
K08

1. Grundlegende Eigenschaften
2. GHCi und GHC
3. Typsystem

teilweise basiert auf Folien von Graham Hutton und Philip Wadler

Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

Haskell Literatur

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n M. Block, A. Neumann: Haskell-Intensivkurs: Ein
kompakter Einstieg in die funktionale Programmierung.
Springer, 2011. ISBN: 978-3-642-04717-6

Frei/online verfügbar:
n B. O'Sullivan, D. Stewart, J. Goerzen: Real World Haskell.

First Edition. O‘Reilly, 2008. ISBN: 978-0-596-51498-
3http://book.realworldhaskell.org/

n M. Lipovača: Learn You a Haskell for Great Good!
No Starch Press, 2011. ISBN: 978-1-59327-283-8
http://learnyouahaskell.com/

2

http://book.realworldhaskell.org/
http://learnyouahaskell.com/

Historischer Hintergrund

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Ursprung:
n λ-Kalkül (A. CHURCH und S. KLEENE – 1930er Jahre)
n Currying* (HASKELL BROOKS CURRY – 1950er Jahre)

n Lisp als erste Programmiersprache mit funktionalen
Eigenschaften (J. MCCARTHY 1958)

n Haskell 1.0 – (P. HUDAK, J. HUGHES, SIMON P. JONES, P. WADLER
1990); aktuelle Version: Haskell 2010

*Zuvor schon von G. FREGE und M. SCHÖNFINKEL beschrieben.

3

Ist FP relevant?

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Viele Konzepte der FP finden Eingang in den „Alltag“ der
Softwareentwicklung bzw. in die Weiterentwicklung
konventioneller Sprachen:

4

xmonad

Google MapReduce

PUGS PERL 6
Compiler

Übersicht: http://www.haskell.org/haskellwiki/Haskell_in_industry

Projekte, die in Haskell geschrieben sind (Auswahl)

http://www.haskell.org/haskellwiki/Haskell_in_industry

Warum gerade Haskell und nicht ...

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Rein funktionale Sprache – „purely functional“
n Unter den funktionalen Programmiersprachen sehr populär

n Grosse Menge an Bibliotheken
n Nicht nur Gegenstand der Forschung, sondern industriell eingesetzt

(man sollte es nicht als eine „akademische Spielwiese“ auffassen)

n Compiler als auch interaktive Interpreter verfügbar (z.B.
Glasgow Haskell Compiler ghc und ghci)
n Gute bis sehr gute Laufzeitperformance wenn kompiliert
n Tools für Entwickler (IDEs, Debugger, Build, Profiler)

n Entworfen durch ein Komitee

... Erlang, F#, Lisp, ML, O‘Caml, Scheme, Scala, ...

5

Was ist Funktionale Programmierung?

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

Allgemein zusammengefasst:
n Programmierstil (Paradigma) dessen grundlegende Methode die

Anwendung von Funktionen auf deren Argumente ist:

Ein Programm ist formuliert als eine (möglicherweise aus vielen
Unterfunktionen zusammengesetzte) Funktion (im math. Sinn),
dessen Ausführung der Auswertung dieser Funktion entspricht.

n Eine funktionale Programmiersprache

unterstützt / fördert / erzwingt

diesen Programmierstil.

6

Gegenüberstellung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Gesucht: Summiere die Zahlen 1...10!

sum [1..10]

sum :: Num a => [a] -> a
sum [] = 0
sum [x] = x
sum (x:xs) = x + sum [xs]

int sum = 0;

for (int i=1; i<=10; i++)
{

sum += i;
}

In C++: In Haskell:

Funktion
Argument

Imperativ: Iteriere über die Zahlen
1 bis 10 und addiere die aktuelle
Zahl zur Gesamtsumme.

Applikativ: Wende die Funktion
sum auf die Liste der Zahlen 1 bis
10 an, wobei sum die Funktion ist,
die die Summe einer Liste von
Zahlen berechnet.

7

Funktionsanwendung und -Komposition

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

8

graustufen :: Bild -> Bild
springer :: Bild

graustufen springer

graustufen

spiegeln :: Bild -> Bild

neben :: Bild -> Bild -> Bild

neben (spiegeln springer) (graustufen springer)

neben

graustufen

spiegeln

duplizieren

Neue Funktion aus bestehenden Funktionen definieren

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

9

duplizieren :: Bild -> Bild

duplizieren x = neben (spiegeln x) (graustufen x)

duplizieren springer

neben

graustufen

spiegeln

duplizieren

Haskell: Zurück zur Mathematik

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n In der Mathematik ist dies eine nicht lösbare Gleichung. Die
Variable x ist fest an einen Wert gebunden; x ist nicht veränderbar
(engl. immutable).

n In imperativen Sprachen ist dies eine Anweisung um den Zustand
(Bereich im Speicher) der mit der Variable x assoziiert ist – eine
Zahl in diesem Fall, die irgend etwas repräsentiert, z.B. das Alter
einer Person – zu verändern.

x = x +1 In Haskell ist dies
eine rekursive
Definition von x.

10

Wiederholung: Funktion

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n In der Mathematik ist eine Funktion f eine Abbildung, die ein
Element x einer Menge X eindeutig (aber nicht notwendiger
Weise eineindeutig) auf ein Element y einer Zielmenge Y
abbildet.

n Linkstotal, d.h. für alle Elemente von X definiert (falls nicht, dann
nennt man f eine partielle Funktion).

n Rechtseindeutig, d.h. für jedes Element x ∊ X gibt es höchstens ein
Element in y ∊ Y auf das x abgebildet wird.

n X als auch Y können Produktmengen sein:
X = X1 × ... × Xn, Y = Y1 × ... × Ym (n ≥ 0, m ≥ 1)

wobei Xi, Yj wiederum Mengen sind, × das kartesische Produkt und n
die Stelligkeit (engl. arity) von f angibt (z.B. liefert X = A × B × C eine
dreistellige Funktion, wobei die Argumente Elemente aus A, B, C sind).

f : X→Y

X Yf

11

Merke

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Egal wann und egal wo f ausgewertet (oder angewendet)
wird, das Ergebnis y ∊ Y ist nur durch den Parameter x ∊ X
bestimmt (anhand der Abbildungsvorschrift die durch f
vorgegeben ist) und sonst nichts!

n Ist f eine Funktion im mathematischen Sinn, dann erzeugt sie
keine Seiteneffekte. Der einzige „Effekt“ der Auswertung von
f ist die Berechnung des Ergebnis y ∊ Y.
n Mit anderen Worten:

n Der Datenfluss – d.h. die Benutzung von Ergebnissen durch nachgeordnete
Funktionen – ist explizit; es gibt keine impliziten Effekte.

n Es gibt keinen „versteckten“ (impliziten) Zustand der das Ergebnis einer
Funktion beeinflusst. Demzufolge kann auch kein Zustand durch einen
Funktionsaufruf verändert werden.

12

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

13

https://xkcd.com/1312

http://xkcd.com/927/

Referentielle Transparenz

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Ist e ein Ausdruck im math. funktionalen Sinn (z.B. g(f(x),y)),
dann ist e eindeutig durch die Argumente (und die
Auswertungssemantik die für e definiert ist) bestimmt; d.h. ...

n ... gegeben die Argumente, dann kann man e durch sein
Ergebnis bzw. einen äquivalenten („leichteren“) Ausdruck e'
ersetzen (substituieren)

n Diese Eigenschaft bezeichnet man als referentielle Transparenz

à Formaler mathematisch/logischer Beweis der Korrektheit eines
Programms (liefert es das was es soll) wird dadurch vereinfacht
bzw. überhaupt erst möglich, da keine Seiteneffekte mit
einbezogen werden müssen.

14

engl. referential transparency/opaqueness

Moment mal, wie kann man dann...

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

15

n ... folgende Dinge* in Haskell (bzw. rein funktionalen
Programmiersprachen) realisieren:

n random() – erzeugt eine Zufallszahl

n getInput() – liefert ein über die Tastatur eingegebenes Zeichen

n currentTime() – liefert die aktuelle Uhrzeit/das aktuelle Datum

n queryGoogleFor(x) – liefert Suchergebnisse für Stichwort x

* An dieser Stelle sei absichtlich nicht der Begriff Funktion (bzw. Funktionalität) verwendet.

keine Funktionen im math. Sinn

Moment mal, wie kann man dann...

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

16

n Haskell bedient sich hierfür der Monoide, Morphismen und Funktoren,
welche Konzepte aus der Kategorientheorie der Mathematik sind:
n Action – monadische Funktion („unreine“ Funktion mit Seiteneffekten)
n Arrow – Verkettung/Komposition von Actions
n Monad – Struktur aus Actions; bestimmt wie Aktionen ausgeführt werden.

Quelle:
wiki.haskell.org

Funktion höherer Ordnung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n ... ist eine Funktion bei der ein oder mehrere Argument(e) und/oder
das Ergebnis wiederum eine Funktion sind.
n Funktionen, genauso wie Argumente, sind „first-class citizens“

n Hauptanwendung liegt in der Abstraktion von mehreren Funktionen
an einem Ort.

n Beispiele (informell):
n Eine Funktion die eine Liste von Zahlen und die Quadrat-Funktion als

Argumente hat, die auf jede Zahl die Quadrat-Funktion anwendet und die
so entstandene Liste der Quadratzahlen zurückgibt.

n Eine Funktion die eine Liste von Zahlen und die Maximum-Funktion als
Argumente hat, die sukzessiv die Maximum-Funktion auf je zwei Zahlen
anwendet, um dadurch den grössten Wert der Liste zu finden.

n Eine Funktion, die, gegeben eine differenzierbare Funktion f, deren erste
Ableitung f ' als Ergebnis liefert (analytisch oder durch numerische Approx.).

(X→Y)→ Z
17

Bedarfsauswertung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Referentielle Transparenz ermöglicht Bedarfsauswertung ...
n ... da es keine Rolle spielt ob das Ergebnis einer Funktion bei jedem Aufruf

immer (in aufwändiger Weise) berechnet wird, oder erst dann, wenn das
Ergebnis wirklich gebraucht/verwendet wird, d.h. ...

n ... ein Ausdruck wird dann ausgewertet wenn darauf zugegriffen wird.

n Definition (Strikte Funktion): Sei f eine Funktion und e ein
nichtterminierender Ausdruck. f ist strikt gdw. f(e) nicht terminiert.

n Haskel ist nicht strikt. Was nicht benötigt wird für eine Berechnung,
wird niemals ausgewertet werden. Demzufolge sind Ausdrücke deren
Auswertung unendlich lang laufen würde, oder die nicht vollständig
berechenbar sind (da z.B. fehlerhaft), die aber nicht (komplett)
ausgewertet werden müssen, kein Problem.

18

engl. lazy evaluation, call-by-need

Bedarfsauswertung – Beispiel (ii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

Beispiel:
C++ (strikte Auswertung)

Haskell (nicht strikte Auswertung)

Das Ergebnis des Ausdruckes 1 / 10 wird nicht verwendet. Ergo
wird der (in diesem Fall nicht definierte) Ausdruck nicht ausgewertet.

foo :: Int -> Int
foo x = 10 -- konstante Funktion

foo (1 / 0) -- Ergebnis?

19

function int foo(int x) {
return 10; // konstante Funktion

}
foo(1 / 0); // Ergebnis? Absturz

10, statt Absturz

Bedarfsauswertung (iii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Ermöglicht es unendliche Strukturen zu deklarieren und damit zu arbeiten;
z.B.:
n Liste aller positiven Ganzzahlen: [1..]
n Unendliche Liste von Einsen: ones = 1 : ones
n Liste aller Quadratzahlen: squares = map (^2) [1..]

Beispiel:

n Nachteil: es ist u.U. schwieriger vorhersagbar, wann bzw. ob eine Ressource
tatsächlich benutzt wird (z.B. wann ein Netzwerkzugriff erfolgt).

head :: [Int] -> Int -- Funktion welche aus einer
head [] = undefined -- Liste von Integer Zahlen
head (x:xs) = x -- die erste Zahl zurück gibt.
head [1..] -- terminiert und liefert “1”
head ones -- dito
head squares -- dito

20

Weitere wesentliche Eigenschaften

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

21

n In Haskell (und anderen „rein“ funktionalen Sprachen)
existieren keine Kontrollstrukturen wie z.B. Schleifen
n Stattdessen wird Rekursion benutzt

n Strenges Typsystem: Alle Typen statisch zur Compilezeit bekannt,
wodurch Typinkompatibilitäten erkennbar sind.

n Polymorphes Typsystem: Funktionen können für eine Klasse
verschiedener Typen anwendbar sein.

n Automatische Speicherverwaltung: keine Zeigermanipulation;
kein Anfordern und Freigeben von Speicher.

Haskell: Kostproben

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

Das obligatorische Hello World:

f :: Ord a => [a] -> [a]
f [] = []
f (x:xs) = f ys ++ [x] ++ f zs

where
ys = [a | a <- xs, a <= x]
zs = [b | b <- xs, b > x]

f :: Ord a => [a] -> [a]
f [] = []
f (x:xs) = f [a | a<-xs, a<=x] ++ [x] ++ f [b | b<-xs, b>x]

?Quick Sort
QS noch kompakter

module Main where
main :: IO()
main = putStrLn "Hello, World"

hello.hs

22

Dateinamenskonvention

Schlüsselwörter in Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

23

Schlüsselwörter in Haskell
as case of class data

default deriving deriving instance do data family

forall foreign hiding import data instance

if then else instance let

in infix infixl infixr mdo

module newtype proc qualified rec

type type family type instance where

Nur in bestimmten Kontext reserviert. Kann andernorts als Funktions- bzw.
Variablen-Name benutzt werden.

K08

1. Grundlegende Eigenschaften
2. GHCi und GHC
3. Typsystem

Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

GHCi – Interaktiver Haskell Interpreter

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

25

n Glasgow Haskell Compiler (GHC) kann als die Referenzimple-
mentierung von Haskell betrachtet werden. Wird auch am
häufigsten benutzt.

n GHCi ist ein interaktiver Interpreter zum Testen (Scrapbook)
n Bezeichnet man als Read-Eval-Print Loop Shell (REPL)
n Starten durch ghci

GHCi – einfache Ausdrücke auswerten

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

26

n > ist der Eingabeprompt; zeigt an, dass GHCi bereit zum
Auswerten von Ausdrücken ist.

Prelude – die Standardbibliothek

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

27

n Prelude.hs ist eine Bibliothek (genauer gesagt ein module)
welche per Default zur Verfügung steht.
n Bietet zahlreiche, grundlegende Funktionen und Datentypen an

> head [1,2,3,4,5] -- erstes Element einer Liste
1 -- analog liefert tail die Restliste

> compare 2 3 -- Relation zweier Elemente aus Menge
LT -- mit definierter Ordnung (LT, GT, EQ)

> [1,2,3,4,5] !! 2 -- n-tes Element einer Liste
3

> take 3 [1,2,3,4,5] -- ersten n Elemente einer Liste
[1,2,3]

Prelude – weitere Beispiele

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

28

> drop 3 [1,2,3,4,5] -- Restliste ohne die ersten n Elemente
[4,5]

> length [1,2,3,4,5] -- Länge der Liste (Anzahl Elemente)
5

> product [1,2,3,4,5] -- Produkt aller Listenelemente
120

> [1,2,3] ++ [4,5] -- Konkatenation zweier Listen
[1,2,3,4,5]

> reverse [1,2,3,4,5] -- umgekehrt geordnete Liste
[5,4,3,2,1]

> even 11 -- ist die gegebene Zahl gerade
False
> max 33 2 -- grössere der beiden Zahlen
33

Überblick gewinnen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

29

n Wie findet man schnell öffentliche/freie Bibliotheken und die
darin angebotenen Funktionen und Datentypen?

n Hoogle is your friend ... http://www.haskell.org/hoogle/
n Zentralisiertes Archiv mit Suchfunktion,

in dem alle registrierten APIs
dokumentiert sind

n Suche nach:
n Funktionsname, z.B. map
n Signatur, z.B. (a -> b) -> [a] -> [b]

n Eclipse-Integration über EclipseFP
n Auch mit EMACS integrierbar

http://www.haskell.org/hoogle/

Syntax Funktionsanwendung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

30

n In der Mathematik:

n In Haskell:

f(a, b) + cd
Wende die Funktion f auf die
Argumente a und b an und
addiere das Ergebnis zum
Produkt von c und d.

f a b + c * d
Argumente von f folgen ohne
Klammern; alle Operationen
durch ein Symbol repräsentiert
à * für die Multiplikation.

f ist hier ein Funktionsname; a, b, c, d sind Variablennamen

Funktionsanwendung - Beispiele

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

31

n Gegenüberstellung:

Mathematik Haskell

f(x)

f(x, y)

f(g(x))

f(x, g(y))

f(x) g(y)

f x

f x y

f (g x)

f x (g y)

f x * g y

ordnen Argument(e)
einer Funktion zu

Runde Klammern: bilden Ausdrücke und damit
eine Vorrangordnung bei
Verschachtelung

Funktionen- und Operatorrangfolge

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

32

n Funktionen haben höhere Präzedenz als Operatoren

n Es gibt 9 Präzedenzstufen für Operatoren
n Relative Präzedenz mathematischer Operatoren entsprechend den

mathematischen Regeln (z.B. hat * hat höhere Präzedenz als +)

n Funktionsanwendung hat Stufe 10

f a + b -- bedeutet f(a) + b anstatt f(a + b)

Skript/Programm in GHCi laden

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

33

n Skript mit GHCi laden:

n Prelude.hs und myFirstScript.hs sind dann geladen und die darin
definierten Funktionen können aufgerufen werden.

double x = x + x
quadruple x = double (double x)

myFirstScript.hs

> ghci myFirstScript.hs

Prelude> :l myFirstScript.hs

Prelude> quadruple 10
40

Prelude> take (double 2) [1,2,3,4,5,6]
[1,2,3,4]

Reihenfolge egal;
Definition irgendwo,
aber nicht notwen-
digerweise zuvor

Skript/Programm neu laden

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

34

n Wenn Skript extern (in einem Editor) geändert wurde, muss
es mit :reload (bzw. :r) erneut geladen werden um die
Änderungen zu aktivieren.

Prelude> :r
Ok, modules loaded: Main.
Prelude> factorial 10
3628800

Prelude> average [1,2,3,4,5]
3

Häufig gebrauchte GHCi-Kommandos

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

35

Kommando Kurzform Bedeutung
:load name :l name lade Skript name
:reload :r aktuelles Skript neu laden
:edit name :e name editiere Skript name
:edit :e editiere aktuelles Skript
:info :i Information zu Typ/Funktion
:type expr :t expr zeige Typ von expr
:help :? zeige alle Kommandos
:quit :q beende ghci

GHC Compiler

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

36

Programm kompilieren:

n Analog zu vielen anderen Sprachen ist die main Funktion (optional
im Modul Main) – welche gleichzeitig eine sog. Aktion ist; dazu
später mehr – der Einstiegspunkt in ein Haskell-Programm.

module Main where
main :: IO()
main = putStrLn "Hello, World"

hello.hs

> ghc –o hello hello.hs

> ./hello
> Hello, World

Einrückung als Strukturierungselement (i)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

37

n In Haskell (ähnlich wie z.B. in Python) kann die Einrückung im Quelltext
eine Rolle spielen: Blöcke können durch Einrückung gebildet werden, d.h.
Whitespace (Leerzeichen und Tabulatoren) hat eine abgrenzende
Semantik.

n Wenn Blockbildung durch Einrückung, dann müssen in einer Sequenz von
Zeilen (z.B. Definitionen) alle in exakt derselben Spalte beginnen:

a = 10

b = 20

c = 30

a = 10

b = 20

c = 30

a = 10

b = 20

c = 30

xs = 10

x = 20

c = 30

Einrückung als Strukturierungselement (ii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

38

n Blockbildung durch Einrückung vermeidet die Notwendigkeit
spezielle Symbole zur Blockbegrenzung benutzen zu müssen.

a = b + c
where

b = 1
c = 2

d = a * 2

a = b + c
where

{b = 1;
c = 2}

d = a * 2

bedeutet

implizite
Gruppierung

explizite
Gruppierung

K08

1. Grundlegende Eigenschaften
2. GHCi und GHC
3. Typsystem

Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

Typen (Wiederholung)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

40

n Ein Typ ist ein Bezeichner für eine Menge von gleichartigen
Elementen bzw. Werten (engl. values).
n Eine Klasse ist z.B. eine üblicherweise nichtleere Menge von Objekten

(Instanzen) die sich der Klasse zuordnen lassen.
n Auf einem Typ ist eine Menge von Operationen und Funktionen

definiert.

n In Haskell existiert z.B. der Typ

welcher genau zwei Werte enthält:

Bool

False True

Typfehler in Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

41

n Die Anwendung einer Funktion auf inkompatible Argumente
ist ein Typfehler (engl. type error).

> 1 + False
Error

1 ist eine Zahl and False
ein Bool; jedoch erwartet

+ zwei Zahlen.

Typen in Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

42

n Wenn die Auswertung eines Ausdrucks e einen Wert
(Ergebnis) vom Typ t liefert, dann ist e vom Typ t

n Jeder syntaktisch korrekte Ausdruck hat in Haskell
demzufolge einen Typ, welcher sich automatisch zur
Compilezeit ableiten lässt. Diesen Prozess nennt man
Typinferenz (engl. type inference).
n Haskell hat ein statisches und strenges Typsystem

n Es können keine Typfehler zur Laufzeit auftreten
n Geringere Fehleranfälligkeit und bessere Laufzeitperformance

(da keine Checks zur Laufzeit notwendig sind)

e :: t

Typ eines Ausdrucks abfragen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

43

n Der Typ eines Ausdrucks e kann in GHCi mit dem Kommando

:type (bzw. :t als Kurzform)

abgefragt werden, ohne dass e dabei ausgewertet wird.

> :t "foo"
"foo" :: [Char]

> :t not False
not False :: Bool

> :t 3 + 2
3 + 2 :: Num a => a

Allgemeine Datentypen in Haskell

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

44

Typ Breite/Präzision Wertebereich

Bool True, False
Int fest (32, 64 bit)1 mindestens −229 bis 229−1
Integer theoretisch unbeschränkt -∞ bis +∞
Float2 einfach (32 bit) ≈1.175×10-38 bis ≈3.4×1038

Double doppelt (64 bit) ≈4.9406564584124654×10−32

4 bis
≈1.7976931348623157×10308

Char Einzelnes Zeichen UNICODE
String Zeichenkette (Liste von Zeichen)

Rational3 Quotient zweier Integer-Werte

Complex
1 Maschinenabhängig
2 Laut „Real World Haskell“ Verwendung nicht empfohlen „... is much slower ...“
3 Ratio Bibliothek

Listentypen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

45

n Eine Liste ist eine Folge von Werten desselben Typs:

n Generell gilt:
[t] ist der Typ von Listen deren Elemente vom Typ t sind

n Elemente können wiederum Listen desselben Typs sein:

n Typ ist unabhängig von der Länge der Liste
n Spezialfall: leere Liste

[False,True,False] :: [Bool]

[’a’,’b’,’c’,’d’] :: [Char]

> :t []
[] :: [a]

[[’a’],[’b’,’c’]] :: [[Char]]

Typeltypen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

46

n Ein Tupel ist eine Folge von Elementen deren jeweiliger Typ
unterschiedlich sein kann:

n Generell gilt:
(t1, t2, …, tn) ist der Typ von n-Tupeln deren

i-tes Element vom Typ ti ist (1 ≤ i ≤ n)
n Aus dem Typ kann man also die Länge des Tupels ableiten.

n Spezialfall: leeres Tupel

(False,True) :: (Bool,Bool)
(False,'a',True) :: (Bool,Char,Bool)
("foo",1,2) :: (Num t1, Num t) => ([Char],t,t1)
('a',('b','c')) :: (Char,(Char,Char))

> :t ()
() :: ()

Funktionstypen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

47

n Eine Funktion ist eine Abbildung von Werten eines Typs auf
Werte eines Typs.

n Generell gilt:
t1 -> t2 ist der Typ der Klasse von Funktionen,

die Werte vom Typ t1 auf Werte vom Typ t2 abbilden.

n Argument und Ergebnistyp
sind nicht beschränkt:

not :: Bool -> Bool
isDigit :: Char -> Bool

add :: (Int,Int) -> Int
add (x,y) = x+y

zeroToN :: Int -> [Int]
zeroToN n = [0..n]

Terminologie

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

48

duplizieren :: Bild -> Bild
duplizieren x = neben (spiegeln x) (graustufen x)

duplizieren springer

Typsignatur

Funktions-
name

duplizieren :: Bild -> Bild
duplizieren x = neben (spiegeln x) (graustufen x)

Funktionsrumpf

Funktionsdefinition

formaler Parameteraktueller Parameter

Ausdruck (Expression)

Curryfizierte Funktionen (i)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

49

n Funktionen mit mehreren Argumenten gibt es eigentlich gar nicht in
Haskell: Alle Funktionen haben genau ein Argument (oder gar keines falls
sie konstant sind).

n Eine Funktion mit mehreren Argumenten lässt sich als Funktion
darstellen, die ein Argument hat und eine Funktion als Ergebnis liefert.

add' :: Int -> Int -> Int
add' x y = x+y
add' hat eine Int-Zahl als Argument (x) und liefert eine Funktion
vom Typ Int -> Int. Diese Funktion wiederum hat eine Int-
Zahl (y) als Argument und liefert eine Int-Zahl als Ergebnis x+y.

f : (A1 ⇥ · · ·⇥An) ! B
f 0 : A1 ! (A2 ! (. . . (An ! B) . . .))

Curryfizierte Funktionen (ii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

50

n add und add' produzieren dasselbe Endergebnis, jedoch nimmt add
beide Argumente zur selben Zeit (über ein Tupel), währenddessen add'
jeweils nur ein Argument verarbeitet.

n Funktionen die jeweils nur ein Argument verarbeiten bezeichnet man als
Currifiziert (Prozess selten auch Schönfinkeln genannt).

n Hauptvorteil theoretischer Art: formale Beweise der Korrektheit von
Programmen wird vereinfacht, wenn alle Funktion gleichförmig sind.

add' :: Int -> Int -> Int
add :: (Int, Int) -> Int

Curryfizierte Funktionen (iii)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

51

n Beachte:
n Abbildungspfeil in Funktionssignatur rechtsassoziativ:

n Funktionsapplikation linksassoziativ:

Int -> Int -> Int -> Int

Int -> (Int -> (Int -> Int))

foo x y z

((foo x) y) z

Partielle Funktionsanwendung

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

52

n Curryfizierung ermöglicht partielle Funktionsanwendung:
> :t zip3 -- Funktion die Dreiertupel aus drei Listen bildet
zip3 :: [a] -> [b] -> [c] -> [(a, b, c)]

> zip3 "foo" "bar" "quux"
[('f','b','q'),('o','a','u'),('o','r','u')]

> let zip3foo = zip3 "foo"
> :type zip3foo
zip3foo :: [b] -> [c] -> [(Char, b, c)]

> zip3foo "aaa" "bbb"
[('f','a','b'),('o','a','b'),('o','a','b')]

> zip3foo [1,2,3] [True,False,True]
[('f',1,True),('o',2,False),('o',3,True)]

Polymorphe Funktionen (i)

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

n Eine Funktion ist polymorph wenn ihr Typ mindestens eine
Typvariable enthält.

Beispiel:

53

length :: [a] -> Int

Für beliebige Typen a liefert length
einen Integer als Ergebnis, gegeben eine

Liste mit Elementen vom Typ a.

> length [False,True] -- a = Bool
2

> length [1,2,3,4] -- a = Int
4

Beispiele polymorpher Funktionen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

54

n Zahlreiche Funktionen aus Prelude.hs (und anderen
Bibliotheken) sind polymorph, z.B.:

fst :: (a,b) -> a

head :: [a] -> a

take :: Int -> [a] -> [a]

zip :: [a] -> [b] -> [(a,b)]

id :: a -> a

compare :: Ord a => a -> a -> Ordering

Überladene Funktionen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

55

n Eine polymorphe Funktion ist überladen wenn ihr Typ
mindestens eine Typnebenbedingung (engl. type constraint)
enthält.

Beispiel: sum :: Num a => [a] -> a

Für beliebige Typen a die
von Num abgeleitet sind
liefert sum ein Ergebnis
vom Typ a gegeben eine

Liste vom Typ a.

Num ist eine Typklasse die als Oberklasse für numerische Datentypen vorgesehen ist.

> sum [1,2,3] -- Int
6

> sum [1.1,2.2,3.3] -- Float
6.6

> sum ['a','b','c'] -- Char
ERROR -- kein Num

Typklassen

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

56

n Typklassen in Haskell sind oberflächlich betrachtet
vergleichbar mit Interfaces in Java.

Numerische Typen

Typen für deren Elemente Gleichheit definiert ist.

Typen auf deren Elementen eine Ordnung
definiert ist.

Beispiele:

Num

Eq

Ord

(+) :: Num a => a -> a -> a

(==) :: Eq a => a -> a -> Bool

(<) :: Ord a => a -> a -> Bool

Namensregeln

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

57

n Haskell unterscheidet zwischen Gross- und Kleinschreibung

unterschiedliche Namen/Bezeichner

n Typen und Konstruktoren beginnen mit einem Grossbuchstabe
n Variablen und Funktionen beginnen mit einem Kleinbuchstabe
n Zusätzlich darf auch der Unterstrich _ und weitere Sonderzeichen für

Funktionen verwendet werden:

n Neuere Versionen unterstützen auch UNICODE-Zeichen:

name naMe Name

myFun fun1 arg_2 x’_myFun

пять умножитьдва

Operatoren

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

58

n Sind auch Funktionen:
binärer Operator ist zweistellige Funktion

n Standardmässig vorhandene binäre/unäre Operatoren
n Arithmetische Operatoren:

+, *, ^, -, div, mod, abs, negate
n Vergleichsoperatoren:

>, >=, ==, /=, <=, <

n Für die Definition neuer Operatoren gelten im Prinzip dieselben
Namensregeln wie für Funktionen
n Verwendbare Zeichen:

! # $ % & * + . / < = > ? @ \ : - | ~ ^
n Reservierte Namen (Bezeichner):

_ .. : :: = \ | <- -> @ ~ =>

a � b �(a, b)

beachte: nicht != wie in C/C++/Java

Fixity: Assoziativität und Präzedenz

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

59

n Die Kombination aus Assoziativität und Präzedenz von Operatoren
wird auch als Fixity bezeichnet:
n infixl – Infixoperator, linksassoziativ, z.B.:

a+b+c+d à ((a+b)+c)+d

n infixr – Infixoperator, rechtsassoziativ, z.B.:

(f.g.h) a à f (g (h a))

n infix – Infixoperator, nichtassoziativ, z.B.:

a<b<c à weder (a<b)<c noch a<(b<c) gilt

n Deklaration: infixr 5 ++ -- rechtsassoz.; Präzedenz 5
infixl 9 . -- linksassoz.; Präzedenz 9

Fixity - Beispiele

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

60

Beispiel: Operator definieren

26. April 2019thorsten möller - informatik.unibas.ch/lehre/fs19/prog/08-haskell.pdf

61

n Operator +++ und *** definieren:

n Anwendung (GHCi):

infixl 6 +++
infixl 7 ***

(+++) :: Int -> Int -> Int
a +++ b = a + 2*b

(***) :: Int -> Int -> Int
a *** b = a - 4*b

Prelude> l: myOp.hs
Prelude> 1 +++ 2 *** 3
-19

myOp.hs

(1 + 2*(2 – 4*3))

infixl 7 +++
infixl 6 ***

((1 + 2*2) – 4*3)

