
K04

1. Zeiger
§ Verwendung und Zeigerarithmetik

2. Referenzen
3. Arrays
4. Zeigertabellen
5. Funktionszeiger

Zeiger & Co

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Wiederholung: Das Typsystem in C++

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Elementare
Datentypen

AdressenStrukturen

char
short

int
long

bool

Ganzzahlig

float

Gleitkommazahlen

double long double

Zeiger
Referenzen

struct classenum arrayunion

2

Wiederholung: Speichermodell

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n C++ Programme enthalten
drei Arten von Variablen:
n Lokale Variablen
n Globale, statische Variablen
n Dynamisch allokierte Variablen

Beispiel:

int n = 1;
static int m = 2;
int main ()
{

float x, *y;
static int y = 2;

}

stack

free

global

text

heap

3

Freispeicher: Nutzung & Verwaltung

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Problem: Wie können dynamische Daten im Speicher
gehalten werden, deren Lebenszeit nur zur Laufzeit
bestimmt werden kann (also beim Kompilieren noch nicht
bekannt ist)?
n Globale oder lokale Variablen funktionieren nicht.

n Idee:
n Zeiger verwenden, um auf diese dynamischen Daten zu zeigen
n Heap mit new und delete (reservierte Schlüsselwörter in C++)

n new: Speicheranforderung für Zeigervariable
n delete: Speicherfreigabe von Zeigervariable

4

Der new-Operator

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Mit new werden neue Instanzen von Elementartypen, Strukturen, oder
Klassen angelegt bzw. der benötigte Speicher reserviert
n Bei Elementartypen erfolgt per Default keine Initialisierung; wenn gewünscht

dann durch z.B. int(n) wobei n der Initialwert ist

n Bei Klassen kann Konstruktor angeben werden; ansonsten erfolgt
Initialisierung via Standardkonstruktor

n intexpr kann jeder Ausdruck sein, der einen positiven int zurückliefert

n new reserviert benötigten Speicher konsekutiv und liefert die Adresse des
ersten Elementes zurück: (intexpr × sizeof(Type)) Bytes

// Anlegen einer einzigen Zeigervariable von „Type“

Type* x = new Type;

// Anlegen eines Arrays von „Type“

Type* x = new Type[intexpr];
Type* x = new Type(arglist); // Initial. über Konstruktor
int* i = new int, *j = new int(4);

5

Der delete-Operator

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Syntax, um Zeigervariablen freizugeben

n Bei Freigabe einer Zeigervariable vom Typ einer Klasse wird deren
Destruktor aufgerufen, sofern vorhanden

n Achtung: der Inhalt der Zeigers wird durch delete nicht verändert,
aber der Speicher, auf den er verweist, ist danach „ungültig“, d.h. er
kann wieder neu allokiert werden

// Freigabe einer einzigen Zeigervariable
delete zeiger;
// Freigabe eines Arrays
delete[] zeiger;

6

Interne Abläufe bei new bzw. delete

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n new
n Speicher der Grösse sizeof(T) auf Heap suchen

n Eventuell Heap nach oben grösser machen

n Zeiger auf Objekt (= Speicherblock) zurückgeben

n delete
n Nimmt Zeiger auf Objekt entgegen

n Speicher freigeben

n Eventuell Speicherblöcke zusammenlegen

7

Speicherknappheit

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Egal wieviel Speicher zur Verfügung steht, dieses Beispiel wird
irgendwann den bad_alloc Handler aufrufen.

#include <new>
struct Foo { long a,b,c,d,e,f,g,h,i,j,k,l; };
void f()
{

try {
for (;;) new Foo;

}
catch (bad_alloc&) {

cerr << "Speicher erschöpft!" << endl;
}

}

8

Definition eines Arrays (Feldes)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Beispiel:

Danach sieht a im Speicher so aus:

n Der Speicher ist also allokiert, aber nicht initialisiert.
n Im Allgemeinen erfolgt der Zugriff über nichtkonstante Integer-Werte,

deren Werte der Compiler nicht kennt; z.B. a[i] wobei i eine beliebige
Integer-Variable ist.

int a[8]; // 8 Integer
int a[2*4]; // dito

?? ?? ?? ?? ?? ?? ?? ??

a[0] a[7]

......

9

Statische Initialisierung von Arrays

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Syntax:

int smallPrimes[7] = {2, 3, 5, 7, 11, 13, 17};

float rotmatrix[2][2] = // zweidimensionales Array
{

{ cos(a), sin(a)}, // [0,0], [0,1]
{-sin(a), cos(a)} // [1,0], [1,1]

};

int vectr[100] = {1, 2}; // alle anderen Werte a[2-99]
// sind dann 0 initialisiert

10

Beziehung zw. Arrays und Zeigern

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Arrays gibt es eigentlich gar nicht in C/C++!

n Arrays werden mit konstanten Zeigern und Zeiger-Arithmetik
implementiert.

Deklaration/Definition:

Was macht int a[8]?
n Reserviert zusammenhängenden Speicherblock für 8 int-Zahlen.

n Deklariert int* const a;
und initialisiert a mit Adresse des ersten Elements.

n Elementzugriff ist Zeiger-Arithmetik:
Ausdruck a[i] ist äquivalent zu *(a+i)

11

Beispiel – Zeiger und Felder (i)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

1f 32 4d ef 26 7e f0 2e 37 75 a1 ab c3 5d d5 76 2c a0 d2 140x471100:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann.

12

Beispiel – Zeiger und Felder (ii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

26 7e f0 2e c3 5d d5 76 2c a0 d2 140x471100:

00 47 11 00a:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

1f 32 4d ef 37 75 a1 ab

13

Beispiel – Zeiger und Felder (iii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 00 00 2a 26 7e f0 2e 37 75 a1 ab c3 5d d5 76 2c a0 d2 140x471100:

00 47 11 00a:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[0] = 42; // schreibe 42 in das erste Element

14

Beispiel – Zeiger und Felder (iv)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 47 11 00

00 00 00 2a 26 7e f0 2e 37 75 a1 ab c3 5d d5 76 00 00 ff ff0x471100:

a:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[0] = 42; // schreibe 42 in das erste Element

a[4] = 65535; // schreibe 65535 in das letzte Element

15

Beispiel – Zeiger und Felder (v)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 47 11 00

00 00 00 2a 26 7e f0 2e 37 75 a1 ab c3 5d d5 76 00 00 ff ff0x471100:

a:

00 47 11 04b:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[0] = 42; // schreibe 42 in das erste Element

a[4] = 65535; // schreibe 65535 in das letzte Element

int* b = a + 1; // Rechenoperationen bei Zeigern berücksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

16

Beispiel – Zeiger und Felder (vi)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 47 11 00

00 00 00 2a 00 00 04 d2 37 75 a1 ab c3 5d d5 76 00 00 ff ff0x471100:

a:

00 47 11 04b:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[0] = 42; // schreibe 42 in das erste Element

a[4] = 65535; // schreibe 65535 in das letzte Element

int* b = a + 1; // Rechenoperationen bei Zeigern berücksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

*b = 1234; // schreibe 1234 in das 2. Element des Feldes

17

Beispiel – Zeiger und Felder (vii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 47 11 00

00 00 00 2a 00 00 04 d2 37 75 a1 ab c3 5d d5 76 00 00 ff ff0x471100:

a:

00 47 11 04b:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 Integer aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert.

a[0] = 42; // schreibe 42 in das erste Element

a[4] = 65535; // schreibe 65535 in das letzte Element

int* b = a + 1; // Rechenoperationen bei Zeigern berücksichtigen
// deren Datentyp! b zeigt 4 Bytes hinter a

*b = 1234; // schreibe 1234 in das 2. Element des Feldes

delete[] a; // gibt den Speicherbereich wieder frei

18

Beispiel – Zeiger und Felder (viii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 47 11 00a:

00 00 19 00b:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert

int b[5]; // Reserv. Speicherbereich für 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

1f 32 4d ef 26 7e f0 2e 37 75 a1 ab c3 5d d5 76 2c a0 d2 140x471100:

e3 10 43 ef 26 9e 80 2e 17 75 a1 a3 93 5d d5 96 2c a0 d2 940x001900:

19

Beispiel – Zeiger und Felder (ix)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

00 47 11 00a:

00 00 19 00b:

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert

int b[5]; // Reserv. Speicherbereich für 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

a[0] = 42; // schreibe 42 in das erste Element
b[0] = 42; // schreibe 42 in das erste Element

00 00 00 2a0x471100:

00 00 00 2a0x001900:

26 7e f0 2e 37 75 a1 ab c3 5d d5 76 2c a0 d2 14

26 9e 80 2e 17 75 a1 a3 93 5d d5 96 2c a0 d2 94

20

Beispiel – Zeiger und Felder (x)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

int* a = new int[5]; // Reserviere einen Speicherbereich, der
// 5 integers aufnehmen kann. In a wird die
// Anfangsadresse dieses Bereichs gespeichert

int b[5]; // Reserv. Speicherbereich für 5 int auf Stack.
// In b wird Anfangsadresse von diesem Bereich
// gespeichert.

a[0] = 42; // schreibe 42 in das erste Element
b[0] = 42; // schreibe 42 in das erste Element

*(a+2) = 9; // schreibe 9 in das dritte Element von a
*(b+2) = 9; // schreibe 9 in das dritte Element von b

00 00 00 090x471100:

00 00 00 090x001900:

00 00 00 2a

00 00 00 2a

26 7e f0 2e

26 9e 80 2e

c3 5d d5 76 2c a0 d2 14

93 5d d5 96 2c a0 d2 94

00 47 11 00a:

00 00 19 00b:

21

Zeiger & Felder

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Noch ein Beispiel (syntax at its „best“ ...)

int a[4] = {0, 1, 2, 3};
int* q = a; // Zuweisung von Pointern
int* p = & a[0]; // Anfangsadresse über Adress-Operator

// p,q zeigen jetzt auf dasselbe Element
*p = 100; // a = {100, 1, 2, 3}
q[1] = *(a+2); // a = {100, 2, 2, 3}
q += 2; // q zeigt jetzt auf a[2]
q[0] = 300; // a = {100, 2, 300, 3}
a = q; // Kompilerfehler! int[4] versus int*

22

Zeiger & Felder: Ungesicherter Zugriff

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Feld wird in C/C++ nur durch einen Zeiger auf den Anfang des
Speicherbereichs dargestellt.

n Der Zugriff auf Feldelemente wird nicht überprüft.

int a[5] = { 1, 2, 3, 5, 7 };
int b = 100;

a[0] = 42; // Zugriff auf Feld Nr.1: legal
a[5] = 137; // Zugriff auf Feld Nr.6: illegal aber möglich

// à Seiteneffekt: verändert eventuell b !!!

int* x = new int[9];
x[5] = 42; // Zugriff auf Feld Nr.6: legal
x[9]= 137; // Zugriff auf Feld Nr.10:

illegal à meist Absturz

23

Warum erlaubt man unges. Zugriffe?

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Zugriff auf illegales Feld: es wird einfach in den entsprechenden Speicher
geschrieben (bzw. von dort gelesen)

n Glücklicher Fall: Speicher gehört anderem Programm und das
Betriebssystem meldet eine Zugriffsverletzung (Segmentation
Fault).

n Fataler Fall: Speicher gehört dem Programm selbst und die Änderung
bewirkt unerklärliche Seiteneffekte.

n Ergo: der Programmierer/die Programmiererin muss sich selbst die Grösse
des jeweiligen Speichers merken.

+ Optimale Performance und Speicherplatznutzung
+ Auf dieser Basis können beliebig komfortablere,

aber langsamere Felder (z.B. mit überprüften
Zugriffen) entwickelt werden
n Umgekehrt wäre dies nicht möglich!

24

Lebenszeit dyn. allokierter Variablen

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Allokation (und ggf. Initialisierung) von Objekten mit new

n Lebensende von dynamisch erzeugten Objekten: bei delete
n Muss man delete aufrufen?

n Allgemein: der gesamte Speicher wird vom Betriebssystem am Ende
des Programm freigegeben

n Ja: da sonst Memory-Leaks entstehen können

Faustregel: Zu jedem new ein delete.

25

Was ist/wie entsteht ein Memory Leak?

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Wenn Programme dynamischen Speicher anlegen und später vergessen,
ihn wieder freizugeben, dann entstehen Memory Leaks.

void doSomething (float value, int ntimes) {

float* array = new float[ntimes];
for (int i=0; i<ntimes; ++i) {

*(array + i) = value * float(i); // entweder so ..
*(array++) = value * float(i); // .. oder so ...

}
return; // Achtung: array wird nicht wieder freigegeben,

// der angelegte Speicher ist „verloren“
}

§ C++ besitzt keinen automatischen Garbage-Collector, der die Freigabe
des nicht mehr benötigten Speichers übernimmt.

26

Speicherbug – Overwrite Pointer

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

NULLip 0x66666

333

0x12345

Allokiere Speicher
& Wertzuweisung

Zeiger ip zeigt auf neue Adresse
(zeigt auf neuen integer Wert)

int* ip
. . .

= new int(333);

delete ip;

ip = &otherInt;

0x6666a

no name 0x12345

Speicherleck!
Speicher kann nicht mehr erreicht werden

0x6666aotherInt

27

Speicherbug – Buffer Overflow

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Buffer Overflow (Puffer-Überlauf)
n Ursache: man schreibt über Grenzen eines allokierten Blocks hinaus.
n Mögliche Folgen (oft schlecht reproduzierbar):

n Sporadische Core-Dumps (segmentation fault)
n Falsche Werte in anderen Variablen (z.B. NaN, 1.xxE38, ...)
n Return aus Funktion „killt“ das Programm

Beispiel:
float* a = new float[10];
int* b = new int[10];
for (int i=0; i < 20; i++)

a[i] = 1.0;

28

Speicherbug – Dangling Pointer

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Dangling Pointer („Hängende Zeiger“)
n Ursache: Zeiger wird verwendet, nachdem er – d.h. der zugehörige

Speicher – freigegeben wurde.

n Mögliche Folgen:
n Falsche Werte in anderen dynamischen Variablen.

struct MyStruct {
int m;

};
MyStruct* s1 = new MyStruct;
s1->m = 17;
delete s1;
// tue etwas, z.B. Allokation neuer Variable(n) mit new
cout << s1->m;

Ausgabe: 42
// oder auch etwas anderes

29

Speicherbug – Double Delete

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Double Delete
n Spezieller Fall von Dangling Pointer

n Ursache: Speicher wird zweimal freigegeben

n Folge:
n Löscht evtl. Speicher, der einem anderen Programmteil gehört

n Führt evtl. zum Absturz

Beispiel struct MyStruct {
int m;

};
MyStruct* s1 = new MyStruct;
s1->m = 17;
delete s1;
// tue etwas, z.B. Allokation neuer Variable(n) mit new
delete s1; // erneutes Freigeben von s1

30

Lösungen für diese Fallstricke

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Tools: Verwendung von speziellen „Memory Checkern“ (z.B.
valgrind, purify, …)

n Bibliotheken: Garbage Collection

n Eine etwas armselige Lösung für Double Delete:

MyStruct* s1 = new MyStruct;
s1->m = 17;
delete s1;
s1 = NULL; // s1 ist nun ein NULL pointer
. . .
delete s1; // double delete, tut nichts

!

31

Radikale Lösung für „Zeigerproblematik“

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Programmiersprachen ohne Zeiger (wie z.B. Java, Python)
n Variablen mit nichtelementaren Typen sind prinzipiell interne Zeiger
n Programmierer sieht die Zeiger nicht (kein Sprachkonstrukt dafür)
n Sprache (Interpreter/Virtual Machine) erkennt, wenn ein Objekt vom

Programm nicht mehr zugreifbar ist (kein Zeiger führt mehr dahin)
n Garbage-Collector (GC) läuft im Hintergrund ständig mit
n Für nicht zeitkritische Applikationen eine sehr gute und in der Praxis

bewährte Lösung
n Es werden keine Garantien zum GC gegeben, d.h. er kann für beliebig lange

Unterbrechungen sorgen (wenn er aufräumt); zumindest verursacht er
zusätzliche Last im System.

32

Noch mehr Fallstricke ...

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Wo bzw. warum stürzt diese Funktion ab?

int someFunction (int a, int b) {
int* i;

if ((a % b) == 0) {
/* ... */
i = new int;

} else if ((b % a) == 0) {
/* ... */
i = new int;

}

*i = (a > b) ? a : b;
return a*b*(*i);

}

// i möglicherweise uninitialisiert! (z.B. a=3, b=2)

33

Mehrdimensionale Felder (i)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Grundsätzlich ist Speicher immer linear

n n-dimensionale Arrays werden durch geeignete Indizierung „simuliert“

n C++ bietet eingebaute n-dimensionale Felder fester Länge:

int mat[4][2];
for (int i=0; i<4; ++i) {

for (int j=0; j<2; ++j) {
mat[i][j] = 10*i + j;

}
}

int mat[4][2];
for (int j=0; j<2; ++j) {

for (int i=0; i<4; ++i) {
mat[i][j] = 10*i + j;

}
}

bzw.

00 01 10 11 20 21 30 31

§ mat ist ein Zeiger auf int:

.. ..mat

34

Mehrdimensionale Felder (ii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Welche Initialisierung ist schneller?

§ Zeilenweise Ordnung: Daten liegen dicht bezüglich der Zeilen j:

00 01A: 0n.. 10 11 1n.. 20 21 2n..

00 01B: 0n.. 10 11 1n.. 20 21 2n..

// Version B
int mat[4][n];
for (int i=0; i<4; ++i) {

for (int j=0; j<n; ++j) {
mat[i][j] = 10*i + j;

}
}

// Version A
int mat[4][n];
for (int j=0; j<n; ++j) {

for (int i=0; i<4; ++i) {
mat[i][j] = 10*i + j;

}
}

35

Mehrdimensionale Felder (iii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Version B nutzt aufeinander folgende Daten im Speicher

n Version B ist daher deutlich schneller* als Version A

n C++ Compiler macht die Optimierung automatisch
(nur möglich für einfache Beispiele)

* Je nach Hardware. Auf einem Testsystem wurde z.B. ca. Faktor 20 gemessen.

36

2D-Arrays (Matrizen)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

int matrix[6][4];
// ... Fill with 1 .. 24
int* p = &matrix[0][0];

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

matrix[0][0]

matrix[5][3]

*(p+7)

*p

23 0x259f678

22 0x259f674

24 0x259f67c

21 0x259f670

20 0x259f66c

3 0x259f628
4 0x259f62c

1 0x259f620
2 0x259f624

:::

matrix[0][0]int *p

Repräsentation im Speicher

37

2D-Arrays: Zeiger-Arithmetik

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Gegeben: m×n Matrix wobei im Bild m=6, n=4
n Aufgabe: Drucke die Werte der vorletzten Spalte

for (int* p =

)

cout << *p << " ";

cout<<endl;

1 2 3

5 6 7 8

9 10 11 12

13 14 15 16

17 18 19 20

21 22 23 24

&matrix[0][n-2];

Letzte zu lesende
Adresse

p += n

4 +n
Elemente

p
Anfangselement

p <= &matrix[m-1][n-2];

38

Alternative: Arrays von Arrays (i)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Man kann mehrdimensionale Arrays wie eben beschrieben erzeugen (als
eindimensionaler Vektor), oder als n einzelne Vektoren!

n n einzelne Vektoren:

int* array_of_array[6]; // Array von Zeigern auf int*
for (int i = 0; i < 6; i ++)

array_of_array[i] = new int[4];

int k = array_of_array[i][j];
int k = *(array_of_array[i] + j);
int k = *(*(array_of_array + i) + j);

§ Der Zugriff erfolgt wie bereits bekannt:

39

Alternative: Arrays von Arrays (ii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Vorteil: Man kann auch nichtrechteckige, mehrdimensionale Arrays

erzeugen:

int* upper_triang_matrix[6]; // Array von Zeigern auf int
for (int i = 0; i < 6; i ++)

upper_triang_matrix[i] = new int[6-i];
up

pe
r_

tr
ia

ng
_m

at
ri

x 1 2 3 4 5 6

7 8 9 10 11

12 13 14 15

16 17 18

19 20

21

0

1

2

3

4

5

40

Nachteil – durch interne Organisation

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Rechteckige zweidimensionale Matrix m[6][4] :

float* m = new float[6*4];
for (int i=0; i<6; i++)

for (int j=0; j<4; j++)
m[i*4 + j] = 10*i + j;
// *(m + 4*i + j) Zeiger-Arithmetik

§ Fazit: Verwendung von Array von Arrays ist im Allgemeinen langsamer

§ Zugriff auf Speicher ist langsamer als Rechenoperationen

§ Cache Misses

float* m[6];
for (int i=0; i<6; i++) m[i] = new float[4];
x = m[i][j]; // ist äquivalent zu
x = *(*(m+i) + j); // Zeiger-Arithmetik

§ Arrays von Arrays

41

K04

1. Zeiger
§ Verwendung und Zeigerarithmetik

2. Referenzen
3. Arrays
4. Zeigertabellen
5. Funktionszeiger

Zeiger & Co

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

N-dimensionale Arrays: Alternative

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

n Verwendung von Zeigertabellen (Zeiger auf Zeiger) anstelle von
unschönen Indexberechnungen

00 00 00 00

00 00 11 00

00 00 00 00

00 00 00 00

int* array;

0xFF00

0xFF10

0xFF20

0xFF30

int** mat;
int* array = new int[16];
int** mat = new (int*)[4];

mat[0] = &array[0];
mat[1] = &array[4];
/* ... */

// Zugriff, vorher
array[1*4+2] = 11;

// Zugriff, jetzt
mat[1][2] = 11;

43

K04

1. Zeiger
§ Verwendung und Zeigerarithmetik

2. Referenzen
3. Arrays
4. Zeigertabellen
5. Funktionszeiger

Zeiger & Co

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Funktionszeiger (i)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Was kann man alles mit Funktionen tun?
n Man kann sie aufrufen.
n Man kann ihre Adresse – der Einstiegspunkt im Code-Segment –

ermitteln und den Zeiger später benutzen, um die Funktion aufzurufen
n Braucht man um Funktionen höherer Ordnung realisieren zu können

à Funktionale Programmierung
n Callback-Funktionen: z.B. prozessspezifische Ereignisbehandlung in

Betriebssystemen.

n Es gilt: sizeof(fp) == sizeof(void*) wobei fp ein
Funktionszeiger ist. Ist fp jedoch ein Methodenzeiger (d.h. auf
Funktion einer Klasse), dann gilt dies im Allgemeinen nicht mehr,
da virtuelle Methoden korrekt behandelt werden müssen (zu
virtuellen Methoden später mehr).

45

Funktionszeiger (ii)

04. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/04-c++-zeiger.pdf

Beispiel:
// zwei Funktionen mit bis auf den Namen identischer Signatur

int plus(int x, int y) { return x+y; }

int mult(int x, int y) { return x*y; }

int (*fp) (int, int); /* Zeiger auf Funktionen die
Rückgabetyp int haben und zwei Parameter vom Typ int */

typedef int (*FP)(int, int); // dasselbe mit Alias

FP FPT_PLUS = + // Dekl. & Zuweisung der Addr. von plus

cout << plus(2,3) << "," << FPT_PLUS(4,5) << endl;

5,9

46

