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Reminder: Analysis by Synthesis

Non-rigid registration: The basic formulation

A selection of useful likelihood functions

A selection of useful priors

Optimization
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Conceptual Basis: Analysis by synthesis

l Comparison

Parameters 6

o
Update 6 1} Synthesis ¢ (8) f
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Analysis by synthesis in 5 simple steps

1. Define a parametric model
* a representation of the world

e State of the world is
determined by parameters

0 =(0y,..,6,)

Defines what part of the world our model can explain.



UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Analysis by synthesis in 5 simple steps

2. Define a synthesis function ¢ (04, ..., 6,,)
» generates/synthesize the data given the “state of the world”
* @ can be deterministic or stochastic

6,] j\'
M '1

!

=9

v

61

The model’s view of the world.



UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

Analysis by synthesis in 5 simple steps

GRAVIS 2018 | BASEL

3. Define likelihood function:
* Define a probabilistic model p(datal|84, ..., 6,;)
* Includes stochastic factors on the data, such as noise

Comparison p(data|8y, ..., 6,) |

v

01

How well does the generated model’s view correspond to the data?
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Bayesian inference

We have: P(datal|f4, ..., 0.,)
We want: P(64, ..., 0, |data)

Bayes rule:

P(D|6)P(0)

P(6ID) = =573

Lets us compute from p(D|60) its “inverse” p(6|D)
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Analysis by synthesis in 5 simple steps

4. Define prior distribution: p(8) = p(04, ..., 6;,)

 Qur believe about the “state of the world”

Comparison p(data|8y, ..., 6,) |
0 \\
p(6) 1
(P(Ql, ...,Hn |i

01

Makes it possible to invert mappingp(data|64, ..., 6,,)
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Analysis by synthesis in 5 simple steps

5. Inference
p(04,...,0,)p(datalb, ..., 6,)

p(data)

p(64,...,0,|data) =

Comparison p(image|@ (84, ..., 0y) |

e <

(,0(91,---,911) ,
/ . |
0,4 B
Parameter
Update using p(8|Image) R i Synthesis @ (8) T
S  w—
I

Estimates (fits) parameter of the model based on the data
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Analysis by synthesis in 5 simple steps
5. Possibility 1: Find MAP-solution:

p(64,...,0,)p(datalb, ..., 0,)
arg maxp(6,, ..., 0,,|data) = arg max
9%---,911 P " 9%...,9,1 p(data)

e Usually based on gradient- MAP Solution

descent ol ﬁ
 May miss good solutions

Today’s topic
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Analysis by synthesis in 5 simple steps

5. Possibility 2: Find full posterior distribution:

p(04,...,0,)p(datalb, ..., 6,,)
p(data)

p(64,...,0,|data) =

 Obtain samples from the
distribution Ap

 Based on Markov Chain
Monte Carlo methods

Topic of next the next weeks.

o—00—0 8P —>—
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Non-rigid registration — basic formulation
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The registration problem

o /\

@: L — ()

& 0 (x)

Reference: Target:
I: Q>R [:: Q- R
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Why is it important?

* Do automatic measurements

* Compare shapes
* Statistics 0:0 -0

e Build statistical models

* Transfer labels and annotations Q {

* Atlas based segmentation

Maybe the most important problem in computer vision and medical image analysis
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Registration as analysis by synthesis

| Comparison: p(I+|8, Ig)

Prior ¢[0] ~ p(0)
: I o @[6]

| Update using p(01|1r,Ig) | 1 Synthesis @[6] t

=

=
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The registration problem

MAP-Estimation
0" = argm@axp(HlIT, Ig) = argmgXp(H)p(ITIH, I)

Mapping @|607] is trade-off that

* how well does the mapping explain the target image
(likelihood function)

* matches the prior assumptions (prior distribution)
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The registration problem

0" = arg m@axp(@lIT, Ip) = arg mgx?){)p(lTMIR)
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The registration problem

0" = arg m@axp(@lIT, Ip) = arg mgxp@p(lt IR)

A& [/
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The registration problem

0" = argmaxp(0|lr, Ig) = arg mgXpW)p(ITIMR)
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"he registration problem

Probabilistic formulation
@ = arg m(gXp(wllT, Ir) = arg max p(@)p(r|,Ig)

Main questions:

* How do we represent the mapping?

e How do we define the prior?

* Whatis the likelihood function?

* How can we solve the optimization problem?
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Representation of the mapping @

.
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Representation of the mapping @

a
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Representation of the mapping @

Assumption:
Images are rigidly aligned

* Mapping can be represented as a
X displacement vector field:

p(x) = x + u(x)
u:Q - R
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Representation of the mapping @
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Assumption:
Images are rigidly aligned

* Mapping can be represented as a
displacement vector field:

p(x) = x + u(x)
u:Q - R

GRAVIS 2018 | BASEL

Observation:
Knowledge of u and I allows us to

synthesize target image I
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Registration as analysis by synthesis

| Comparison: p(I|6, Ig)

Prior ¢[0] ~ p(6)
Ig o @[6]

_Parameters 6|
| Update using p(0|Ir, Ir) | i Synthesis @[8] f/

I

=
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u~GP(u k)

with mean function

u: ) - R?
k:Q X Q - R2%2

Define the Gaussian process
and covariance function
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Example prior: Smooth 2D deformations

/ero mean:
u(x) = (8)

Squared exponential covariance function (Gaussian kernel)

/Slexp (_ [1x —Zx’II2> ) \

04

k(x,x") =

lx — x'||%

\ ; )
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Example prior: Smooth 2D deformations
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Example prior: Smooth 2D deformations
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Example prior: Smooth 2D deformations
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Parametric representation of Gaussian process

Represent GP(u, k) using only the first r components of its KL-Expansion

r

u=p+ ) afhidy -~ NQO1)

=1

* We have a finite, parametric representation of the process.
* We know the pdf for a deformation u

4 1 1 1
p(ula]) = p(@) = | | —=exp(~a?/2) = ; exp(~ llall®
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Registration as analysis by synthesis

' Comparison: p(I|6, Ig)
Prior @[0]
IT IR ° (p[@]
_Parameters 6|
| Update using p(0|Ir, Ir) | i Synthesis @[8] f/
Il

7
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Likelihood function: Image registration

Images are similar when the intensities match

Assumptions:
e Corresponding points have the same image intensity (up to i.i.d. noise)

Ix @[0](x) I

p(Ir (@[01C))IR, 0,x) ~ N(g(x),02)
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Likelihood function: Image registration

Images are similar when the intensities match

Assumptions:
e Corresponding points have the same image intensity (up to i.i.d. noise)

Image term outside
mapping function.

Makes problem

really difficult IR QD[H] (X) IT

1
pUrllg 0) = | | pUr(@[01())1g, 6,) =]_[§exp(

XE) X€E)

 (Ur(p(®) — 1)) 2 )
2

0}
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Registration as analysis by synthesis

| Comparison: p(I|6, Ig) /

Prior @[0] ~
[T

Ig o ¢[6]

_Parameters 6|
| Update using p(0|Ir, Ir) | i Synthesis @[8] f/

I

7
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Registration problem

0 = arg mgXp(w[H])p(lrlw[H]JR)

2
= arg méiXZiexp (—% IIHII2> il_[ exp <— (I (9[6](x)) = r(x))) )

1 Z, o

X

* Parametric problem, since:

PlO1C) = x + () + ) 01/ i)
=1

 (Can be optimized using gradient descent
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Variational formulation

2
arg maXZileXp <_1 ” ”2) le 1_[ eXp (_ (IT(¢[0](xz-)2 — IR (x))) >
2
= arg max anleXp (‘1 ||9||2> + lnzil_[ exp (— (IT(QD[H](xi)Z N IR(x))) >
2

1

(IT((p (X))—IR(x)))
. 2 _
= arg max an1 2IIHII +ln ;l

 argmyn  Urel’ (x()j)z‘ 0D 1

= / \

Image metric

Regularizer
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The registration problem

Probabilistic formulation
0" = arg mein —In(pUrllz, @[6])) — Inp(e[6

Variational formulation
6" = argmin D[Ir, I, [6]] + AR[¢[6]]
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GP-Registration in Scalismo

ile View Help

G m e
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@ Scene 3D X
ke reference Y o PaP4 oY o]

refMesh
[aa) ref-image
¥ glyphs
& target
LEI target image

Coefficients

[ Mean “ Random

Index Control Value /.
0 o L i
1 O 0.8 a/
2 o 0.0 .
B3] © 0.9 T
4 o 0.4
e — -
: - o _—
R "
10 62 7 7
11 o -0. e &
12 © 01 AR
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14 o 0.2 Pt
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AR b A

© Welcome to the Scalismo Viewer!
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A selection of useful likelihood functions
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Landmark likelihood

For one landmark pair (lg, l1):

p(lr6,1z) = N(¢|0](R), szzgz)

For many landmarks I >
L= (& ) (R, D))

p(], ... 05|60, 1k, .. 1})
= | [vet0100), 1x2o®
i
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Landmark registration using GP Regression

Given:
a * Gaussian process: u ~ GP(u, k)
'k 0,  Observations: {(If,%;),i=1,..,n}
Ik
L Assume:

ﬁl — U,(ll) + € with € ~ N(O, O-ZIZXz).

Goal:
* Find posterior distribution
T I A LA Y P Y
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(Gaussian process regression
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== i N _
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y ////éé” i
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5/l D : :
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AR NN &
v | "

o j §§§§\::. GP(pp, kyp) |
- eosenudREINNN Its parameters are known analytically.
-~ vonnuSERINNN
. RN

oA
SRR\

iy (x) = p(x) + K(x, Y Y(K(Y,Y) + 0% Lhnxon )~ (@ — u(Y))
kp(o,x') =k(,x") =K, Y) (KY,Y) + 0%Lnxon) 'K, x")
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Landmark registration using GP Regression
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Likelihood function: Image registration

Images are similar when the intensities match

Assumptions:
e Corresponding points have the same image intensity (up to i.i.d. noise)

I o010 .

p(Ir (@[01C))IR, 0,x) ~ N(g(x),02)
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Likelihood function: Image registration

Images are similar when the intensities match

Assumptions:
e Corresponding points have the same image intensity (up to i.i.d. noise)

Image term outside
mapping function.

Makes problem

really difficult IR QO[H] (X) IT
_ (IT((p(x)) — Ig(x)) * )

a2

1
pUrliz 0) = | [pr(0l610)IIR, 6,2 =]_[§exp<

X€EQ) X€EQ)
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Image vs. Landmark registration

* Landmark registration is easy
* All components are Gaussian

e Closed form solution using Gaussian process regression

* Image registration is hard
* Image destroys Gaussian assumption
* Likelihood function is not Gaussian

* Problem with many local minima
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What about surface registration?

"
Wy .

Iy [r

Reference (surface): Target (surface):
FR FT
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A trick: Implicit definition of a surface

e Surface I' can be represented as the
zero level set of a distance function

defined as Dr(x) = =30
Dr(x) = ||ClosestPointp(x) — x|| )
ClosestPointp(x) = arg min Ilx — x| D) = 15
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Likelihood function: Surface registration

Surface registration becomes image registration of distance images:
p(Dr(@[6](x))|0, Dg, x) ~ N(Dg(x),0?)
* Most likely solution: Points with same distances are mapped to each other

02 has now geometric interpretation

L ' P L. ™~

Reference Dp: Qp —» R Target Dy : Qr > R
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Likelihood function: Active shape models

Shape is well matched if environment around profile points is likely under trained model.

* ASMs model each profile p(x;) as a normal

distribution \

p(p (xl-)) = N(,Lli, Zi) Extracts profile

(feature) from image

* Single profile point x;:
p(p(e[0](x))10,%; ) = N (1, Z;)

* Image likelihood:

p(o(@l01eI0,Te) = | [ M2




UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

A selection of useful GP priors
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Why are priors interesting?

0" = arg mgXp(fp[H])p(lTllR,w[H])




UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Why are priors interesting?

0" = arg mgXp(fp[H])p(lTllR,w[G])
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Constructing s.p.d. kernels

1 k(x,x")=f(x) fCNT, f: X - R?

2 k(x,x") =ak{(x,x"),ad € R, (scaling)

3 k(x,x'") =BTk{(x,x)B, B € R™4 (lifting)

4 k(x,x") =ki(x,x") + k,(x,x") (or relationship)
5 k(xe,x") =ki(x,x") - ky(x,x") (and relationship)
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Multi-scale kernels

Add kernels that act on different scales:

n

kGx) =) > B2 — k)BT — k)

=0 kezd

* Wavelet like multiscale representation

Opfer, Roland. "Multiscale kernels."
Advances in computational mathematics 25.4 (2006): 357-380.
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Multi-scale kernel
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Anisotropic priors

Scale deformations differently in each direction

k(x,x') = RT <\/g_1 \/(;_) k(x,x") <\/g_1 \/2_2> R

* R is g rotation matrix
e kis scalar valued

* S4,S, scaling factors
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Anisotropic priors
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Spatially-varying priors

Use different models for different regions m

k(x,x") = x()x(x )k (x,x")
+(1— x(x))(1 — x(x")

x(x) =0

1 if x € thumb region x(x) =1

X(x) = 0 otherwise

Freiman, Moti, Stephan D. Voss, and Simon K. Warfield. "Demons registration with local affine adaptive regularization:
application to registration of abdominal structures." Biomedical Imaging: From Nano to Macro, 2011 IEEE
International Symposium on. IEEE, 2011.
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Spatially-varying priors
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Statistical deformation models

Estimate mean and covariance function from data
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Example 5: Statistical deformation models
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Demo: Priors and interactive registration

© 3 X
File View Help

exp j Auto select ¥ Auto update ® Update to MAP _ Keep last shape Regularization weight: 0”1‘6 Number of iterations: 2”0 Start fitting | 4>

« # Scene 3D X
&% model D@xvz

"= Shape model transformations
kO shape
© pose

model

=) Shape model transformations
tﬁ shape
© pose

J Appearance l
Color

Opacity

©) Welcome to the Scalismo Viewer!



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Optimization
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‘he optimization problem

0" = arg mgXp(fp[H])p(ITIIR o [0])

The final problem is a difficult
optimization problem

Possibly many local minima

Non-linearity due to image term

* Not possible to avoid it

Flexible models makes things worse
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Local minima

* Rigid Transformation
* Minima due to structure of object

Possible approach: Multi-resolution

e Non-rigid Transformation
* Minima appear/dissappear when shape changes

Possible approach: Multi-scale models,
regularization

()

S —

GRAVIS 2018 | BASEL
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Multi resolution

Idea: Solve optimzation problem for a sequence of smoothed out objects.
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Implementation

* Smooth the input shapes

* For images, achieved by Gaussian blurring

Initial registration Final registration

Almost no local minima Many local minima
No-details All-details

v
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Multi-scale / Regularization

ldea: Solve optimzation problem for a sequence of increasingly detailed deformations

i i I B i i A A

AR Y A >+ ¥ ¥

* E A A S -

v Frww s - e[ -
Jbey > P
JJ‘* > a\e & A\ a > ¥
JJ“ bl PR T S Y O A
Jilee T T R R A A
Hj: AR LR R R R D
Iy R e D
i MR RARERNER ot t
Iy AR R LR catt
/ PRRRRRRR cett
Vi \4\«\«\\\«\1 N o4t
W VUL N NN NN et

LA L L LN NN

Initial registration

e =%y
e

— xVla v b A g

PR

a&// PRI N e s " ‘
DA‘/ /

i
‘*l k

"y

,\\\:& VAN

Final registration

Only large, smooth deformations
Large regularization value

Allow detailed deformations
Almost no regularization
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Doing the registration

Strategies:

* Gradient-based registration
* Compute gradient and use local optimization methods

* Quasi-Newton schemes, SGD, ...

* Gradient free registration
* Use global optimization method directly on cost function

* Examples: Simulated annealing, Particle Swarm, ...

e |CP-based methods

e Assume correspondence and solve in each iteration analytic problem

e Examples: Non-rigid ICP, Active Shape models, CPD
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Model-fitting using Markov Chain Monte Carlo

e Can obtain full posterior distribution
MAP Solution using the Metropolis Hastings

4 ¢ =argmaxp(ollr, Ig) algorithm
¢ * Needs only point-wise evaluation of
JL unnormlized posterior

* Leads to principled way to integrate

p(o|lr,Ig) = unreliable bottom up methods
p(elaDpUrllr, @la] e Automatically detected landmarks
N(Ir)
® O e O Y el >



