

// Zugriff namespace-Struct
MyStruct::Y var1;

// Zugriff benutzen
std::newFunction();

// Öffne neuen Gültigkeitsber.
{
double x = 3.1415;

cout << x; // -> Pi
cout << ::x; // -> 10

}
cout << MyStruct::Y.x << endl;

}

Neuer Namensbereich MyStruct

Erweiterung des Namensbereiches std

K03

1. Allgemeines
2. Entwicklungsprozess
3. Gültigkeitsbereiche und Namespaces
4. Prozedur-/Funktionsaufrufe, Inlining,

Default-Argumente
5. Elementare Typen und Strukturen
6. Vergleich Java/C++

C++ Einführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Was passiert bei Funktionsaufrufen?

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

64

1. Parameter auf dem Stack
ablegen, inkl. Platz für
Rückgabewert, falls vorhanden.

2. Rücksprungadresse auf dem
Stack ablegen.

3. Sprung zur Funktion min.
4. Funktion ausführen.
5. Rücksprung hinter den Aufruf.
6. Parameter vom Stack nehmen.
7. Nächste Anweisung.

top
t-1
t-2
t-3

addr1
return
a
b

int min(int a, int b)
{

if (a < b) return a;
return b;

}

int main()
{

int a = 42;
int b = 137;
// addr1
std::cout << min(a, b) << endl;
return 0;

}

Wiederholung: Siehe Aufrufkonventionen im Kapitel zu Assembler.

Inline-Funktionen in C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

65

inline int min(int a, int b)
{

if(a < b) return a;
return b;
// (a < b ? a : b)

}

int main()
{

int a = 42;
int b = 137;

std::cout << min(a,b) << endl;
return 0;

} Da min() als inline definiert ist, wird
eine Kopie der Funktion vom Compiler
an diese Stelle eingesetzt.

Häufige Aufrufe von „kleinen“ Funktionen
beeinträchtigt das Laufzeitverhalten:
• Sicherung der Rücksprungadresse
• Objekte kopieren/erzeugen
• Hin-/Rücksprung

Deshalb kann man Funktionen als
inline definieren.

std::cout << (a < b ? a : b) <<endl;

Verwendung von

Inline-Funktionen/- Methoden

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

66

Inline-Funktionen bzw. -Methoden werden verwendet, wenn …

n … diese kurz sind und

n … diese (sehr) häufig aufgerufen werden.

Vorteil:

Das Programm kann effizienter (schneller) werden.

Nachteil:

Das ausführbare Programm wird grösser (durch

Codevervielfältigung).

Globale Funktionen in C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

67

n In C++ können Funktionen global (ausserhalb von Klassen) definiert
werden. Solche Funktionen gehören nicht zu einer bestimmten Klasse –
sie stellen in der Regel generell anwendbare Algorithmen zur Verfügung.

float square(float x); // function declaration
...

float square(float x) { // function definition
return x*x;

}

...

int main(int argc, char** argv) {
float f = 5.0;
std::cout << "The square of " << f << " is " << square(f);

}

Default-Argumente in C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

68

n In C++ können Funktionen Default-Argumente besitzen

float pow(float base, int exp=2); // function declaration

...

float pow(float base, int exp) { // function definition
if (exp == 0) return 1;
for (int i=1; i < exp; ++i) base *= base;
return base;

}

...

int main(int argc, char** argv) {
pow(5); // return 25
pow(5, 3); // return 125

}

K03

1. Allgemeines
2. Entwicklungsprozess
3. Gültigkeitsbereiche und Namespaces
4. Prozedur-/Funktionsaufrufe, Inlining,

Default-Argumente
5. Elementare Typen und Strukturen
6. Vergleich Java/C++

C++ Einführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Das Typsystem in C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

70

Elementare
Datentypen

struct

AdressenStrukturen

char
short

int
long

bool

Ganzzahlig

float

Gleitkommazahlen

double long double

classenum Zeiger
Referenzen

arrayunion

Elementare Datentypen in C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

71

Typ typ. Speicherplatz - Werte mancher
Typen abhängig von Wortbreite

Wertebereich

char 1 Byte -128 bis +127

unsigned char 1 Byte 0 bis +255 (ASCII)

wchar_t 2 byte 0 bis +65'535 (Unicode)

int 4 Byte (in der Regel) -2'147'483'648 bis +2'147'483'647

unsigned int 4 Byte (in der Regel) +0 bis +4294967295

short 2 Byte -32'768 bis +32'767

unsigned short 2 Byte 0 bis +65'535

long 8 byte –9'223'372'036'854'775'808 bis
+9'223'372'036'854'775'807

unsigned long 8 byte 0 bis +18'446'744'073'709'551'615

Mit Hilfe des Operators sizeof kann man den Speicherbedarf von Variablen bzw.
allen Arten von Datentypen bestimmen, also nicht nur von elementaren.
Beispiele: sizeof (char); /* liefert 1 */

short myShort;
sizeof (myShort) /* liefert 2 */

Nur bedingt
portabel!

C++11 (und C11): <stdint.h> <cstdint>

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

72

Vorzeichenbehaftet Vorzeichenlos Beschreibung

intmax_t uintmax_t Maximal von der Zielplattform unterstützte Breite.
int8_t
int16_t
int32_t
int64_t

uint8_t
uint16_t
uint32_t
uint64_t

Genau 8, 16, 32, 64 Bit breit.
Je nach Zielplattform nicht definiert, wenn Typ mit
dieser Breite nicht existiert.

int_least8_t
int_least16_t
int_least32_t
int_least64_t

uint_least8_t
uint_least16_t
uint_least32_t
uint_least64_t

Mindestens 8, 16, 32, 64 Bit breit.
Kompaktester Typ, der mind. n Bit breit ist;
praktisch meist identisch mit int*_t bzw.
uint*_t

int_fast8_t
int_fast16_t
int_fast32_t
int_fast64_t

uint_fast8_t
uint_fast16_t
uint_fast32_t
uint_fast64_t

Mindestens 8, 16, 32, 64 Bit breit.
Wenn breiterer Typ besser von Zielplattform
unterstützt wird, dann wird dieser benutzt.1)

1) Beispiel: 64 Bit-Plattform: uint_fast16 // angefordert à uint64_t // tatsächlich

Portable Typen:

Klassische C-Strings

n C-Strings sind äquivalent zu Arrays of char
n Enden immer mit '\0' – man sagt sie sind 0-terminiert.

char a[5] = "abcd";

a[0] == 'a'
a[4] == '\0'

'a' 'b' 'c' 'd' '\0'

a sizeof("abcd") == 5;

22. März 2019

50

thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

n Bei der Verwendung klassischer C-Strings sind einige Details zu
berücksichtigen:
n 0-Terminierung

n Speicherallokation

n separate Funktionen für Suche, Kopie, Teilstrings, etc ... in <string.h>

C++-Strings
n Die C++ Standardbibliothek beinhaltet Klasse std::string

22. März 2019

50

thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

#include <string> // Achtung: kein .h

using namespace std; // Programmierer sind schreibfaul

string text1 = "A nice day"; // Die klassische Deklaration

string text2("A nice day"); // Äquivalent via Konstruktor

string copy = text1; // Erzeugen einer Kopie

cout << "Text: " << copy; // Ausgabe via C++ iostream

// Konvertierung in C-sytle string ist möglich, aber

// const verhindert, dass auf diesem Weg Daten verändert
// werden können

const char* text_p = copy.c_str();

text_p[0] = 'X'; // Fehler !

Strings: Zeichensatz & Kodierung

n Ein Zeichensatz ist eine nichtleere, endliche Menge an Zeichen.

n Die Kodierung ist eine Abbildung der Zeichen eines Zeichensatzes auf
üblicherweise Ganzahlen (zur Repräsentation dieser im Speicher).

n Internationale Standards wie ASCII (1963), EBCDIC (1964), ISO 8859
(1986), Unicode (1991) definieren einerseits einen Zeichensatz und
andererseits ein- oder mehrere verschiedene Kodierungen.

n Beide Begriffe werden häufig vermischt oder synonym verwandt,
sind aber strikt genommen nicht dasselbe.

22. März 2019

50

thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

engl. charset & character encoding

1

a

ö

Z

?^

ß
@

д
∞

♧
✤

!
૱

Zeichensatz

0 1 0 1 1 0 1 0

1 1 1 1 0 1 1 0

...
Kodierung

struct student {
int id;
char name[80];

};

Strukturen – struct

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

76

n Für den Entwickler
n id und name gehören nun zusammen
n struct student erzeugt ein gemeinsames Datenfeld

n Für den Compiler
n id und name liegen „nebeneinander“ im Speicher
n struct student ist ein komplexer Datentyp, der an Funktionen

übergeben werden kann

n Strukturen fassen logisch zusammengehörende Daten zusammen, z.B.:

Structure tag

Structure members

Syntax & Verwendung von struct

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

77

Syntax einer C-Struktur

struct [name] {
<type> field1;
<type> field2;
…

} [instance list];

Beispieldeklaration:

struct Foo {
int field1;
char field2;

};

Definition (und Deklaration)

struct Foo foo;
struct point {

int a;
double b;

} objct1, objct2;
struct point objct3 = {1, 3.12}

Datenzugriff:

foo.field1;
“Zugriff auf Feld field1 der Instanz foo
der struct Foo”

Forward-Declaration von struct

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

78

n Problem: wie deklariert man die folgenden beiden structs?

int x
int x
int y
T *t

int y

S *s

struct T struct S

struct S;
struct T {

…
S *s;
…

};
struct S {

…
T *t;
…

};

Lösung: Forward-Deklaration

Vorgehensweise funktioniert nur für.
Typen deren Grösse schon bekannt ist
(z.B. Zeiger und Methoden).

Analoge Vorgehensweise auch bei
Klassen.

Speicherausrichtung (engl. alignment)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

79

n Compiler richtet Member einer Struktur im Speicher an

vordefinierten Grenzen aus*:

n z.B. am Wortanfang: wenn sizeof(t) mod w != 0 (t ist Typ, w Wortbreite

in Bytes) dann werden Lücken eingefügt (engl. padding).

n Nachteil: Es geht Speicherplatz verloren.

n Vorteil: schneller Speicherzugriff da optimal durch Hardware unterstützt.

n Manche CPUs unterstützen nichtausgerichtete Anordnung, aber:

n Langsamer wenn mehr als ein Speicherzugriff und/oder Cache miss.

n Je nach Hardware kein atomares Lesen bei mehreren Speicherzugriffen.

struct foo {
char a;
int b;
char c;

} x;

32 bit = 4 bytes

x

L ü c k e
42.1

a

b

c

L ü c k e

1008

1000

1004

* Details siehe z.B.: http://en.wikipedia.org/wiki/Data_structure_alignment#Typical_alignment_of_C_structs_on_x86

Aufzählungen – enum

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

80

n Default: Erster Wert (RED) wird mit 0 initialisiert
n Jeder weitere Konstante hat einen um eins erhöhten Wert zum

Vorgänger
n Man kann aber auch den ersten Wert beliebig wählen (RED = 2)

n Eine Aufzählung ist ein selbst definierter ganzzahliger Typ mit
Schlüsselwort enum

enum PrimaryColors {
RED = 2,
GREEN,
BLUE

};

PrimaryColors color = GREEN;
switch(color)
{

case RED:
...
case GREEN:

}

Syntax von enum

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

81

Deklaration
enum name {

OptionName [= int],
OptionName [= int],

…
} [instance list];

Definition
enum Color {

RED = -3,
GREEN = 4,
BLUE = 12

} color, *color_ptr;
enum Color c;
void drawCircle

(enum Color c);

Alle Werte können aber auch explizit
vorgegeben werden

Zeigervariable: Variable, die im
Speicher auf eine Speicherstelle
verweist, die einen Wert vom Typ
Color beinhaltet.

Unions – union

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

82

n Struktur bei der alle Member an der gleichen Adresse beginnen.
n Anwendungsfälle:

n Speicherbereich den man mit Werten verschiedener Datentypen belegen
will; z.B. Knoten in Baum der Werte vom Typ int oder double enthalten
kann; d.h. Wertebereich ist: int È double

n Eher selten: Uminterpretation von Daten

n Grösse eines Union im Speicher entspricht Grösse seines grössten
Member; im Beispiel: sizeof(x) = 8

union foo {
int i; // 4 bytes
double d; // 8 bytes

} x;

x.i = 3;
int y = x.i; // y = 3
x.d = 3.5;
int z = x.i; // z = ?

niederwertige 32 bits von 3.5
interpretiert als 32-bit Integer

Zusammenfsg. syntaktischer Varianten

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

83

1. Deklaration benannte Struktur/Union/Enum:

2. Deklaration anonyme Struktur/Union/Enum und Definition Variable(n) dieses Typs:

3. Deklaration benannte Struktur/Union/Enum und Definition Variable(n) dieses Typs:

4. Variablendefinition(en) einer zuvor deklarierten Struktur/Union/Enum:

struct
union name { /* ... */ };
enum

struct
union { /* ... */ } var_1, ..., var_n;
enum

struct
union name { /* ... */ } var_1, ..., var_n;
enum

struct
union name var_1, ..., var_n;
enum

Schlüsselwort typedef (i)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

84

n BYTE ist nun ein Alias für unsigned char
n Beide Definitionen von mybyte sind nun äquivalent für den

Compiler
n Vorteile der typdef Definition:

n Aussagekräftiger (Lesbarkeit)
n Maschinenabhängige Typen können isoliert werden. Bei der Portierung

muss nur der Alias „umgehangen“ werden.

n Typedef bietet die Möglichkeit, Typen einen neuen Namen zu geben

typedef unsigned char BYTE;

BYTE mybyte;

unsigned char mybyte;

Schlüsselwort typedef (ii)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

85

Anwendung auf Strukturen:

typedef struct {
int id;
char name[80];

} STUDENT;

STUDENT st;

struct Student {
int id;
char name[80];

};

struct Student st;

Schlüsselwort typedef (iii)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

86

Vorteil
n Man kann schnell an einer Stelle im Code den Type einer

bestimmten Variablen ändern.
n Wird häufig in Verbindung mit struct verwendet

struct point {
int a;
double b;
};

struct point objct2;

typedef struct point {
int a;
double b;

} POINT;

POINT objct2;

int normalNumber;
int smallNumber;

int normalNumber;
short smallNumber;

typedef int MYINT
int normalNumber;
MYINT smallNumber;

typedef short MYINT
int normalNumber;
MYINT smallNumber;

Schlüsselwort typedef (iv)

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

87

n Die Lesbarkeit eines Programms wird durch typedef verbessert,
vor allem bei komplexen Datentypen, z.B. Funktionszeigern:

char* (*search)(float, int);

search ist ein Zeiger auf eine Funktion, die zwei Eingabe-
Parameter vom Typ float und int besitzt und die einen Zeiger
auf char liefert
(später mehr über Zeiger in C++)

typedef char* (*PTR_TO_FUNC) (float, int);

Besser (kürzer):
PTR_TO_FUNC search;

K03

1. Allgemeines
2. Entwicklungsprozess
3. Gültigkeitsbereiche und Namespaces
4. Prozedur-/Funktionsaufrufe, Inlining,

Default-Argumente
5. Elementare Typen und Strukturen
6. Vergleich Java/C++

C++ Einführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

Elementare Datentypen in Java/C++

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

89

Elementare Datentypen in Java

n boolean
n byte
n char
n short

n int
n long
n float
n double

Elementare Datentypen in C++

n bool
n (unsigned) char
n wchar_t
n (unsigned) short

n (unsigned) int
n (unsigned) long
n float
n double
n long double

Vergleich Java/C++ – Zuweisungen

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

90

In C++ ist das Verhalten von
elementaren Datentypen und
Objekten identisch

In Java ist das Verhalten von
elementaren Datentypen und
Objekten unterschiedlich

Body x; // no object creation Body x; // the object x is created≠

int a = 0; // Creation of an integer int a = 0; // Creation of an integer=
int b = a; // b holds a copy of a int b = a; // b holds a copy of a=
b = 42; // only b is changed b = 42; // only b is changed=

Body y = x; // y holds a reference to x Body y = x; // y holds a copy of x≠
y.setVol(42); // y and x are changed y.setVol(42); // only y is changed≠

Java C++

Vergleich Java/C++ ― Referenzen

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

91

In C++ gibt es die Möglichkeit, explizit Referenzen zu benutzen ―
damit verhalten sich dann Objekte wie Objekte in Java

Body y = x; // y holds a
// reference to x

Body& y = x; // y holds a
// reference to x

=

y.setVol(42); // y and x are
// changed

y.setVol(42); // y and x are
// changed

=

Java C++

Vergl. Java/C++ ― Funktionsaufrufe

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

92

Funktions-Deklaration in C++Funktions-Deklaration in Java

void f1(int a) // a is a copy
{

a = 42;
}

void f1(int a) // a is a copy
{

a = 42;
}

=

// Call
f1(b); // b is not modified

// Call
f1(b); // b is not modified=

void f2(Body x) // x is a reference
{

x.setVol(42);
}

void f2(Body x) // x is a copy
{

x.setVol(42);
}

≠

f2(y); // y is modified f2(y); // y is not modified≠

Java C++

Vergl. Java/C++ ― Call by Reference

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

93

Funktions-Deklaration in C++Funktions-Deklaration in Java

void f2(Body x) // x is a reference
{

x.setVol(42);
}

void f2(Body& x) // x is a reference
{

x.setVol(42);
}

=

// Call // Call
f2(y); // y is modified f2(y); // y is modified=

Java C++

Vergleich Java/C++ ― Referenz

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

94

Achtung: In C++ kann man eine Referenz auf ein Objekt
nach der Erzeugung nicht mehr ändern

In C++ ist eine Referenz ein anderer Name (“Aliasname”) für ein bereits existierendes
Objekt.

Body a;
Body b;

Body a;
Body b;

Body& d; // ERROR! d points
// nowhere

Java C++

Body c = a; // c refers to a Body& c = a; // c refers to a=
c = b; // now, c

// refers to b
c = b; // b is copied to c

// (which is a)
≠

Vergleich Java/C++ – Ausführung

22. März 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/03-c++-einfuehrung.pdf

C++
n Compiler: Quelltext wird kompiliert

(= übersetzt in Maschinencode):

+ Optimale Leistung möglich.
- Wenn das Programm auf unter-

schiedlichen Betriebssystemen
(Linux, Windows, Mac, ...) oder
Architekturen (Sparc, ARM, X86)
laufen soll, dann muss man auch
unterschiedliche Varianten
verwalten.

Java
§ Interpreter/Just-in-time Compiler: Java

Byte-Code ist Grundlage der Ausführung
durch die Java Virtual Machine:
+ Der Byte-Code kann (ohne weiteres)

auf allen Architekturen ausgeführt
werden, für die eine JVM verfügbar ist.

+ Moderne JVMs haben Just-in-time
Compiler: wird Byte-Code oft genug
ausgeführt, dann wird er zur Laufzeit
kompiliert und danach als Maschi-
nencode ausgeführt à optimale
Leistung nach einer gewissen Laufzeit.

- Overhead durch Speicherverwaltung
und geprüfte Speicherzugriffe.

95

