1. Grundlegende Eigenschaften
2. GHCiund GHC
3. Typsystem

teilweise basiert auf Folien von Graham Hutton und Philip Wadler

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Haskell Literatur

Marco
Adriar

. . ISENGI
= M. Block, A. Neumann: Haskell-Intensivkurs: Ein Tt nsiviors

kompakter Einstieg in die funktionale Programmierung.
Springer, 2011. ISBN: 978-3-642-04717-6

Frei/online verfigbar:

= B. O'Sullivan, D. Stewart, J. Goerzen: Real World Haskell.
First Edition. O‘Reilly, 2008. ISBN: 978-0-596-51498-
3http://book.realworldhaskell.org/

OREILLY"

ImEE .
= M. Lipovaca: Learn You a Haskell for Great Good! L,_f:;:e}{ﬂ:,f
No Starch Press, 2011. ISBN: 978-1-59327-283-8 Great Good!

A Beginner’s Guide

m

Miran Lipovaca @

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

http://learnyouahaskell.com/

http://book.realworldhaskell.org/
http://learnyouahaskell.com/

Historischer Hintergrund

s Ursprung:
= A-Kalkdl (A. CHURCH und S. KLEENE — 1930er Jahre)
m Currying™ (HASKELL BROOKS CURRY — 1950er Jahre)

= Lisp als erste Programmiersprache mit funktionalen
Eigenschaften (J. MCCARTHY 1958)

= Haskell 1.0 — (P. HuDAK, J. HUGHES, SIMON P. JONES, P. WADLER
1990); aktuelle Version: Haskell 2010

*Zuvor schon von G. FREGE und M. SCHONFINKEL beschrieben.
thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Ist FP relevant?

= Viele Konzepte der FP finden Eingang in den , Alltag” der
Softwareentwicklung bzw. in die Weiterentwicklung
konventioneller Sprachen:

PUGS PERL 6
Compiler

darcs £

Xxmonad

Projekte, die in Haskell geschrieben sind (Auswahl)

'hadaap YaHOO!
Google MapReduce twitter’

Ubersicht: http://www.haskell.org/haskellwiki/Haskell in industry

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

http://www.haskell.org/haskellwiki/Haskell_in_industry

Warum gerade Haskell und nicht ...
... Erlang, F#, Lisp, ML, O‘Caml, Scheme, Scala, ...

= Rein funktionale Sprache -
= Unter den funktionalen Programmiersprachen sehr popular

s Grosse Menge an Bibliotheken

= Nicht nur Gegenstand der Forschung, sondern industriell eingesetzt
(man sollte es nicht als eine ,,akademische Spielwiese” auffassen)

= Compiler als auch interaktive Interpreter verfiigbar (z.B.
Glasgow Haskell Compiler ghc und ghci)

m Gute bis sehr gute Laufzeitperformance wenn kompiliert

= Tools fir Entwickler (IDEs, Debugger, Build, Profiler)
= Entworfen durch ein Komitee

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Was ist Funktionale Programmierung?

Allgemein zusammengefasst:

= Programmierstil (Paradigma) dessen grundlegende Methode die
Anwendung von Funktionen auf deren Argumente ist:

Ein Programm ist formuliert als eine (moglicherweise aus vielen
Unterfunktionen zusammengesetzte) Funktion (im math. Sinn),
dessen Ausfihrung der Auswertung dieser Funktion entspricht.

= Eine funktionale Programmiersprache

unterstitzt / / erzwingt

diesen Programmierstil.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Gegenuberstellung

= Gesucht: Summiere die Zahlen 1...10!

Funktion
In C++: Argument
sum = O; sum [1..10]
(i=1; i<=10; i++) sum :: Num a => [a] -> a
{ sum [] =0
sum += 1i; sum [x] = X
} sum (X:Xs) = X + sum [xs]
Imperativ: Iteriere Uber die Zahlen Applikativ: Wende die Funktion
1 bis 10 und addiere die aktuelle sum auf die Liste der Zahlen 1 bis
Zahl zur Gesamtsumme. 10 an, wobei sum die Funktion ist,

die die Summe einer Liste von
Zahlen berechnet.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

graustufen :: Bild
springer :: Bild

graustufen springer

neben :: Bild -> Bild

-> Bild

spiegeln :: Bild -> Bild

-> Bild

—» graustufen

—>

(
£

neben (spiegeln springer) (graustufen springer)

/ﬂ graustufen

;
& <\«

spiegeln

—

s

> neben

duplizieren

/

.
3

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

Funktionsanwendung und -Komposition

¢
3

[
=

~

(

&

26. April 2019

Neue Funktion aus bestehenden Funktionen definieren

v

/1 graustufen

Ly

> neben [P

AN
@

-
\
TS
f\r

Ny

spiegeln —»

™ 1N

duplizieren

duplizieren :: Bild -> Bild

duplizieren x = neben (spiegeln x) (graustufen x)

duplizieren springer

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Haskell: Zuruck zur Mathematik

x=x+1

= |In der Mathematik ist dies eine nicht [6sbare Gleichung. Die
Variable x ist fest an einen Wert gebunden; x ist nicht veranderbar

(engl. immutable).

= In imperativen Sprachen ist dies eine Anweisung um den Zustand
(Bereich im Speicher) der mit der Variable x assoziiert ist — eine
Zahl in diesem Fall, die irgend etwas reprasentiert, z.B. das Alter
einer Person — zu verandern.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Wiederholung: Funktion

= In der Mathematik ist eine Funktion feine Abbildung, die ein
Element x einer Menge X eindeutig (aber nicht notwendiger

Weise eineindeutig) auf ein Element y einer Zielmenge Y

abbildet.
f:X—=Y

m Linkstotal, d.h. fir alle Elemente von X definiert (falls nicht, dann
nennt man f eine partielle Funktion).

m Rechtseindeutig, d.h. fur jedes Element x € X gibt es hochstens ein
Element in y € Y auf das x abgebildet wird.

m X als auch Y kénnen Produktmengen sein:
X=X, x..xX, Y=Y, x..xY, (n=z0,m=1)
wobei X;, Y; wiederum Mengen sind, X das kartesische Produkt und n
die Stelligkeit (engl. arity) von fangibt (z.B. liefert X = A x B x C eine

dreistellige Funktion, wobei die Argumente Elemente aus A, B, C sind).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Merke

= Egal wann und egal wo fausgewertet (oder angewendet)
wird, das Ergebnis y € Y ist nur durch den Parameter x € X
bestimmt (anhand der Abbildungsvorschrift die durch f
vorgegeben ist) und sonst nichts!

= Ist feine Funktion im mathematischen Sinn, dann erzeugt sie
keine Seiteneffekte. Der einzige , Effekt” der Auswertung von
fist die Berechnung des Ergebnisy € Y.

s Mit anderen Worten:

Der Datenfluss — d.h. die Benutzung von Ergebnissen durch nachgeordnete
Funktionen — ist explizit; es gibt keine impliziten Effekte.

Es gibt keinen ,versteckten” (impliziten) Zustand der das Ergebnis einer
Funktion beeinflusst. Demzufolge kann auch kein Zustand durch einen
Funktionsaufruf verandert werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

CODE WRITTEN IN HASKELL

15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

...BECAUSE NO ONE
WILL EVER RUN IT?

il

https://xkcd.com/1312

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

http://xkcd.com/927/

Referentielle Transparenz

engl. referential transparency/opaqueness

= Ist e ein Ausdruck im math. funktionalen Sinn (z.B. g(f(x).y)),
dann ist e eindeutig durch die Argumente (und die
Auswertungssemantik die fiir e definiert ist) bestimmt; d.h. ...

= ...gegeben die Argumente, dann kann man e durch sein
Ergebnis bzw. einen daquivalenten (,leichteren”) Ausdruck e'
ersetzen (substituieren)

= Diese Eigenschaft bezeichnet man als referentielle Transparenz

- Formaler mathematisch/logischer Beweis der Korrektheit eines
Programms (liefert es das was es soll) wird dadurch vereinfacht
bzw. GUberhaupt erst moglich, da keine Seiteneffekte mit
einbezogen werden mussen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Moment mal, wie kann man dann...

= ... folgende Dinge* in Haskell (bzw. rein funktionalen
Programmiersprachen) realisieren:

4 : : :)
= random() — erzeugt eine Zufallszahl keine Funktionen im math. Sinn
= getInput() - liefert ein lGber die Tastatur eingegebenes Zeichen
= currentTime() — liefert die aktuelle Uhrzeit/das aktuelle Datum
= queryGoogleFor(x) — liefert Suchergebnisse fiir Stichwort x

\ J

* An dieser Stelle sei absichtlich nicht der Begriff Funktion (bzw. Funktionalitat) verwendet.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

= Action — monadische Funktion (,,unreine” Funktion mit Seiteneffekten)

= Arrow — Verkettung/Komposition von Actions

Moment mal, wie kann man dann...

m Haskell bedient sich hierfiir der Monoide, Morphismen und Funktoren,
welche Konzepte aus der Kategorientheorie der Mathematik sind:

Monad — Struktur aus Actions; bestimmt wie Aktionen ausgefiihrt werden.

Functor

/

Comonad

Quelle:
wiki.haskell.org

Applicative

Apply

\

Altemative

Foldable

Semigroup

'

Monoid

Y
Monad

Traversable

| l ,-';

MonadFix

MonadPlus

Category

Amrow e AmrowZero

- ArrowPlus

ArrowApply ArrowChoice

Arrow Loop

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

] . (X—=Y)—=Z/
Funktion hoherer Ordnung
= ... ist eine Funktion bei der ein oder mehrere Argument(e) und/oder

das Ergebnis wiederum eine Funktion sind.
= Funktionen, genauso wie Argumente, sind ,,first-class citizens”

= Hauptanwendung liegt in der Abstraktion von mehreren Funktionen
an einem Ort.

= Beispiele (informell):

m Eine Funktion die eine Liste von Zahlen und die Quadrat-Funktion als
Argumente hat, die auf jede Zahl die Quadrat-Funktion anwendet und die
so entstandene Liste der Quadratzahlen zurlickgibt.

m Eine Funktion die eine Liste von Zahlen und die Maximum-Funktion als
Argumente hat, die sukzessiv die Maximum-Funktion auf je zwei Zahlen
anwendet, um dadurch den grossten Wert der Liste zu finden.

= Eine Funktion, die, gegeben eine differenzierbare Funktion f, deren erste
Ableitung /' als Ergebnis liefert (analytisch oder durch numerische Approx.).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Bedarfsauswertung

engl. lazy evaluation, call-by-need

= Referentielle Transparenz ermoglicht Bedarfsauswertung ...

= ...da es keine Rolle spielt ob das Ergebnis einer Funktion bei jedem Aufruf
immer (in aufwandiger Weise) berechnet wird, oder erst dann, wenn das
Ergebnis wirklich gebraucht/verwendet wird, d.h. ...

m ... ein Ausdruck wird dann ausgewertet wenn darauf zugegriffen wird.

= Definition (Strikte Funktion): Sei f eine Funktion und e ein
nichtterminierender Ausdruck. f ist strikt gdw. f(e) nicht terminiert.

= Haskel ist nicht strikt. Was nicht bendtigt wird flir eine Berechnung,
wird niemals ausgewertet werden. Demzufolge sind Ausdriicke deren
Auswertung unendlich lang laufen wiirde, oder die nicht vollstandig
berechenbar sind (da z.B. fehlerhaft), die aber nicht (komplett)
ausgewertet werden mussen, kein Problem.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Bedarfsauswertung — Beispiel (ii)

Beispiel:
C++ (strikte Auswertung)

int foo(int x) {
10; // konstante Funktion

}
foo(1l / 0); // Ergebnis? Absturz ;

Haskell (nicht strikte Auswertung)

foo :: Int ->» Int
foo x = 10 -- konstante Funktion

foo (1 / 0) -- Ergebnis? 10, statt Absturz

Das Ergebnis des Ausdruckes 1 / 10 wird nicht verwendet. Ergo
wird der (in diesem Fall nicht definierte) Ausdruck nicht ausgewertet.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

—_—
o 0
o 0
o 0
S

Bedarfsauswertung

s Ermoglicht es unendliche Strukturen zu deklarieren und damit zu arbeiten;
z.B.:

m Liste aller positiven Ganzzahlen:
= Unendliche Liste von Einsen:

m Liste aller Quadratzahlen:

Beispiel: head :: [Int] -> Int -- Funktion welche aus einer
head [] = undefined -- Liste von Integer Zahlen
head (x:xs) = x -- die erste Zahl zuriick gibt.
head [1..] -- terminiert und liefert “1”
head ones - - dito
head squares - - dito

= Nachteil: es ist u.U. schwieriger vorhersagbar, wann bzw. ob eine Ressource
tatsachlich benutzt wird (z.B. wann ein Netzwerkzugriff erfolgt).

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Weitere wesentliche Eigenschaften

= |In Haskell (und anderen ,rein® funktionalen Sprachen)
existieren keine Kontrollstrukturen wie z.B. Schleifen

m Stattdessen wird Rekursion benutzt

m Strenges Typsystem: Alle Typen statisch zur Compilezeit bekannt,
wodurch Typinkompatibilitaten erkennbar sind.

s Polymorphes Typsystem: Funktionen konnen fir eine Klasse
verschiedener Typen anwendbar sein.

= Automatische Speicherverwaltung: keine Zeigermanipulation;
kein Anfordern und Freigeben von Speicher.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Haskell: Kostproben

Dateinamenskonvention j‘
Das obligatorische Hello World: hello.hs

Main
main :: IO()
main = putStrLn "Hello, World"

-h

:: Ord a => [a] -> [a]
f [= [1]

f (x:xs) = f ys ++ [x] ++ f zs

ys = [a | a <- x5, a <= X]
zs = [b | b <- xs, b > x]

f :: 0rd @ => [a] -> [a]
f [] =[]
f (x:xs) = f [a | a<-xs, a<=x] ++ [x] ++ f [b | b<-xs, b>x]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Schlusselworter in Haskell

case of class data
default deriving deriving instance | do data family
forall foreign import data instance
if then else instance let
in infix infixl infixr mdo
module newtype proc rec
type type family | type instance where

Nur in bestimmten Kontext reserviert. Kann andernorts als Funktions- bzw.
Variablen-Name benutzt werden.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

1. Grundlegende Eigenschaften
2. GHCiund GHC
3. Typsystem

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

GHCi — Interaktiver Haskell Interpreter

= Glasgow Haskell Compiler (GHC) kann als die Referenzimple-
mentierung von Haskell betrachtet werden. Wird auch am
haufigsten benutzt.

= GHCi ist ein interaktiver Interpreter zum Testen (Scrapbook)
= Bezeichnet man als Shell (REPL)
= Starten durch ghci

P ghai
AW, haskell.orgisghcs
Linking ... done,
Linking ... done.
done,
Linking ... done.

GHC1,
Loadit
Loadin
Loadin
Loadin
Preluc

)

Q=

r1ﬁ.mm4
Q0

AN AN A AN O
QJ

ol

o 09 09 09
m T T M

0q 0Q 0Q 09 <
IR TR

L
1
1
1
]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

GHCi — einfache Ausdrucke auswerten

= > ist der Eingabeprompt; zeigt an, dass GHCi bereit zum
Auswerten von Ausdrucken ist.

Prelude> 2+43%4
14

Prelude> (2+3)%4
20

Prelude> sqrt

5.0

Prelude> (+)

1@

Frelude> [1..
L e e
Prelude> [2,6. .2
[2.6,16,14,18]
Prelude> []

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Prelude — die Standardbibliothek

= Prelude.hs ist eine Bibliothek (genauer gesagt ein)
welche per Default zur Verfligung steht.

= Bietet zahlreiche, grundlegende Funktionen und Datentypen an

> compare 2 3 -- Relation zweier Elemente aus Menge
LT -- mit definierter Ordnung (LT, GT, EQ)
> head [1,2,3,4,5] -- erstes Element einer Liste

1 -- analog liefert tail die Restliste

> [1,2,3,4,5] !! 2 -- n-tes Element einer Liste

3

> take 3 [1,2,3,4,5] -- ersten n Elemente einer Liste
[1,2,3]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Prelude — weitere Beispiele

> drop 3 [1,2,3,4,5] -- Restliste ohne die ersten n Elemente
[4,5]

> length [1,2,3,4,5] -- Lange der Liste (Anzahl Elemente)

5

> product [1,2,3,4,5] -- Produkt aller Listenelemente
120

> [1,2,3] ++ [4,5] -- Konkatenation zweier Listen
[1,2,3,4,5]

> reverse [1,2,3,4,5] -- umgekehrt geordnete Liste
[5,4,3,2,1]

> even 11 -- ist die gegebene Zahl gerade
False

> max 33 2 -- grossere der beiden Zahlen
33

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Uberblick gewinnen Hoog\e

s Wie findet man schnell 6ffentliche/freie Bibliotheken und die
darin angebotenen Funktionen und Datentypen?

= Hoogle is your friend ... http://www.haskell.org/hoogle/

m Zentralisiertes Archiv mit Suchfunktion,
in dem alle registrierten APlIs

dokumentiert sind |Q map a
< fi.umap:(a->b)->[a] ->[b]

o= Outline ' A\ Hoogle &3 = B

m Suche nach: .
o8
= Funktionsname, z.B. map n Data.List

= Signatur, z.B. (a -> b) -> [a] -> [b] D fi.l mapM :: (Monad m)=>(a->mb) -> |
D fi.l mapM_:: (Monad m)=>(3->mb) ->

m Eclipse-Integration Uber EclipseFP fi.| manAccuml ¢ (acc -» X -> (acc, y)) -

= Auch mit EMACS integrierbar map :: (a ->b) -> [a] -> [b]

map f xs is the list obtained by
applying f to each elenkent of xs,
i.e.,

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

http://www.haskell.org/hoogle/

Syntax Funktionsanwendung

= In der Mathematik:

Wende die Funktion f auf die
fla,b) + cd | | Argumente a und b an und

addiere das Ergebnis zum
Produkt von c und d.

fist hier ein Funktionsname; a, b, ¢, d sind Variablennamen

= |In Haskell:

Argumente von f folgen ohne
fab+c*d ___—] | Klammern; alle Operationen
durch ein Symbol reprasentiert
= * fir die Multiplikation.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

= Gegenuberstellung:

Mathematik

Jx)

Jx, y)
J(g(x))
Jx, 8(»)
Jx) g(y)

Runde Klammern: ordnen Argument(e)
einer Funktion zu

Funktionsanwendung - Beispiele

Haskell
f x

f xy
f (g x)

fx (gy)
fx *¥gy

bilden Ausdriicke und damit

eine Vorrangordnung bei
Verschachtelung

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

Funktionen- und Operatorrangfolge

= Funktionen haben hdohere Prazedenz als Operatoren

f a+b -- bedeutet f(a) + b anstatt f(a + b)

s Es gibt 9 Prazedenzstufen fur Operatoren

= Relative Prazedenz mathematischer Operatoren entsprechend den
mathematischen Regeln (z.B. hat * hat hohere Prazedenz als +)

= Funktionsanwendung hat Stufe 10

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Skript/Programm in GHCi laden

~— | Reihenfolge egal;

Definition irgendwo,

double x
quadruple x

X + X .
aber nicht notwen-
double (double x) digerweise zuvor

Skript mit GHCi laden: | > ghci myFirstScript.hs

Prelude> :1 myFirstScript.hs

Prelude.hs und myFirstScript.hs sind dann geladen und die darin
definierten Funktionen konnen aufgerufen werden.

Prelude> quadruple 10
40

Prelude> take (double 2) [1,2,3,4,5,6]
[1)2)3.’4]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Skript/Programm neu laden

= Wenn Skript extern (in einem Editor) geandert wurde, muss
es mit :reload (bzw. :r) erneut geladen werden um die

Anderungen zu aktivieren.

Prelude> :r

Ok, modules loaded: Main.
Prelude> factorial 10
3628800

Prelude> average [1,2,3,4,5]
3

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

Haufig gebrauchte GHCi-Kommandos

Kommando Kurzform Bedeutung

:load name :l name lade Skript name

:reload T aktuelles Skript neu laden
:edit name e name editiere Skript name

cedit e editiere aktuelles Skript
:info oy Information zu Typ/Funktion
.type expr .t expr zeige Typ von expr

:help 7 zeige alle Kommandos

:quit :q beende ghci

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

GHC Compiler

hello.hs

Main
main :: IO0()
main = putStrLn "Hello, World"

Programm kompilieren:
> ghc -0 hello hello.hs

> ./hello
> Hello, World

= Analog zu vielen anderen Sprachen ist die main Funktion (optional
im Modul Main) — welche gleichzeitig eine sog. Aktion ist; dazu
spater mehr — der Einstiegspunkt in ein Haskell-Programm.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Einrickung als Strukturierungselement (i)

= In Haskell (3hnlich wie z.B. in Python) kann die Einrtckung im Quelltext
eine Rolle spielen: Blocke konnen durch Einrtickung gebildet werden, d.h.
Whitespace (Leerzeichen und Tabulatoren) hat eine abgrenzende
Semantik.

= Wenn Blockbildung durch Einrlickung, dann missen in einer Sequenz von
Zeilen (z.B. Definitionen) alle in exakt derselben Spalte beginnen:

a = 10 a = 10 a = 10 Xs = 10
b = 20 b = 20 b = 20 X = 20
c = 30 c = 30 c = 30 c = 30

v X X X

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Einrickung als Strukturierungselement (ii)

= Blockbildung durch Einrickung vermeidet die Notwendigkeit
spezielle Symbole zur Blockbegrenzung benutzen zu mussen.

1l
G
+
(@)

a=b + c a
where where

Bl i 2 b = 1;
C 2 c = 2}
k

N I
Q.
1l
Q
*
N

d = a

implizite explizite
Gruppierung _~ Gruppierung

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

1. Grundlegende Eigenschaften
2. GHCiund GHC
3. Typsystem

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Typen (Wiederholung)

= Ein Typ ist ein Bezeichner fur eine Menge von gleichartigen
Elementen bzw. Werten (engl. values).

m Eine Klasse ist z.B. eine ublicherweise nichtleere Menge von Objekten
(Instanzen) die sich der Klasse zuordnen lassen.

m Auf einem Typ ist eine Menge von Operationen und Funktionen
definiert.

= In Haskell existiert z.B. der Typ Bool

welcher genau zwei Werte enthalt: False True

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Typfehler in Haskell

= Die Anwendung einer Funktion auf inkompatible Argumente

ist ein Typfehler (engl. type error).

> 1 + False
Error

1 ist eine Zahl and False
ein Bool; jedoch erwartet
+ zwei Zahlen.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

Typen in Haskell

= Wenn die Auswertung eines Ausdrucks e einen Wert
(Ergebnis) vom Typ ¢ liefert, dann ist e vom Typ ¢

e :: t

= Jeder syntaktisch korrekte Ausdruck hat in Haskell
demzufolge einen Typ, welcher sich automatisch zur
Compilezeit ableiten lasst. Diesen Prozess nennt man
Typinferenz (engl. type inference).
= Haskell hat ein statisches und strenges Typsystem
Es konnen keine Typfehler zur Laufzeit auftreten

Geringere Fehleranfalligkeit und bessere Laufzeitperformance
(da keine Checks zur Laufzeit notwendig sind)

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Typ eines Ausdrucks abfragen

s Der Typ eines Ausdrucks e kann in GHCi mit dem Kommando
:type (bzw. :t als Kurzform)

abgefragt werden, ohne dass e dabei ausgewertet wird.

> "foo"
"foo" :: [Char]

> not False
not False :: Bool

> 3 + 2
3+ 2 :: Num a => a

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Allgemeine Datentypen in Haskell

Bool True, False

Int fest (32, 64 bit)? mindestens -22° bis 22°-1

Integer theoretisch unbeschrankt -c0 bis +oo

Float? einfach (32 bit) ~1.175x10738 bis =3.4x1038

Double doppelt (64 bit) ~4.9406564584124654x10732
4 bis
~1.7976931348623157x10308

Char Einzelnes Zeichen UNICODE

String Zeichenkette (Liste von Zeichen)

Rational3 Quotient zweier Integer-Werte

Complex

! Maschinenabhéangig

2 Laut ,Real World Haskell“ Verwendung nicht empfohlen ,,... is much slower ...

3 Ratio Bibliothek

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Listentypen

= Eine Liste ist eine Folge von Werten desselben Typs:

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]
= Generell gilt:
[¢] ist der Typ von Listen deren Elemente vom Typ ¢ sind

= Elemente konnen wiederum Listen desselben Typs sein:

[[’a’],[’b’,’c’]] :: [[Char]]
= Typ ist unabhangig von der Lange der Liste
= Spezialfall: leere Liste > []

[] :: [a]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Typeltypen

= Ein Tupel ist eine Folge von Elementen deren jeweiliger Typ
unterschiedlich sein kann:

(False,True) :: (Bool,Bool)
(False, 'a',True) :: (Bool,Char,Bool)
("foo0",1,2) :: (Num t1, Num t) => ([Char],t,t1)

('a',('b','c')) :: (Char,(Char,Char))
= Generell gilt:

(1, 15, ..., t,) ist der Typ von n-Tupeln deren
i-tes Element vom Typ ¢, ist (1 < i < n)

= Aus dem Typ kann man also die Lange des Tupels ableiten.

= Spezialfall: leeres Tupel » @)
02 0

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Funktionstypen

= Eine Funktion ist eine Abbildung von Werten eines Typs auf

Werte eines Typs.

not :: Bool -> Bool
isDigit :: Char -> Bool

= Generell gilt:

t, ->t, ist der Typ der Klasse von Funktionen,
die Werte vom Typ ¢, auf Werte vom Typ ¢, abbilden.

= Argument und Ergebnistyp add :: (Int,Int) -> Int

sind nicht beschrankt: add (x,y) = x+y

zeroToN :: Int -> [Int]
zeroToN n = [0..n]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Terminologie

Typsignatur
Funktions-
name duplizieren| :: Bild -> Bild
duplizieren x = neben (spiegeln x) (graustufen Xx)
aktueller Parameter N\ formaler Parameter

duplizieren ‘springer

Ausdruck (Expression)

Funktionsrumpf

duplizieren :: Bild -> Bild

duplizieren x =|neben (spiegeln x) (graustufen x)

Funktionsdefinition

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Curryfizierte Funktionen (i)

= Funktionen mit mehreren Argumenten gibt es eigentlich gar nicht in
Haskell: Alle Funktionen haben genau ein Argument (oder gar keines falls

sie konstant sind).

m Eine Funktion mit mehreren Argumenten lasst sich als Funktion
darstellen, die ein Argument hat und eine Funktion als Ergebnis liefert.

f: (A x---xA,) > B ~
ffi A — (A2 — (... (A, — B)...))

add' :: Int -> Int -> Int
add' x y = x+y

add' hat eine Int-Zahl als Argument (x) und liefert eine Funktion
vom Typ Int -> Int. Diese Funktion wiederum hat eine Int-
Zahl (y) als Argument und liefert eine Int-Zahl als Ergebnis x+y.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Curryfizierte Funktionen (ii)

add’ :: Int -> Int -> Int
add :: (Int, Int) -> Int

= add und add’ produzieren dasselbe Endergebnis, jedoch nimmt add
beide Argumente zur selben Zeit (iber ein Tupel), wahrenddessen add’
jeweils nur ein Argument verarbeitet.

m Funktionen die jeweils nur ein Argument verarbeiten bezeichnet man als
Currifiziert (Prozess selten auch Schonfinkeln genannt).

m Hauptvorteil theoretischer Art: formale Beweise der Korrektheit von
Programmen wird vereinfacht, wenn alle Funktion gleichférmig sind.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Curryfizierte Funktionen (iii

= Beachte:

m Abbildungspfeil in Funktionssignatur rechtsassoziativ:

Int -> Int -> Int -> Int

Int -> (Int -> (Int -> Int))

m Funktionsapplikation linksassoziativ:

foo x y z

((foo x) y) z

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Partielle Funktionsanwendung

s Curryfizierung ermoglicht partielle Funktionsanwendung:

> :t zip3 -- Funktion die Dreiertupel aus drei Listen bildet

zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]

> zip3 "foo" "bar" "quux"
[(I_Fl.,Ibl,lql).’(lol,Ial.,lul)’(lol,lr‘l’lul)]
> let zip3foo = zip3 "foo"

> :type zip3foo

zip3foo :: [b] -> [c] -> [(Char, b, c)]

> zip3foo "aaa" "bbb"
[(I_Fl.,Ial,lbl).’(lol’Ial.’lbl),(lol,lal,lbl)]

> zip3foo [1,2,3] [True,False,True]
[("f',1,True),('o',2,False),('0"',3,True)]

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26. April 2019

Polymorphe Funktionen (i)

= Eine Funktion ist polymorph wenn ihr Typ mindestens eine
Typvariable enthalt.

length :: [a] -> Int

Fir beliebige Typen a liefert length
einen Integer als Ergebnis, gegeben eine

wmit Elementen vom M

Beispiel: 5 length [False,True] -- a = Bool
2

> length [1,2,3,4] -- a = Int
4

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Beispiele polymorpher Funktionen

= Zahlreiche Funktionen aus Prelude.hs (und anderen
Bibliotheken) sind polymorph, z.B.:

fst :: (a,b) -> a
head :: [a] -> a

take :: Int -> [a] -> [a]

zip :: [a] -> [b] -> [(a,b)]
id ::a->a

compare :: Ord a => a -> a -> Ordering

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Uberladene Funktionen

= Eine polymorphe Funktion ist Uberladen wenn ihr Typ
mindestens eine Typnebenbedingung (engl. type constraint)

enthalt.
Beispiel: sum :: Num a => [a] -> a
> sum [1,2,3] -- Int
Fur beliebige Typen a die 6
von Num abgeleitet sind
liefert sum ein Ergebnis > sum [1.1,2.2,3.3] -- Float
vom Typ a gegeben eine /, 6.6
Liste vom Typ a.
>sum ['a','b','c'] -- Char
ERROR -- kein Num

Num ist eine Typklasse die als Oberklasse fiir numerische Datentypen vorgesehen ist.

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Typklassen

= Typklassen in Haskell sind oberflachlich betrachtet
vergleichbar mit Interfaces in Java.

Num Numerische Typen
Eq Typen fur deren Elemente Gleichheit definiert ist.

ord Typen aufderen Elementen eine Ordnung
definiert ist.

Beispiele:
P (+#) :: Numa =>a ->a -> a

(==) :: Eg a => a -> a -> Bool

(¢) ::0rda=>a->a -> Bool

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Hi my name is

Namensregeln

m Haskell unterscheidet zwischen Gross- und Kleinschreibung

name naMe Name
unterschiedliche Namen/Bezeichner

= Typen und Konstruktoren beginnen mit einem Grossbuchstabe
= Variablen und Funktionen beginnen mit einem Kleinbuchstabe

m Zusatzlich darf auch der Unterstrich _ und weitere Sonderzeichen fur
Funktionen verwendet werden:

_myFun myFun funl arg 2 x’
m Neuere Versionen unterstitzen auch UNICODE-Zeichen:

NMNATb ABa YMHOXUTb

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Operatoren

Sind auch Funktionen:
binarer Operator @ O b st zweistellige Funktion o(a, b)

Standardmassig vorhandene binare/ Operatoren
m Arithmetische Operatoren:
+, ¥, ~ -, div, mod,)
= Vergleichsoperatoren: Van beachte: nicht ! = wie in C/C++/Java

>’ >=; ==, /=; (=’ £

Fir die Definition neuer Operatoren gelten im Prinzip dieselben
Namensregeln wie fur Funktionen

m Verwendbare Zeichen:

l #$%&*+ ./ <=>2@\:-]|~n"
= Reservierte Namen (Bezeichner):
e ot =\] < > @ ~ =

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

Fixity: Assoziativitat und Prazedenz

= Die Kombination aus Assoziativitat und Prazedenz von Operatoren
wird auch als Fixity bezeichnet:

5 — Infixoperator, linksassoziativ, z.B.:
a+b+c+d > ((a+b)+c)+d
m — Infixoperator, rechtsassoziativ, z.B.:

(f.g.h) a -> f (g (h a))

O — Infixoperator, nichtassoziativ, z.B.:

a<b<c =2 weder (a<b)<c noch a<(b<c) gilt

= Deklaration: 5 ++ -- rechtsassoz.; Prazedenz 5
9 . -- linksassoz.; Prdzedenz 9

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

60
Fixity - Beispiele

N GHC ., Num

infixl &
Prelude> 1

class (Eq a, Show a) =>

l:. b .:l

Num 3 where

—

intixl
Prelude>
ol m ey
Ntixr 3

Def 1ned

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

in GHC.Base

26. April 2019

61 |
Beispiel: Operator definieren

= Operator +++ und *** definieren: myOp.hs
infixl 6 +++ infixl 7 +++
infixl 7 *** infixl 6 ***

(+++) :: Int -> Int -> Int
a +++ b = a + 2%Db

(*¥**) :: Int -> Int -> Int
a ¥** b = g - 4%p

= Anwendung (GHCi):

(1 + 2*(2 - 4*%3))

((1 + 2%2) - 4*3)

thorsten moller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf 26. April 2019

