
K06

1. Grundlegende Eigenschaften
2. Redefinition
3. Polymorphie
4. Mehrfachvererbung

Vererbung & Polymorphie in C++

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

Vererbung in C++: Grundlagen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

n Analog zu Java unterstützt C++ das Konzept
der Vererbung:
n Superklasse vererbt Zustand (Attribute) und

Verhalten (Methoden) an Subklasse.
n Die Begriffe Super-/Subklasse sind

transitive Relationen.
n Objektidentität durch Speicheradresse definiert.
n Objektgleichheit kann durch Überladen von == definiert werden.
n Wesentliche Unterschiede zu Java:

n Es gibt keine allgemeine Klasse von der alle Klassen (transitiv) erben.
n Mehrfachvererbung: Klasse kann von mehr als einer Superklasse

abgeleitet sein (nicht im Sinne von Interfaces in Java).
n Late Binding: in Java immer; in C++ steuerbar durch Programmierer.

Superklasse

Subklasse
Superklasse …

SubklasseSubklasse

2

Definition einer Vererbungsbeziehung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

3

n Neben der Vererbung werden dabei Rechte definiert, unter denen alle
Member der Superklasse in der abgeleiteten Klasse sichtbar sein sollen
(engl. access specifier):
n public: alle Member von Sup behalten ihre Sichtbarkeit in Sub
n protected: öffentliche Member von Sup werden zu protected Membern

von Sub; private Member bleiben privat
n private: alle Member von Sup werden zu privaten Membern von Sub
n Als Default – wenn ein Spezifizierer nicht angegeben ist (siehe Sup1) – wird

private bei class und public bei struct verwendet.

n Java besitzt diese Rechte-Spezifikation nicht. Dort wird quasi immer
mit public vererbt.

private // analog auch für
class Sub : public Sup, Sup1 { … }; // Strukturen

protected // möglich

Redefinition von Attributen/Methoden

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

4

Was passiert wenn identische Bezeichner für Member in Super-
und Subklasse verwendet werden?

n Bezeichner b (Attribut bzw. Methode) einer Klasse A ist
redefiniert in Subklasse B gdw. b in A und B vorkommt.
n Ein redefinierter Member in B verdeckt Member in A
n Bei Methoden (egal ob virtuell oder nicht) ...

n dürfen Parameter und Rückgabewert voneinander abweichen,
n ist Kombination mit Überladen möglich à eine Methode von A

kann in B mehrfach redefiniert sein (da in B überladen).

Beachte: Die Redefinition ist nicht zu ver-
wechseln mit dem Überladen von Bezeichnern!

Beispiel: Verdeckung in Kombination mit
Überladen (i)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

5

Das Kompilieren mit g++ resultiert in folgender Ausgabe:
In function 'int main()’:
error: no matching function for call to `Child::test()`
error: candidates are: void Child::test(int)

class Parent {
public:

void test() { cout << "test()" << endl; }
};
class Child : public Parent {

public:
void test(int i) { cout << "test(int)" << endl; }

};
int main() {

Child c; c.test(1); c.test();
} Völlig unerwartet wenn man das,

was Vererbung sagt, annimmt.

Beispiel: Verdeckung in Kombination mit
Überladen (ii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

6

n Grund: C++ Compiler/Linker geht bei der Namensauflösung wie folgt vor:
1. Suche die erste Klasse, beginnend mit der eigenen Klasse, in welcher der

Bezeichner der aufgerufenen Methode vorkommt
n Im Beispiel: test wird in der Klasse Child gefunden

2. Suche die Methode mit exakt gleicher Signatur innerhalb dieser Klasse
n Im Bespiel: Child kennt test(int), nicht aber test()à

Kompilierfehler

n Abhilfe: Jede in Subklassen überladene Methode sollte dort neu definiert
werden; üblicherweise unter Verwendung der Methode der Superklasse.

class Child : public Parent {
public:

void test() { Parent::test(); }
void test(int i) { cout << "test(int)" << endl; }

};

K06

1. Grundlegende Eigenschaften
2. Redefinition
3. Polymorphie
4. Mehrfachvererbung

Vererbung & Polymorphie in C++

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

Wiederholung: Polymorphie

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

8

n Polymorphie (griechisch „Vielgestaltigkeit“)
n Einer Variable vom Typ eine Superklasse kann irgend ein Objekt vom Typ einer

Subklasse zugewiesen sein.
n Es ist zwischen dem statischen und dynamischen Typ einer Variablen zu

unterscheiden:
n Statischer Typ: wie deklariert
n Dynamischer Typ: Typ des Objektes, das der Variable gerade zugewiesen ist

n Polymorphie: Verhalten je nach dynamischen Typ.

Bild aus: B. Lahres, G. Rayman: Objektorientierte Programmierung.

LightBulb lb; NeonLight nl;
Lamp *l = NULL; // statischer Typ: Lamp
l = &lb; // dyn. Typ: LightBulb
l = &nl; // dyn. Typ: NeonLight

sizeof(*l) liefert Wert
des statischen Typs.

Beispiel zur Polymorphie

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

9

class Fahrzeug {
public:

virtual void mag() = 0;
};
class Landfahrzeug : public Fahrzeug {

public:
virtual void mag() {cout << "festen Boden" << endl;}
void allrad() {cout << "mal so, mal so" << endl;}

};
class PKW : public Landfahrzeug {

public:
virtual void mag() {cout << "Strassen" << endl;}

};
class Jeep : public Landfahrzeug {

public:
virtual void mag() {cout << "offroad" << endl;}
void allrad() {cout << "ja" << endl;}

};

Rein virtuelle Methode

Redefinierte Methode

Landfahrzeug

PKW Jeep

Fahrzeug

Polymorphie in C++ (i)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

10

n Bei Methodenzugriff über „Standard“-Variable wird immer
die Methode des statischen Typs verwendet.
n In diesem Fall kein polymorphes Verhalten!

Jeep j;
j.mag(); // offroad
j.allrad(); // ja
Landfahrzeug lf = j;
lf.mag(); // festen Boden
lf.allrad(); // mal so, mal so

Polymorphie in C++ (ii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

11

n Bei Methodenzugriff über Zeiger oder Referenzen wird:
n die Methode des dynamischen Typs verwendet, insofern die

entsprechende Methode als virtual definiert wurde;
n andernfalls wird die Methode des statischen Typs verwendet.

Ergo: man kann gleiches Verhalten zu Java durch virtuelle Methoden
und Verwendung von Zeigern bzw. Zeiger-Referenzen erreichen.

Jeep j;
j.mag(); // offroad
j.allrad(); // ja
Landfahrzeug* lf = &j;
lf->mag(); // offroad
lf->allrad(); // mal so, mal so

Early Binding versus Late Binding

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

12

n Early binding a.k.a. static dispatch (statisches Binden):
Es ist bereits zum Kompilierzeitpunkt bekannt, welche
Methode ausgeführt wird (statischer Typ): lf.mag();

n Late binding a.k.a. dynamic dispatch (dynamisches Binden):
Es ist erst zur Laufzeit bekannt (über den dynamischen Typ),
welche Methode aufgerufen wird: lf->mag();
n Wird intern durch indirekte Adressierung implementiert: Zeiger auf

(Hash-)Tabelle, die die Einsprungadresse aller überschreibbaren
Methoden enthält. Durch notwendigen Lookup in Tabelle besteht
ein geringer Overhead beim Aufruf virtueller Methoden.

Virtuelle Methoden & abstrakte Klassen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

13

Regeln zu virtuellen Methoden:

n Ist eine Methode in einer Superklasse nicht virtuell, dann
kann man sie in Subklasse nicht virtuell machen.

n Eine einmal als virtuell deklarierte Methode bleibt immer
virtuell, auch wenn in Subklassen das Schlüsselwort virtual
nicht nochmals angegeben wird.

Abstrakte Klassen in C++:
n Können nicht instanziiert werden.
n Kriterium: mindestens eine rein virtuelle Methode, d.h. eine

Methode die mit virtual=0 gekennzeichnet ist; rein virtuelle
Methoden haben keinen Body; (siehe mag() auf Folie 9).

K06

1. Grundlegende Eigenschaften
2. Redefinition
3. Polymorphie
4. Mehrfachvererbung

Vererbung & Polymorphie in C++

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

Mehrfachvererbung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

15

n Die Subklasse erbt die Eigenschaften aller Superklassen

n Prinzipiell ist Mehrfachvererbung problemlos, es sei denn:
n Zwei oder mehr Superklassen haben eine Methode mit identischer

Signatur oder ein Attribut mit dem selben Name
n Zwei oder mehr Superklassen haben die selbe Superklasse

CB

D

A

class Auto {
public:
void leistung() {cout << "90 PS" << endl;}

};
class Schiff {

public:
void tiefgang() {cout << "> 0.5m" << endl;}

};
class Amphibienfahrzeug: public Auto, public Schiff {};
int main() {

Amphibienfahrzeug amph;
amph.leistung(); // 90 PS
amph.tiefgang(); // > 0.5m

}

Beispiel: identische Methoden (i)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

16

AutoSchiff

Amphibienfahrzeug

class Auto {
public:
void leistung() {cout << "90 PS" << endl;}

};
class Schiff {

public:
void tiefgang() {cout << "> 0.5m" << endl;}
void leistung() {cout << "500 PS" << endl;}

};
class Amphibienfahrzeug: public Auto, public Schiff {};
int main() {

Amphibienfahrzeug amph;
amph.leistung(); // Kompilerfehler
amph.Auto::leistung(); // 90 PS
amph.Schiff::leistung(); // 500 PS

}

Beispiel: identische Methoden (ii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

17

Werden mehrere Methoden (oder
Attribute) mit der gleichen Signatur
geerbt, so muss die Methode beim
Aufruf eindeutig spezifiziert
werden, also: Klasse::

AutoSchiff

Amphibienfahrzeug

Beispiel: 2x selbe Superklasse

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

18

class Gefaehrt {
protected:
int i; // Anzahl der Inhaber

public:
Gefaehrt() : i(0) {};
void verkaufen() {i++};

};

class Auto : public Gefaehrt {
};

class Schiff: public Gefaehrt {
};

class Amphibienfahrzeug :
public Auto, public Schiff {};

int main() {
Amphibienfahrzeug af;
af.verkaufen(); // Kompilerfehler!
af.Auto::verkaufen();
af.Schiff::verkaufen();

Gefaehrt* gf = ⁡ // K'fehler!
Gefaehrt* at =

static_cast<Auto*>(&af); // OK
}

Gefaehrt Gefaehrt

Schiff Auto

Amphibienfahrzeug

Auch hier gilt: es muss
eindeutig spezifiziert werden!

Virtuelle Mehrfachvererbung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

19

n Bewirkt, dass eine gemeinsame Superklasse nur einmal vererbt
wird.

n Dazu wird das Keyword virtual verwendet
(bei der Vererbungsdeklaration, nicht bei einer Methode!).

n Qualifizierte Bezeichnung der verwendeten Methoden und
Attribute der gemeinsamen Superklasse(n) nicht mehr nötig
(in unserem Beispiel: Gefaehrt).

n Auf Einfachvererbung oder Mehrfachvererbung ohne gemeinsame
Basisklasse hat das Keyword virtual keinen Einfluss.

Beispiel: Virtuelle Mehrfachvererbung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

20

class Gefaehrt {
protected:
int i; // Anzahl der Inhaber

public:
Gefaehrt() : i(0) {};
void verkaufen() {i++;}

};

class Auto : public virtual Gefaehrt {
};

class Schiff: public virtual Gefaehrt {
};

class Amphibienfahrzeug :
public Auto, public Schiff{};

Eine virtuelle Superklasse
§ wirkt sich erst bei

Mehrfachvererbung aus
§ bleibt auch bei weiteren

Ableitungen virtuell

Gefaehrt

Schiff Auto

Amphibienfahrzeug

int main() {
Amphibienfahrzeug af;
af.verkaufen(); // jetzt möglich

}

