n Zeiger & Co

1. Zeiger

3 Verwendung und Zeigerarithmetik

2. Referenzen

3. Arrays

4. Zeigertabellen
5. Funktionszeiger

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Wiederholung: Das Typsystem in C++

Elementare Strukturen Adressen
Datentypen
Referenzen
enum struct union class Zeiger
Ganzzahlig Gleitkommazahlen
char / bool
short 1 long
int
float double long double

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Wiederholung: Speichermodell

s C++ Programme enthalten

drei Arten von Variablen:

1 Variablen

1 Variablen

0 allokierte Variablen
Beispiel:

int n=1; —

static int m = 2;
int main ()

{

float x, *y;
static int y = 2;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

>

¢ 006 — > «

stack

free

heap

global

text

04. April 2019

Freispeicher: Nutzung & Verwaltung

= Problem: Wie kbnnen dynamische Daten im Speicher
gehalten werden, deren Lebenszeit nur zur Laufzeit
bestimmt werden kann (also beim Kompilieren noch nicht
bekannt ist)?

m Globale oder lokale Variablen funktionieren nicht.

= |dee:
m Zeiger verwenden, um auf diese dynamischen Daten zu zeigen
= Heap mit new und delete (reservierte Schliisselworter in C++)

= hew: Speicheranforderung fur Zeigervariable
= delete: Speicherfreigabe von Zeigervariable

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Der new-Operator

// Anlegen einer einzigen Zeigervariable von ,,Type®
Type* x = Type;
// Anlegen eines Arrays von ,,Type*

Type* x = Type[intexpr];
Type* x = Type(arglist); // Initial. iiber Konstruktor
int* i = int, *j = int(4);

= Mit new werden neue Instanzen von Elementartypen, Strukturen, oder
Klassen angelegt bzw. der benotigte Speicher reserviert

= Bei Elementartypen erfolgt per Default keine Initialisierung; wenn gewtinscht
dann durch z.B. int(n) wobei n der Initialwert ist

= Bei Klassen kann Konstruktor angeben werden; ansonsten erfolgt
Initialisierung via Standardkonstruktor

m intexpr kann jeder Ausdruck sein, der einen positiven int zuriickliefert

= hew reserviert bendtigten Speicher konsekutiv und liefert die Adresse des
ersten Elementes zurlick: (intexpr x sizeof(Type)) Bytes

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Der delete-Operator

= Syntax, um Zeigervariablen freizugeben

// Freigabe einer einzigen Zeigervariable
zeiger;
// Freigabe eines Arrays
zeiger;

= Bei Freigabe einer Zeigervariable vom Typ einer Klasse wird deren
Destruktor aufgerufen, sofern vorhanden

= Achtung: der Inhalt der Zeigers wird durch delete nicht verandert,
aber der Speicher, auf den er verweist, ist danach ,,ungultig, d.h. er
kann wieder neu allokiert werden

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Interne Ablaufe bei new bzw. delete

= nNew
m Speicher der Grosse sizeof (T) auf Heap suchen
m Eventuell Heap nach oben grosser machen

m Zeiger auf Objekt (= Speicherblock) zuriickgeben

s delete

s Nimmt Zeiger auf Objekt entgegen

: . delete
m Speicher freigeben

m Eventuell Speicherblocke zusammenlegen

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Speicherknappheit

#include <new>
Foo { long a,b,c,d,e,f,g,h,1i,j,k,1; };

()
{
{
for (;;) Foo;
}
(bad_alloc&) {
cerr << "Speicher erschopft!" << endl;
}
}

= Egal wieviel Speicher zur Verfuigung steht, dieses Beispiel wird
irgendwann den bad _alloc Handler aufrufen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Definition eines Arrays (Feldes)

Beispiel:
a[8]; // 8 Integer
a[2*4]; // dito
Danach sieht a im Speicher so aus:

a[o] a[7]

2P| 22 (22 | 2| 22 | 22| P2 | 22

m Der Speicher ist also allokiert, aber nicht initialisiert.

= Im Allgemeinen erfolgt der Zugriff Gber nichtkonstante Integer-Werte,
deren Werte der Compiler nicht kennt; z.B. wobei 1 eine beliebige

Integer-Variable ist.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

04. April 2019

Statische Initialisierung von Arrays

Syntax:

smallPrimes[7] = {2, 3, 5, 7, 11, 13, 17};

rotmatrix[2][2] = // zweidimensionales Array
{
{ cos(a), sin(a)}, // [e,0], [O,1]
{-sin(a), cos(a)} // [1:6]1 [131]
}s

vectr[100] = {1, 2}; // alle anderen Werte a[2-99]
// sind dann 0 initialisiert

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Beziehung zw. Arrays und Zeigern

= Arrays gibt es eigentlich gar nicht in C/C++!

= Arrays werden mit konstanten Zeigern und Zeiger-Arithmetik
implementiert.

Deklaration/Definition:
Was macht ?

m Reserviert zusammenhdngenden Speicherblock fiir 8 int-Zahlen.

m Deklariert
und initialisiert mit Adresse des ersten Elements.

m Elementzugriff ist Zeiger-Arithmetik:
Ausdruck ist aquivalent zu

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Beispiel — Zeiger und Felder

.

(i)

Ox471100: |1f

new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann.
32 4d ef |26|/7e f0|2e |37|75/al|ab| |c3|5d/d5/76 2c a0 d2|14
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

-

0x471100:

d

new

Beispiel — Zeiger und Felder

[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

(ii)

1f

32

4d

ef

26

/e

fo

2e

37

75

al

ab

c3

5d

d5

76

2C

a0

d214

a:

00

47

11

00

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

04. April 2019

Beispiel — Zeiger und Felder (iii)

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

= 42; // schreibe 42 in das erste Element

Ox471100: |00 00 00 2a |26 7e fO|2e| |37|75|al ab| [c3|/5d|d5/76 |2c|a@ d2 14

a: |00 47 11 o0

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

0x471100:

Beispiel — Zeiger und Felder

(iv)

a:

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.
= 42; // schreibe 42 in das erste Element
= 65535; // schreibe 65535 in das letzte Element
00 00 00 2a |26|7e|fO|2e| |37|75/al/ab| c3/5d/d5/76 |00 @0 ff ff
0047 11 00
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Beispiel — Zeiger und Felder (V)

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.
a[o] = 42; // schreibe 42 in das erste Element

al4]

65535; // schreibe 65535 in das letzte Element

> b =a+ 1; // Rechenoperationen bei Zeigern bericksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

Ox471100: |00 00 00 2al 26|7e fO 2e| |37 75/al ab |c3|/5d/d5|76 00 00 ff| ff

a: 00 47 11 00

b: 00 47 11 04

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Beispiel — Zeiger und Felder (Vi)

a = new [5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[o] = 42; // schreibe 42 in das erste Element

al[4] 65535; // schreibe 65535 in das letzte Element

b =a+ 1; // Rechenoperationen bei Zeigern bericksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

> *b = 1234; // schreibe 1234 in das 2. Element des Feldes

Ox471100: |00 00 00 2a 00 00 04 d2 |37 75/al ab |c3|/5d/d5|76 00 00 ff| ff

a: 00 47 11 00

b: |00/47 11 04

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

a[o]

a[4]

*p =

>

Ox471100: 00 00 00 2a| V0 00 04 d2| (3775 al ab| |[c3 5d/d5/76| (00 00 ff ff
a: [00/47 11 o0
b: 0047 11 04
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

d

b =

new

42;

65535;

a+ 1;

1234;

delete[] a;

Beispiel — Zeiger und Felder

[5]; // Reserviere einen Speicherbereich, der

// schreibe 42 in das erste Element

// schreibe 65535 in das letzte Element

(Vii)

// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

// Rechenoperationen bei Zeigern beriicksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

// schreibe 1234 in das 2. Element des Feldes

// gibt den Speicherbereich wieder frei

Beispiel — Zeiger und Felder

int* a = new int[5];

int b[5];

(v

// Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die

// Anfangsadresse dieses Bereichs gespeichert
// Reserv. Speicherbereich fiir 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

)

Ox471100: |1f|32/4d ef| 26 7e|f0|2e| |37|75|al|ab |c3/5d d5|76| |2c|a0|d2 14
Ox001900: e3|10 43 ef| 26/9e|80|2e| 17 75 a1l a3| |93 5d/d5|/96| |2c|a0|d2 94
a: 00 47 11 00
b: 00 00 19 00
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Beispiel — Zeiger und Felder (ix)

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert
int b[5]; // Reserv. Speicherbereich fiir 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

Q
—
)
—

1

42; // schreibe 42 in das erste Element
42; // schreibe 42 in das erste Element

o
—
)
—
1

Ox471100: |00 00 00 2a |26 7e fO|2e| |37|75 al ab| c3|5d|d5/76| |2c|a@ d2 14
Ox001900: 00 00 00 2a |26 9e 80 2e| |17 75 al a3| |93 /5d|/d5/96| |2c a0 | d2 94

a: 0047 11 00,
b: 00 60 19 00

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

int* a = new int[5];

Beispiel — Zeiger und Felder

// Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert

()

int b[5]; // Reserv. Speicherbereich fur 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.
a[o] = 42; // schreibe 42 in das erste Element
b[o] = 42; // schreibe 42 in das erste Element
*(a+2) = 9; // schreibe 9 in das dritte Element von a
*(b+2) = 9; // schreibe 9 in das dritte Element von b
Ox471100: |00 00|00 2a 26 7e|fO|2e |00 00 00 09 |c3 5d d5|/76| |2c|a0|d2 14
Ox001900: |00 00 00 2a|l [26|/9e¢ 80|2e 00 00 00 09| 93 5d|/d5 96 |2c|ad | d2|94
a: 00 47 11 @0
b: @0 0 19 60
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Zeiger & Felder

Noch ein Beispiel (syntax at its ,best”...)

a[4]
q —
p

*
=

*

p
[1

H = 1

J

3

Il N I

0 0 0O O
—

n ® +
(-

00;

= {63 1, 2, 3}3

as

// Zuweisung von Pointern

& a[@]; // Anfangsadresse iiber Adress-Operator

2a+2);

00;

// p,q zeigen jetzt auf dasselbe Element
// a = {100, 1, 2, 3}

// a = {100, 2, 2, 3}

// q zeigt jetzt auf a[2]

// a = {100, 2, 300, 3}

// Kompilerfehler! int[4] versus int*

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

04. April 2019

Zeiger & Felder: Ungesicherter Zugriff

= Feld wird in C/C++ nur durch einen Zeiger auf den Anfang des
Speicherbereichs dargestellt.

s Der Zugriff auf Feldelemente wird nicht Gberpruft.

8[5] = { 1, 2, 3, 5, 7 }5
b = 100;

a[@] = 42; // Zugriff auf Feld Nr.1l: legal

a[5] = 137; // Zugriff auf Feld Nr.6: illegal aber moéglich
// > Seiteneffekt: verandert eventuell b !!!
X = int[9];
x[5] = 42; // Zugriff auf Feld Nr.6: legal

x[9]= 137; // Zugriff auf Feld Nr.10:
illegal > meist Absturz

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Warum erlaubt man unges. Zugriffe?

m Zugriff auf illegales Feld: es wird einfach in den entsprechenden Speicher
geschrieben (bzw. von dort gelesen)

= Glicklicher Fall: Speicher gehort anderem Programm und das
Betriebssystem meldet eine Zugriffsverletzung (Segmentation
Fault).

= Fataler Fall: Speicher gehért dem Programm selbst und die Anderung
bewirkt unerklarliche Seiteneffekte.

= Ergo: der Programmierer/die Programmiererin muss sich selbst die Grosse
des jeweiligen Speichers merken.

+ Optimale Performance und Speicherplatznutzung

+ Auf dieser Basis konnen beliebig komfortablere, IHI
aber langsamere Felder (z.B. mit Gberpruften
Zugriffen) entwickelt werden

s Umgekehrt ware dies nicht moglich!

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

25
Lebenszeit dyn. allokierter Variablen

= Allokation (und ggf. Initialisierung) von Objekten mit new

= Lebensende von dynamisch erzeugten Objekten: bei delete

= Muss man delete aufrufen?

m Allgemein: der gesamte Speicher wird vom Betriebssystem am Ende
des Programm freigegeben

m Ja: da sonst Memory-Leaks entstehen konnen

Faustregel: Zu jedem new ein delete.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Was ist/wie entsteht ein Memory Leak?

= Wenn Programme dynamischen Speicher anlegen und spater vergessen,
ihn wieder freizugeben, dann entstehen Memory Leaks.

doSomething (value, ntimes) {
array = [ntimes];
for (i=0; i<ntimes; ++i) {
*(array + i) = value * (i); // entweder so ..
*(array++) = value * (i); // .. oder so ...

}

5 // Achtung: array wird nicht wieder freigegeben,
// der angelegte Speicher ist ,,verloren*

= C++ besitzt keinen automatischen Garbage-Collector, der die Freigabe
des nicht mehr benotigten Speichers Gbernimmt.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Speicherbug — Overwrite Pointer

otherint

int* ip = new int(333); Allokiere Speicher

& Wertzuweisung ip
delete ip;

p=Botherint; e

0Xx6666a

™~

Zeiger ip zeigt auf neue Adresse _@m-

BBt OX 12345

(zeigt auf neuen integer Wert)

Speicherleck!

Speicher kann nicht mehr erreicht werden

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

04. April 2019

Speicherbug — Buffer Overflow

= Buffer Overflow (Puffer-Uberlauf)
m Ursache: man schreibt GUber Grenzen eines allokierten Blocks hinaus.

= Mogliche Folgen (oft schlecht reproduzierbar):
Sporadische Core-Dumps (segmentation fault)
Falsche Werte in anderen Variablen (z.B. NaN, 1.xxE38, ...)

Return aus Funktion ,killt“ das Programm

Beispiel:
a = [10];
b = [10];
(i=0; 1 < 20; i++)
a[i] = 1.0;

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Speicherbug — Dangling Pointer

= Dangling Pointer (,,Hangende Zeiger”)

m Ursache: Zeiger wird verwendet, nachdem er — d.h. der zugehorige
Speicher — freigegeben wurde.

= Mogliche Folgen:

Falsche Werte in anderen dynamischen Variablen.

MyStruct {

m,
}s
sl = MyStruct;
sl->m = 17;
sl;

// tue etwas, z.B. Allokation neuer Variable(n) mit new

cout << sl->m; A b P
usgabe:

// oder auch etwas anderes

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Speicherbug — Double Delete

= Double Delete
= Spezieller Fall von Dangling Pointer
= Ursache: Speicher wird zweimal freigegeben
= Folge:

Loscht evtl. Speicher, der einem anderen Programmteil gehort
Fihrt evtl. zum Absturz

Beispiel MyStruct {
m;
};5
sl = MyStruct;
sl->m = 17;
sl;

// tue etwas, z.B. Allokation neuer Variable(n) mit new
sl; // erneutes Freigeben von sl

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Losungen fur diese Fallstricke

= Tools: Verwendung von speziellen ,Memory Checkern® (z.B.

valgrind, purify, ...)
= Bibliotheken: Garbage Collection

= Eine etwas armselige Losung flir Double Delete:

sl = MyStruct;
sl->m = 17;

3
K\:-:/) sl = NULL; // sl ist nun ein NULL pointer

sl; // double delete, tut nichts

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

04. April 2019

Radikale Losung fur ,,Zeigerproblematik”

= Programmiersprachen ohne Zeiger (wie z.B. Java, Python)
m Variablen mit nichtelementaren Typen sind prinzipiell interne Zeiger
s Programmierer sieht die Zeiger nicht (kein Sprachkonstrukt dafiir)

m Sprache (Interpreter/Virtual Machine) erkennt, wenn ein Objekt vom
Programm nicht mehr zugreifbar ist (kein Zeiger fihrt mehr dahin)

m Garbage-Collector (GC) lauft im Hintergrund standig mit

m FUr nicht zeitkritische Applikationen eine sehr gute und in der Praxis
bewahrte Losung

Es werden keine Garantien zum GC gegeben, d.h. er kann fir beliebig lange
Unterbrechungen sorgen (wenn er aufraumt); zumindest verursacht er
zusatzliche Last im System.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Noch mehr Fallstricke ...

Wo bzw. warum stirzt diese Funktion ab?

someFunction (a, b) {
1;

((a % b) == 0) {

/* ... */
i= H
} ((b % a) == 0) {
/* ... */
i= H

}
// 1 moéglicherweise uninitialisiert! (z.B. a=3, b=2)
*1 = (a >b) ? a: b;

a*b*(*i);

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Mehrdimensionale Felder (i)

s Grundsatzlich ist Speicher immer linear

= n-dimensionale Arrays werden durch geeignete Indizierung ,simuliert”

m C++ bietet eingebaute n-dimensionale Felder fester Lange:

mat[4][2]; mat[4][2];

i=0; i<4; ++1i) {

(j=0; j<2; ++j) { (
(i=0; i<4; ++1i) { X (j=0; j<2; ++j) {

mat[i][j] = 10*i + j; bzw. mat[i][j] = 10*i + j;
} }
} }
= mat ist ein Zeiger auf int:
mat .. |00 01 | 10 11 20 21 |30 31
— I

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Mehrdimensionale Felder (ii)
Welche Initialisierung ist schneller?
// Version A // Version B
mat[4][n]; mat[4][n];

(j=0; j<n; ++j) { (i=0; i<4; ++i) {
(j_:@; j_<4; ++j_) { x (j=9; j<n; ++j) {
mat[i][j] = 10*i + j; mat[i][j] = 10*i + j;

} }

= Zeilenweise Ordnung: Daten liegen dicht bezliglich der Zeilen j:

A: e1 .. ©on| 10)11 .. 1n1@21 .. 2n
B: 991 on 10 11 .. 1n 20 21 .. 2n

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

—
[___ N]
LN}
[____ N}
e

Mehrdimensionale Felder

= Version B nutzt aufeinander folgende Daten im Speicher
= Version B ist daher deutlich schneller* als Version A

s C++ Compiler macht die Optimierung automatisch
(nur moglich fir einfache Beispiele)

* Je nach Hardware. Auf einem Testsystem wurde z.B. ca. Faktor 20 gemessen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

37

[/l ...

2D-Arrays (Matrizen)

Reprasentation im Speicher

matrix[6][4];

Fill with 1 ..

24

p = &matrix[0][0];

matrix[0][0]

\ 4

4

8

1
5 6
9 |10

11

12

*(p+7)

13 14

15

16

17 18

19

20

21 22

23

24

™~

matrix[5][3]

~

int *p

24 0x259f67c
23 0x259f678
22 0x259f674
21 0x259f670
20 0x259f66¢
4 OXx259f62C
3 0x259f628
2 0x259f624
1 ‘\gfiiiffze
matrix[0][0]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

04. April 2019

2D-Arrays: Zeiger-Arithmetik

= Gegeben: mxn Matrix wobei im Bild m=6, n=4

m Aufgabe: Drucke die Werte der vorletzten Spalte

for (int* p = &matrix[@][n-2];
p <= &matrix[m-1][n-2];

p += n

)

cout << *p << " "

cout<<endl;

Adresse

Anfangselement

p
\ 4
11213 i
:i) Elemente
5161|7 *8\
9 10|11 ﬁ
13|14] 15 ﬁ
17|18} 19 EE{
21|22 23 «24)
Letzte zu lesende J
04. April 2019

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Alternative: Arrays von Arrays (i)

= Man kann mehrdimensionale Arrays wie eben beschrieben erzeugen (als
eindimensionaler Vektor), oder als n einzelne Vektoren!

® neinzelne Vektoren:

array_of_array[6]; // Array von Zeigern auf int*
for (i=0;1<6; 1 ++)

array_of_array[i] = int[4];

= Der Zugriff erfolgt wie bereits bekannt:

k = array_of _array[i][j];

*(array_of _array[i] + j);

*(*(array_of_array + i) + j);

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Alternative: Arrays von Arrays (ii)

m Vorteil: Man kann auch nichtrechteckige, mehrdimensionale Arrays

erzeugen:

upper_triang matrix[6]; // Array von Zeigern auf int

for (i=0; 1i<6; 1 ++)

upper_triang matrix[i] = int[6-i];
ﬁ (% » 1 2 3 4 5 6
&
*; 1 . 7 8 9 | 10 | 11
e
:é! 2 .| 12 113 |14 | 15
©
E' 3 > 16 | 17 | 18
o+
o4 .1 19 | 20
v
a 21
S 5 >

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Nachteil — durch interne Organisation

m Rechteckige zweidimensionale Matrix m[6][4] :

m = [6*4];
(i=0; i<6; i++)
(J=0; j<4; j++)
m[i*4 + j] = 10*i + j;
// *(m + 4*1 + j) Zeiger-Arithmetik

= Arrays von Arrays

m[6];
(i=0; i<6; i++) m[i] = float[4];
= mB I // 1ist aquivalent zu

X
X @ // Zeiger-Arithmetik

= Fazit: Verwendung von Array von Arrays ist im Allgemeinen langsamer
= Zugriff auf Speicher ist langsamer als Rechenoperationen

= Cache Misses
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

n Zeiger & Co

1. Zeiger

3 Verwendung und Zeigerarithmetik

2. Referenzen

3. Arrays

4. Zeigertabellen
5. Funktionszeiger

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

N-dimensionale Arrays: Alternative

= Verwendung von Zeigertabellen (Zeiger auf Zeiger) anstelle von
unschonen Indexberechnungen

mat; array;

OXFFOO .00 00 00 00+
OXFF10 ‘'~ 00 00 |11 00+
OXFF20 ‘~ 00 00 ©00 00+
OXFF30 '~ 00 00 ©00 00

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

array = [16];
mat = new ()[4];

mat[0] = &array[0];
mat[1] = &array[4];
/¥ ... */

// Zugriff, vorher
array[1*4+2] = 11;

// Zugriff, jetzt
mat[1][2] = 11;

04. April 2019

Zeiger & Co

1. Zeiger
= Verwendung und Zeigerarithmetik
2. Referenzen
3. Arrays
4. Zeigertabellen
5. Funktionszeiger

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Funktionszeiger (i)

Was kann man alles mit Funktionen tun?

Man kann sie aufrufen.

Man kann ihre Adresse — der Einstiegspunkt im Code-Segment —
ermitteln und den Zeiger spater benutzen, um die Funktion aufzurufen

m Braucht man um Funktionen hoherer Ordnung realisieren zu konnen
— Funktionale Programmierung

m Callback-Funktionen: z.B. prozessspezifische Ereignisbehandlung in
Betriebssystemen.

Es gilt: sizeof(fp) == sizeof(void*) wobeifp ein
Funktionszeiger ist. Ist ¥p jedoch ein Methodenzeiger (d.h. auf
Funktion einer Klasse), dann gilt dies im Allgemeinen nicht mehr,
da virtuelle Methoden korrekt behandelt werden miissen (zu
virtuellen Methoden spater mehr).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

Funktionszeiger (ii)

Beispiel:

// zwei Funktionen mit bis auf den Namen identischer Signatur
plus(int x, y) { X+y; }
mult(int x, y) { x*y; }

(*fp) (s); /* Zeiger auf Funktionen die
Riickgabetyp int haben und zwei Parameter vom Typ int */

(*FP)(int,); // dasselbe mit Alias

FP FPT_PLUS = + // Dekl. & Zuweisung der Addr. von plus
cout << plus(2,3) << "," << FPT_PLUS(4,5) << endl;

5,9

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf 04. April 2019

