“ Vererbung & Polymorphie in C++

Grundlegende Eigenschaften
Redefinition
Polymorphie

= w N e

Mehrfachvererbung

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Vererbung in C++: Grundlagen

= Analog zu Java unterstltzt C++ das Konzept Superklasse

der Vererbung:

g

_ Subklasse
m Superklasse vererbt Zustand (Attribute) und Superklasse
Verhalten (Methoden) an Subklasse. 8) i
= Die Begriffe Super-/Subklasse sind Subklasse | | Subklasse

transitive Relationen.

m Objektidentitat durch Speicheradresse definiert.
= Objektgleichheit kann durch Uberladen von == definiert werden.
= Wesentliche Unterschiede zu Java:
m Es gibt keine allgemeine Klasse von der alle Klassen (transitiv) erben.

s Mehrfachvererbung: Klasse kann von mehr als einer Superklasse
abgeleitet sein (nicht im Sinne von Interfaces in Java).

m Late Binding: in Java immer; in C++ steuerbar durch Programmierer.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

o
Definition einer Vererbungsbeziehung

// analog auch fir

Sub : Sup, Supl { .. }; // Strukturen
// moglich

= Neben der Vererbung werden dabei Rechte definiert, unter denen alle
Member der Superklasse in der abgeleiteten Klasse sichtbar sein sollen

(engl. access specifier):
= public: alle Member von Sup behalten ihre Sichtbarkeit in Sub

= protected: 6ffentliche Member von Sup werden zu protected Membern
von Sub; private Member bleiben privat

= private: alle Member von Sup werden zu privaten Membern von Sub

= Als Default — wenn ein Spezifizierer nicht angegeben ist (siehe Sup1) — wird
private bei class und public bei struct verwendet.

= Java besitzt diese Rechte-Spezifikation nicht. Dort wird quasi immer
mit public vererbt.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

-
Redefinition von Attributen/Methoden

= Bezeichner b (Attribut bzw. Methode) einer Klasse A ist
redefiniert in Subklasse B gdw. b in A und B vorkommt.

m Ein redefinierter Member in B verdeckt Member in A

m Bei Methoden (egal ob virtuell oder nicht) ...
dirfen Parameter und Rickgabewert voneinander abweichen,
ist Kombination mit Uberladen méglich = eine Methode von A

” kann in B mehrfach redefiniert sein (da in B tGberladen).
- “ Beachte: Die Redefinition ist nicht zu ver-
o ”i wechseln mit dem Uberladen von Bezeichnern!
KRN IAN

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel: Verdeckung in Kombination mit
Uberladen (i)

Parent {
test() { cout << "test()" << endl; }
}s
Child : Parent {
test(int i) { cout << "test(int)" << endl; }
}s
main() {
Child c; c.test(1); c.test(); pumm
} Vollig unerwartet wenn man das, @
was Vererbung sagt, annimmt.

Das Kompilieren mit g++ resultiert in folgender Ausgabe:
In function 'int main()’:
error: no matching function for call to “Child::test()"
error: candidates are: void Child::test(int)

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel: Verdeckung in Kombination mit
Uberladen (i)

= Grund: C++ Compiler/Linker geht bei der Namensauflosung wie folgt vor:

1. Suche die erste Klasse, beginnend mit der eigenen Klasse, in welcher der
Bezeichner der aufgerufenen Methode vorkommt

Im Beispiel: test wird in der Klasse Child gefunden
2. Suche die Methode mit exakt gleicher Signatur innerhalb dieser Klasse

Im Bespiel: Child kennt test(int), nicht aber test() 2>
Kompilierfehler

= Abhilfe: Jede in Subklassen Uberladene Methode sollte dort neu definiert
werden; Ublicherweise unter Verwendung der Methode der Superklasse.

Child : Parent {

void test() { Parent::test(); }
test(int i) { cout << "test(int)" << endl; }

}s

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

“ Vererbung & Polymorphie in C++

Grundlegende Eigenschaften
Redefinition
Polymorphie

i s

Mehrfachvererbung

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Wiederholung: Polymorphie

= Polymorphie (griechisch ,Vielgestaltigkeit®)

= Einer Variable vom Typ eine Superklasse kann irgend ein Objekt vom Typ einer
Subklasse zugewiesen sein.

m Esist zwischen dem statischen und dynamischen Typ einer Variablen zu
unterscheiden:

= Statischer Typ: wie deklariert
= Dynamischer Typ: Typ des Objektes, das der Variable gerade zugewiesen ist

m Polymorphie: Verhalten je nach dynamischen Typ.
LightBulb 1b; NeonLight nl; w
Lamp *1 = NULL; // statischer Typ: Lamp
1 = &1b; // dyn. Typ: LightBulb \\\\‘
— c . . / 'ff’-é\\\\\'
1l = &nl; // dyn. Typ: NeonLight { -
sizeof (*1) liefert Wert @

\‘_/

des statischen Typs. Bild aus: B. Lahres, G. Rayman: Objektorientierte Programmierung.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel zur Polymorphie Fahrzeu

class { Rein virtuelle Methode Landfahrzeug
public: — ‘
< virtual void mag() = 05 > PKW Jeep
};5
class : public {
public:
virtual void mag() {cout << "festen Boden" << endl;}
void allrad() {cout << "mal so, mal so" << endl;}
};5
class : public {
public:
virtual void mag() {cout << "Strassen" << endl;}
};5
class : public {
public:
virtual void mag() {cout << "offroad"” << endl;}
void allrad() {cout << "ja" << endl;}
}s Redefinierte Methode

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

26. April 2019

Polymorphie in C++ (i)

= Bei Methodenzugriff Gber ,Standard“-Variable wird immer
die Methode des statischen Typs verwendet.

= In diesem Fall kein polymorphes Verhalten!

Jeep j;

j.mag(); // offroad
j.allrad(); // ja
Landfahrzeug 1f = j;

1f.mag(); // festen Boden
1f.allrad(); // mal so, mal so

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Polymorphie in C++

= Bei Methodenzugriff Uber Zeiger oder Referenzen wird:

m die Methode des dynamischen Typs verwendet, insofern die
entsprechende Methode als virtual definiert wurde;

= andernfalls wird die Methode des statischen Typs verwendet.

Jeep J;

j.-mag(); // offroad
j.allrad(); // ja
Landfahrzeug* 1f = &j;

1f->mag(); // offroad
1f->allrad(); // mal so, mal so

Ergo: man kann gleiches Verhalten zu Java durch virtuelle Methoden

und Verwendung von Zeigern bzw. Zeiger-Referenzen erreichen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf

26. April 2019

Early Binding versus Late Binding

= Early binding a.k.a. static dispatch (statisches Binden):
Es ist bereits zum Kompilierzeitpunkt bekannt, welche
Methode ausgefiihrt wird (statischer Typ): 1¥.mag() ;

= Late binding a.k.a. dynamic dispatch (dynamisches Binden):
Es ist erst zur Laufzeit bekannt (iUber den dynamischen Typ),
welche Methode aufgerufen wird: 1f->mag();

= Wird intern durch indirekte Adressierung implementiert: Zeiger auf
(Hash-)Tabelle, die die Einsprungadresse aller Gberschreibbaren
Methoden enthalt. Durch notwendigen Lookup in Tabelle besteht
ein geringer Overhead beim Aufruf virtueller Methoden.

L

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Virtuelle Methoden & abstrakte Klassen

Regeln zu virtuellen Methoden:

= |st eine Methode in einer Superklasse nicht virtuell, dann
kann man sie in Subklasse nicht virtuell machen.

= Eine einmal als virtuell deklarierte Methode bleibt immer
virtuell, auch wenn in Subklassen das Schlisselwort virtual
nicht nochmals angegeben wird.

Abstrakte Klassen in C++:
= KOnnen nicht instanziiert werden.

= Kriterium: mindestens eine rein virtuelle Methode, d.h. eine
Methode die mit virtual=0 gekennzeichnet ist; rein virtuelle
Methoden haben keinen Body; (siehe mag() auf Folie 9).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

“ Vererbung & Polymorphie in C++

Grundlegende Eigenschaften
Redefinition
Polymorphie

P w N E

Mehrfachvererbung

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Mehrfachvererbung

= Die Subklasse erbt die Eigenschaften aller Superklassen

= Prinzipiell ist Mehrfachvererbung problemlos, es sei denn:

m Zwei oder mehr Superklassen haben eine Methode mit identischer
Signatur oder ein Attribut mit dem selben Name

m Zwei oder mehr Superklassen haben die selbe Superklasse

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel: identische Methoden (i)

Schiff Auto

Auto { \\ //

Amphibienfahrzeug

leistung() {cout << "90 PS" << endl;}

}s
Schiff {
tiefgang() {cout << "> 0.5m" << endl;}
}s5
Amphibienfahrzeug: Auto, Schiff {};
main() {
Amphibienfahrzeug amph;
amph.leistung(); // 90 PS
amph.tiefgang(); // > 90.5m
}

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel: identische Methoden (ii

Schiff Auto

Auto { \\ //

Amphibienfahrzeug

leistung() {cout << "90 PS" << endl;}

};5
Schiff {
tiefgang() {cout << "> 0.5m" << endl;}
leistung() {cout << "500 PS" << endl;}
};5
Amphibienfahrzeug: Auto, Schiff {};
A"r:'ahlf'b(_)en{fahr v 2o Werden mehrere Methoden (oder
101 zZeu >
amph leistung() 5 EEE P Attribute) mit der gleichen Signatur
. 1STU 5 1 ’ . .
P g. ’ p geerbt, so muss die Methode beim
amph.Auto::leistung(); // 90 PS Aufruf eindeutt .
amph.Schiff::leistung(); // 5600 PS UL S L SpEAT IS
} werden, also: Klasse: :

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel: 2x selbe Superklasse

Gefaehrt { Gefaliehrt Gefalnehrt

Schiff Auto

i; // Anzahl der Inhaber
: Amphibienfahrzeug

Gefaehrt() : i(0) {};
verkaufen() {i++}; main() {

}; Amphibienfahrzeug af;

}s

}s

af.verkaufen(); // Kompilerfehler!
Auto : Gefaehrt { af.Auto: :verkaufen();
af.Schiff::verkaufen();

Schiff: Gefaehrt { Gefaehrt* gf = &f; // K'fehler!

Gefaehrt* at =
static_cast<Auto*>(&af); // OK

Amphibienfahrzeug : }

Auto, Schiff {}; Auch hier gilt: es muss

eindeutig spezifiziert werden!

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Virtuelle Mehrfachvererbung

= Bewirkt, dass eine gemeinsame Superklasse nur einmal vererbt
wird.

= Dazu wird das Keyword virtual verwendet
(bei der Vererbungsdeklaration, nicht bei einer Methode!).

= Qualifizierte Bezeichnung der verwendeten Methoden und
Attribute der gemeinsamen Superklasse(n) nicht mehr notig
(in unserem Beispiel: Gefaehrt).

= Auf Einfachvererbung oder Mehrfachvererbung ohne gemeinsame
Basisklasse hat das Keyword virtual keinen Einfluss.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

Beispiel: Virtuelle Mehrfachvererbung

Gefaehrt { /Gefaehrt\
: Schiff Auto

i; // Anzahl der Inhaber

Amphibienfahrzeug

Gefaehrt() : i(9) {};
verkaufen() {i++;}

}s Eine virtuelle Superklasse
. : : :
Auto : virtual Gefaehrt { wirkt sich erst bei
ys Mehrfachvererbung aus
b
= bleibt auch bei weiteren
Schiff: virtual Gefaehrt { Ableitungen virtuell
b main() {
Amphibienfahrzeug : Amphibienfahrzeug a1.=; o
Auto, Schiff{}; af.verkaufen(); // jetzt moglich
}

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/06-c++-vererbung.pdf 26. April 2019

