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Outline

• Reminder: Analysis by Synthesis 

• Non-rigid registration: The basic formulation

• A selection of useful likelihood functions

• A selection of useful priors

• Optimization
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Conceptual Basis: Analysis by synthesis

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)
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Analysis by synthesis in 5 simple steps

1. Define a parametric model 

• a representation of the world

• State of the world is 
determined by parameters 
𝜃 = (𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

Defines what part of the world our model can explain.
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Analysis by synthesis in 5 simple steps

2. Define a synthesis function 𝜑 𝜃1, … , 𝜃𝑛

• generates/synthesize the data given the “state of the world”

• 𝜑 can be deterministic or stochastic

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

The model’s view of the world.
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Analysis by synthesis in 5 simple steps

3. Define likelihood function:

• Define a probabilistic model 𝑝 data 𝜃1, … , 𝜃𝑛

• Includes stochastic factors on the data, such as noise

Comparison   𝑝(data|𝜃1, … , 𝜃𝑛)

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

How well does the generated model’s view correspond to the data?
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Bayesian inference

We have: 𝑃 𝑑𝑎𝑡𝑎|𝜃1, … , 𝜃𝑛

We want: 𝑃 𝜃1, … , 𝜃𝑛|𝑑𝑎𝑡𝑎

Bayes rule:

𝑃 𝜃|𝐷 =
𝑃 𝐷|𝜃 𝑃 𝜃

𝑃 𝐷

Lets us compute from 𝑝 𝐷 𝜃 its “inverse” 𝑝(𝜃|𝐷)
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Analysis by synthesis in 5 simple steps

4. Define prior distribution: 𝑝 𝜃 = 𝑝(𝜃1, … , 𝜃𝑛)

• Our believe about the “state of the world”

Comparison   𝑝(data|𝜃1, … , 𝜃𝑛)

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

𝑝 𝜃

Makes it possible to invert mapping 𝑝(data|𝜃1, … , 𝜃𝑛)
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Analysis by synthesis in 5 simple steps
5. Inference

𝑝 𝜃1, … , 𝜃𝑛 data =
𝑝 𝜃1, … , 𝜃𝑛 𝑝 data 𝜃1, … , 𝜃𝑛

𝑝 data

9

Comparison   𝑝(image|𝜑(𝜃1, … , 𝜃𝑛)

𝜑(𝜃1, … , 𝜃𝑛)

𝜃𝑛

𝜃1

…

Update using 𝑝(𝜃|Image) Synthesis 𝜑(𝜃)
Parameters 𝜃

Estimates (fits) parameter of the model based on the data
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Analysis by synthesis in 5 simple steps
5. Possibility 1: Find MAP-solution:

arg max
𝜃1,…,𝜃𝑛

𝑝 𝜃1, … , 𝜃𝑛 data = arg max
𝜃1,…,𝜃𝑛

𝑝 𝜃1, … , 𝜃𝑛 𝑝 data 𝜃1, … , 𝜃𝑛

𝑝 data

10

• Usually based on gradient-
descent

• May miss good solutions

Today’s topic

MAP Solution

Local 
Maxima
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Analysis by synthesis in 5 simple steps
5. Possibility 2: Find full posterior distribution:

𝑝 𝜃1, … , 𝜃𝑛 data =
𝑝 𝜃1, … , 𝜃𝑛 𝑝 data 𝜃1, … , 𝜃𝑛

𝑝 data

11

• Obtain samples from the 
distribution

• Based on Markov Chain 
Monte Carlo methods

Topic of next the next weeks.
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Non-rigid registration – basic formulation
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Ω

The registration problem

Reference: 

𝐼𝑅: Ω → ℝ

Target: 

𝐼𝑇: Ω → ℝ

𝜑: Ω → Ω

𝑥

𝜑(𝑥)
Ω
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Why is it important?

• Do automatic measurements

• Compare shapes

• Statistics

• Build statistical models

• Transfer labels and annotations

• Atlas based segmentation

Ω

𝜑: Ω → Ω

Ω

Maybe the most important problem in computer vision and medical image analysis
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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The registration problem

Mapping 𝜑[𝜃∗] is trade-off that
• how well does the mapping explain the target image 

(likelihood function)
• matches the prior assumptions (prior distribution)

MAP-Estimation
𝜃∗ = arg max

𝜃
𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = arg max

𝜃
𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)
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Ω

The registration problem

Ω

𝜑[𝜃]

𝜃∗ = arg max
𝜃

𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = arg max
𝜃

𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Ω

The registration problem

Ω

𝜃∗ = arg max
𝜃

𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = arg max
𝜃

𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)

𝜑[𝜃]
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Ω

The registration problem

Ω

𝜑[𝜃]

𝜃∗ = arg max
𝜃

𝑝 𝜃 𝐼𝑇 , 𝐼𝑅 = arg max
𝜃

𝑝 𝜃 𝑝(𝐼𝑇|𝜃, 𝐼𝑅)
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The registration problem

Main questions:
• How do we represent the mapping?
• How do we define the prior?
• What is the likelihood function?
• How can we solve the optimization problem?

Probabilistic formulation
𝜑∗ = arg max

𝜑
𝑝 𝜑 𝐼𝑇 , 𝐼𝑅 = arg max

𝜑
𝑝 𝜑 𝑝(𝐼𝑇|𝜑, 𝐼𝑅)
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Representation of the mapping 𝜑
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Representation of the mapping 𝜑
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Representation of the mapping 𝜑

Assumption: 
Images are rigidly aligned

• Mapping can be represented as a 
displacement vector field:

𝜑 𝑥 = 𝑥 + 𝑢 𝑥
𝑢 ∶ Ω → ℝ𝑑

𝑥
u(𝑥)



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Representation of the mapping 𝜑

Assumption: 
Images are rigidly aligned

• Mapping can be represented as a 
displacement vector field:

𝜑 𝑥 = 𝑥 + 𝑢 𝑥
𝑢 ∶ Ω → ℝ𝑑

Observation:
Knowledge of 𝑢 and 𝐼𝑅 allows us to 
synthesize target image 𝐼𝑇
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Priors

Define the Gaussian process 
𝑢 ∼ 𝐺𝑃 𝜇, 𝑘

with mean function

𝜇: Ω → ℝ2

and covariance function

𝑘: Ω × Ω → ℝ2×2 .
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Zero mean:

𝜇 𝑥 =
0
0

Squared exponential covariance function (Gaussian kernel)

𝑘 𝑥, 𝑥′ =

s1exp −
𝑥 − 𝑥′ 2

𝜎1
2 0

0 s2exp −
𝑥 − 𝑥′ 2

𝜎2
2

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 large

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 small,     𝜎1 = 𝜎2 small

Example prior: Smooth 2D deformations
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𝑠1 = 𝑠2 large,     𝜎1 = 𝜎2 large

Example prior: Smooth 2D deformations
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• We have a finite, parametric representation of the process.
• We know the pdf for a deformation 𝑢

𝑝 𝑢[𝛼] = 𝑝 𝛼 = ෑ

𝑖=1

𝑟
1

2𝜋
exp(−𝛼𝑖

2/2) =
1

𝑍
exp(−

1

2
𝛼 2)

Represent 𝐺𝑃(𝜇, 𝑘) using only the first 𝑟 components of its KL-Expansion

𝑢 = 𝜇 + ෍

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

Parametric representation of Gaussian process
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Likelihood function: Image registration

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 ∼ 𝑁 𝐼𝑅 𝑥 , 𝜎2

Images are similar when the intensities match

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇
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Likelihood function: Image registration

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇 𝐼𝑅, 𝜃 = ෑ

𝑥∈Ω

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 = ෑ

𝑥∈Ω

1

𝑍
exp −

(𝐼𝑇 𝜑 𝑥 − 𝐼𝑅 𝑥 ) 2

𝜎2

Images are similar when the intensities match

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

Image term outside 
mapping function.

Makes problem
really difficult
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Registration as analysis by synthesis

Parameters 𝜃

Comparison: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Update using 𝑝(𝜃|𝐼𝑇 , 𝐼𝑅) Synthesis 𝜑[𝜃]

Prior 𝜑[𝜃] ∼ 𝑝(𝜃)
𝐼𝑇 𝐼𝑅 ∘ 𝜑[𝜃]
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Registration problem

𝛼∗ =
𝜃∗ = arg max

𝜃
𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝜑[𝜃], 𝐼𝑅)

= arg max
𝜃

1

𝑍1
exp −

1

2
𝜃 2

1

𝑍2
ෑ

𝑥

exp −
𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))

2

𝜎2

• Parametric problem, since: 

𝜑[𝜃](𝑥) = 𝑥 + 𝜇(𝑥) + ෍

𝑖=1

𝑟

𝜃𝑖 𝜆𝑖 𝜙𝑖(𝑥)

• Can be optimized using gradient descent
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Variational formulation

𝛼∗ =arg max
𝜃

1

𝑍1
exp −

1

2
𝜃 2

1

𝑍2
ෑ

𝑥

exp −
𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))

2

𝜎2

= arg max
𝜃

ln
1

𝑍1
exp −

1

2
𝜃 2 + ln

1

𝑍2
ෑ

𝑥

exp −
𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))

2

𝜎2

= arg max
𝜃

ln
1

𝑍1
−

1

2
𝜃 2 + ln

1

𝑍2
− ෍

𝑥∈Ω

𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))
2

𝜎2

= arg min
𝜃

෍

𝑥∈Ω

𝐼𝑇 𝜑 𝜃 𝑥 − 𝐼𝑅(𝑥))
2

𝜎2
+

1

2
𝜃 2

Image metric Regularizer
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The registration problem

Probabilistic formulation
𝜃∗ = arg min

𝜃
− ln 𝑝 𝐼𝑇 𝐼𝑅 , 𝜑 𝜃 − ln 𝑝 𝜑 𝜃

Variational formulation
𝜃∗ = arg min

𝜃
𝐷 𝐼𝑇 , 𝐼𝑅 , 𝜑[𝜃] + 𝜆𝑅[𝜑 𝜃 ]
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GP-Registration in Scalismo



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

A selection of useful likelihood functions
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Landmark likelihood

For one landmark pair (𝑙𝑅 , 𝑙𝑇): 

𝑝 𝑙𝑇 𝜃, 𝑙𝑅 = 𝑁 𝜑 𝜃 𝑙𝑅 , 𝐼2𝑥2𝜎2

For many landmarks 
𝐿 = ((𝑙𝑅

1 , 𝑙𝑇
1 ), … , (𝑙𝑅

𝑛, 𝑙𝑇
𝑛))

𝑝 𝑙1
𝑇 , … , 𝑙𝑛

𝑇 𝜃, 𝑙𝑅
1 , … , 𝑙𝑅

𝑛

= ෑ

𝑖

𝑁 𝜑 𝜃 𝑙𝑅 , 𝐼2𝑥2𝜎2

𝑙1
𝑅

𝑙1
𝑇

𝑙𝑖
𝑅

𝑙𝑖
𝑇
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Given:
• Gaussian process: 𝑢 ∼ 𝐺𝑃(𝜇, 𝑘)

• Observations: {(𝑙𝑖
𝑅 , ෤𝑢𝑖), 𝑖 = 1 , … , 𝑛}

Assume:
෤𝑢𝑖 = 𝑢 𝑙𝑖 + 𝜖 with 𝜖 ∼ 𝑁(0, 𝜎2𝐼2×2).

Goal:
• Find posterior distribution 

𝑢 | 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 , ෤𝑢1, … , ෤𝑢𝑛

𝑢𝑛

Landmark registration using GP Regression

𝑢1

𝑙𝑅
1

𝑙𝑅
𝑛
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𝜇𝑝(𝑥) = 𝜇 𝑥 + 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑛×2𝑛 )−1 ෥𝒖 − 𝜇(𝑌)

𝑘𝑝 𝑥, 𝑥′ = 𝑘 𝑥, 𝑥′ − 𝐾 𝑥, 𝑌 (𝐾 𝑌, 𝑌 + 𝜎2𝐼2𝑛×2𝑛 )−1𝐾(𝑌, 𝑥′)

The posterior 
𝑢 |𝑙1

𝑅 , … , 𝑙𝑛
𝑅 , ෤𝑢1, … , ෤𝑢𝑛

is a Gaussian process 
𝐺𝑃 𝜇𝑝, 𝑘𝑝

Its parameters are known analytically.

Gaussian process regression
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Landmark registration using GP Regression
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Likelihood function: Image registration

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 ∼ 𝑁 𝐼𝑅 𝑥 , 𝜎2

Images are similar when the intensities match
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Likelihood function: Image registration

𝑥

𝜑[𝜃](𝑥)𝐼𝑅 𝐼𝑇

𝑝 𝐼𝑇 𝐼𝑅 , 𝜃 = ෑ

𝑥∈Ω

𝑝 𝐼𝑇(𝜑[𝜃](𝑥)) 𝐼𝑅 , 𝜃, 𝑥 = ෑ

𝑥∈Ω

1

𝑍
exp −

(𝐼𝑇 𝜑 𝑥 − 𝐼𝑅 𝑥 ) 2

𝜎2

Images are similar when the intensities match

Assumptions: 

• Corresponding points have the same image intensity (up to i.i.d. noise)

Image term outside 
mapping function.

Makes problem
really difficult
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Image vs. Landmark registration

• Landmark registration is easy

• All components are Gaussian

• Closed form solution using Gaussian process regression

• Image registration is hard

• Image destroys Gaussian assumption

• Likelihood function is not Gaussian

• Problem with many local minima



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

What about surface registration?

Reference (surface): 
Γ𝑅

Γ𝑅
Γ𝑇

𝜑

Target (surface): 
Γ𝑇
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A trick: Implicit definition of a surface

• Surface Γ can be represented as the 
zero level set of a distance function 
defined as 

𝐷Γ 𝑥 = ClosestPointΓ(𝑥) − 𝑥
with
ClosestPointΓ(𝑥) = arg min

𝑥′∈Γ
‖𝑥 − 𝑥′‖

𝐷Γ 𝑥 = −30

𝐷Γ 𝑥 = −15

𝐷Γ 𝑥 = 0

𝐷Γ 𝑥 = 15

𝐷Γ 𝑥 = 30

𝐷Γ 𝑥 = 45
Γ
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Reference 𝐷𝑅: Ω𝑅 → ℝ Target 𝐷𝑇 ∶ Ω𝑇 → ℝ

Likelihood function: Surface registration

Surface registration becomes image registration of distance images:
𝑝 𝐷𝑇 𝜑[𝜃](𝑥) 𝜃, 𝐷𝑅 , 𝑥 ∼ 𝑁 𝐷𝑅(𝑥), 𝜎2

• Most likely solution: Points with same distances are mapped to each other

• 𝜎2 has now geometric interpretation 

𝑥

𝜑[𝜃](𝑥)
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𝜌1

𝑥1

Likelihood function: Active shape models

• ASMs model each profile 𝜌(𝑥𝑖) as a normal 
distribution  

𝑝 𝜌(𝑥𝑖) = 𝑁(𝜇𝑖 , Σ𝑖)

• Single profile point 𝑥𝑖:
𝑝 𝜌(𝜑[𝜃](𝑥𝑖))|𝜃, 𝑥𝑖 = 𝑁(𝜇𝑖 , Σ𝑖)

• Image likelihood:

𝑝 𝜌(𝜑[𝜃](𝑥))|𝜃, Γ𝑅 = ෑ

𝑖

𝑁(𝜇𝑖 , Σ𝑖)

Extracts profile
(feature)  from image

Shape is well matched if environment around profile points is likely under trained model.
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A selection of useful GP priors
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Why are priors interesting?

𝜃

𝜃∗ = arg max
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅, 𝜑[𝜃])
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Why are priors interesting?

𝜃∗ = arg max
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅, 𝜑[𝜃])

𝜃
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1. 𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥’ 𝑇 , 𝑓: 𝑋 → ℝ𝑑

2. 𝑘 𝑥, 𝑥′ = 𝛼𝑘1 𝑥, 𝑥′ , 𝛼 ∈ ℝ+ (scaling)

3. k 𝑥, 𝑥′ = 𝐵𝑇𝑘1 𝑥, 𝑥′ 𝐵, B ∈ ℝ𝑟×𝑑 (lifting)

4. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ + 𝑘2 𝑥, 𝑥′ (or relationship)

5. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ ⋅ 𝑘2(𝑥, 𝑥′) (and relationship)

Constructing s.p.d. kernels
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Multi-scale kernels

Add kernels that act on different scales:

𝑘 𝑥, 𝑥′ = ෍

𝑖=0

𝑛

෍

𝑘∈ℤ𝑑

𝛽 2−𝑖𝑥 − 𝑘 𝛽 2−𝑖𝑥′ − 𝑘

• Wavelet like multiscale representation

Opfer, Roland. "Multiscale kernels." 
Advances in computational mathematics 25.4 (2006): 357-380.
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Multi-scale kernel
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Anisotropic priors

Scale deformations differently in each direction

k 𝑥, 𝑥′ = 𝑅𝑇 𝑠1 0

0 𝑠2
𝑘 𝑥, 𝑥′ 𝑠1 0

0 𝑠2
𝑅

• R is a rotation matrix

• 𝑘 is scalar valued

• 𝑠1, s2 scaling factors
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Anisotropic priors
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Spatially-varying priors

Use different models for different regions

𝑘 𝑥, 𝑥′ = 𝜒 𝑥 𝜒 𝑥′ 𝑘1 𝑥, 𝑥′

+ 1 − 𝜒 𝑥 (1 − 𝜒 𝑥′ ) 𝑘2(𝑥, 𝑥′)

χ 𝑥 = ቊ
1 if 𝑥 ∈ thumb region
0 otherwise

𝜒 𝑥 = 1

𝜒 𝑥 = 0

Freiman, Moti, Stephan D. Voss, and Simon K. Warfield. "Demons registration with local affine adaptive regularization: 
application to registration of abdominal structures." Biomedical Imaging: From Nano to Macro, 2011 IEEE 
International Symposium on. IEEE, 2011.
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Spatially-varying priors
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Statistical deformation models

Estimate mean and covariance function from data:

𝜇 𝑥 = 𝑢 𝑥 =
1

𝑛
෍

𝑖−1

𝑛

𝑢𝑖 (𝑥)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1
෍

𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇

𝑢1 ∶ Ω → ℝ2 𝑢2 ∶ Ω → ℝ2

…

𝑢𝑛 ∶ Ω → ℝ2
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Example 5: Statistical deformation models
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Demo: Priors and interactive registration
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Optimization
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The optimization problem

• The final problem is a difficult
optimization problem

• Possibly many local minima

• Non-linearity due to image term

• Not possible to avoid it

• Flexible models makes things worse

𝜃∗ = arg max
𝜃

𝑝 𝜑 𝜃 𝑝(𝐼𝑇|𝐼𝑅 ∘ 𝜑[𝜃])

𝜃
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Local minima

• Rigid Transformation
• Minima due to structure of object

Possible approach: Multi-resolution

• Non-rigid Transformation
• Minima appear/dissappear when shape changes

Possible approach: Multi-scale models, 
regularization
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Multi resolution

Idea: Solve optimzation problem for a sequence of smoothed out objects.
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Implementation

• Smooth the input shapes

• For images, achieved by Gaussian blurring

69

Almost no local minima
No-details

Many local minima
All-details

Initial registration Final registration
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Multi-scale / Regularization

Idea: Solve optimzation problem for a sequence of increasingly detailed deformations

Only large, smooth deformations
Large regularization value

Allow detailed deformations
Almost no regularization

Initial registration Final registration
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Doing the registration

Strategies:

• Gradient-based registration

• Compute gradient and use local optimization methods

• Quasi-Newton schemes , SGD, …

• Gradient free registration

• Use global optimization method directly on cost function

• Examples: Simulated annealing, Particle Swarm, …

• ICP-based methods

• Assume correspondence and solve in each iteration analytic problem

• Examples: Non-rigid ICP, Active Shape models, CPD
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Model-fitting using Markov Chain Monte Carlo

• Can obtain full posterior distribution 
using the Metropolis Hastings 
algorithm

• Needs only point-wise evaluation of 
unnormlized posterior

• Leads to principled way to integrate 
unreliable bottom up methods

• Automatically detected landmarks

MAP Solution
𝜑∗ = arg max

𝜑
𝑝 𝜑 𝐼𝑇 , 𝐼𝑅

𝑝 𝜑 𝐼𝑇 , 𝐼𝑅) =
𝑝 𝜑[𝛼] 𝑝 𝐼𝑇 𝐼𝑅 , 𝜑[𝛼]

𝑁(𝐼𝑇)


