" gravis

graphics and visio

Probabilistic Fitting

Marcel Luthi,

University of Basel



UNIVERSITAT BASEL
> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Reminder: Registration as analysis by synthesis

| Comparison: p(I+|8, Ig) |

Prior ¢[0] ~ p(0)

| Update using p(01|1r,Ig) | 1 Synthesis @[6] t

=

=
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Priors

Reminder

(Gaussian process

a; ~ N(0,1)

u~ GP(u, k)

Represented using first 7 components
r
u=p+ 2 a2 b, '
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Different GP-s lead to very different deformation models

* All of them are parametricu ~ p(0).
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Reminder: Likelihood functions

Likelihood function: p(I+|8, Ir)

['S —

Information in likelihood Position of landmark  Intensity profiles at Image intensity on Distance to surface
points surface boundary ~ fullimage
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Reminder: Obtaining the posterior parameters

MAP-Estimate
0" = arg meaxp(HIIT, Ip) = arg meaxp(H)p(IﬂH, Ip)

MAP Solution
A 0" = argmeaxp(H)p(ITw,IR)

p(O|Ir, 1) ﬁ

- Solving an optimization problem
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Obtaining the posterior distribution

Full posterior distribution
p(@)p(r|6,Ig)
p@|Ir,Ig) =
R p(Ir)

A \

p(O|lr, Ig) Infeasible to compute:
p(Ir)= | p(B)p(Ir|6)d6

p(0)p(r|6,IR)
p(Ir)

- Doing (approximate) Bayesian inference
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Basic idea: Sampling methods and MCMC

The Metropolis-Hastings algorithm
* The Metropolis algorithm
* Implementing the Metropolis algorithm
* The Metropolis-Hastings algorithm

Example: 3D Landmark fitting

Next time: Guest lecture T. Vetter. Probabilistic fitting of 2D Face photograms
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Approximate Bayesian Inference

Variational methods Sampling methods

* Function approximation q(6) * Numeric approximations through simulation
argmax KL(q(6)[p(61D))

cN\ :

KL: Kullback-
p Leibler divergence p
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Sampling Methods

e Simulate a distribution p through random samples x;

* Evaluate expectation (of some function f of random variable X)

E[f(X)] = j FOPGOdx
EIFOO] ~ f = Zﬂxa p

V[fx0] ~ ( )

* “Independent” of dimensionality of X
* More samples increase accuracy
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Sampling from a Distribution

» Easy for standard distributions ... is it? Random.nextDouble ()
Random.nextGaussian ()
e Uniform
* Gaussian

* How to sample from more complex distributions?
* Beta, Exponential, Chi square, Gamma, ...

* Posteriors are very often not in a “nice” standard text book form

* We need to sample from an unknown posterior with only unnormalized, expensive point-
wise evaluation &

10
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Markov Chain Monte Carlo

Markov Chain Monte Carlo Methods (MCMC)
|dea: Design a Markov Chain such that samples x obey the target distribution p

Concept: “Use an already existing sample to produce the next one”

* Many successful practical applications
* Proven: developed in the 1950/1970ies (Metropolis/Hastings)

* Direct mapping of computing power to approximation accuracy

11
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MCMC: An ingenious mathematical construction

... an aperiodic and irreducable

from

\) induces
If Markov Markov chain MCMC Algorithms
Chain is a- J |
periodic and |
irreducable
it... converges to . Generate samples

v

o . g D
distribution istribution p(x)

No need to understand this now: more details follow!
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The Metropolis Algorithm

Requirements:

* Proposal distribution Q (x'|x) — must generate samples, symmetric
 Target distribution P(x) — with point-wise evaluation

Result:

 Stream of samples approximately from P(x)

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

!/
2. With probability « = min {I;((J;)) ) 1} accept x’ as new state x

3.  Emit current state x as sample

13
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Example: 2D Gaussian

* Target:

* Proposal:

P(x) =

2T

1

e
Z]

— G- T (x—p)

Q(x'|x) = N(x'|x,0°I,)

Target
1.

p= [%.

= [o:

5
5
25 0.75
75 1.25

Sampled Estimate

1.56

[1.68
[1.09 0.63

0.63 1.07

M
[

Random walk

GRAVIS 2018 | BASEL
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2D Gaussian: Different Proposals

16
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The Metropolis-Hastings Algorithm

* |nitialize with sample x

e Generate next sample, with current sample x
1. Draw asample x’ from Q(x'|x) (“proposal”)

) .. . P(x') Q(x|x,) } ’
2. With probability a = mln{P(x) Ik 1t accept x' as new state x

3.  Emit current state x as sample

* Generalization of Metropolis algorithm to asymmetric Proposal distribution

Q(x'|x) # Q(x[x')
Q(x'|x) >0 Q(x|x") >0

17
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* Approximation: Samples x4, x5, ... approximate P(x)

Unbiased but correlated (not i.i.d.)

* Normalization: P(x) does not need to be normalized
Algorithm only considers ratios P(x") /P (x)

* Dependent Proposals: Q(x'|x) depends on current sample x

Algorithm adapts to target with simple 1-step memory
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Metropolis - Hastings: Limitations

* Highly correlated targets * Serial correlation
Proposal should match target to e Results from rejection
avoid too many rejections and too small stepping

e Subsampling

250

200 ]{

[
w
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AC decay length
[
(=)
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50

Bishop. PRML, Springer,

2006

1 1 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16 18 20
Standard Deviation of Proposal
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Propose-and-Verity Algorithm

* Metropolis algorithm formalizes: propose-and-verify

» Steps are completely independent.

Propose
Draw a sample x’ from Q (x'|x)

Verify

With probability &« = min {P(x ) Q(xlx') 1} accept x’ as new sample

P(x) Q(x'|x)’

20
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MH as Propose and Verity

 Decouples the steps of finding the solution from validating a solution

* Natural to integrate uncertain proposals Q
(e.g. automatically detected landmarks, ...)

e Possibility to include “local optimization” (e.g. a ICP or ASM updates,
gradient step, ...) as proposal

Anything more “informed” than random walk should improve convergence.



UNIVERSITAT BASEL

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS 2018 | BASEL

Fitting 3D Landmarks

3D Alignment with Shape and Pose

22
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3D Fitting Example

right.eye.corner_outer left.eye.corner_outer

right.lips.corner left.lips.corner

v

23
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Goal: Find posterior distribution for arbitrary pose and shape

Shape transformation Observations
r
« Observed positions I%, ..., %
pslal = u(0) + ) @A) posiions {r. .l
= e Correspondence: Iy, ..., lg
Rigid transformation Parameters
* 3 angles (pitch, yaw, roll) @, ¥, 9 0= (a,o,9,t¢)
* Translation t = (ty, Ly, t;) Posterior distribution:
orl0,1,9,t] = RgRyR,(x) + ¢t PO\, ...,I}) < p(l}, ..., IR16)P(6)

Full transformation
@l0](x) = (¢re s)[0](x)

24
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Proposals

e Gaussian random walk proposals

"Q(6'16) = N(0']6,Zg)"

* Update different parameter types block-wise

e Shape N(alla»o-sglmxm)
« Rotation N(¢'|lp.03), NW'|p,05),N(9'|9,05)
* Translation N(t'|t, 02153 )

* Large mixture distributions as proposals

* Choose proposal Q; with probability c;

Q(8'10) = Xc;Q;(0'10)

25
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3DMM Landmarks Likelihood

Simple models: Independent Gaussians

Observation of L landmark locations I% in image

* Single landmark position model:

p(lr6,1z) = N(¢|0]R), I3x302)

* Independent model (conditional independence):

L
p(h, .. 510) = | |mi(th16)
i=1

26
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3D Fit to landmarks

* Influence of landmarks uncertainty on
final posterior?

* oM — Imm
* oM = 4mm
* oy = 10mm
* Only 4 landmark observations:

* Expect only weak shape impact

e Should still constrain pose

 Uncertain landmarks should be looser

27
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Posterior: Pose & Shape, 4mm

Ayaw = 0.511 A, = —1mm g, = 0.4
Byaw = 0.073 (4°) Gy, =4 mm Gy, = 0.6

(Estimation from samples)
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Posterior: Pose & Shape, 1mm

fiyaw = 0.50 fie, = —2 mm flog, = 1.5
Oyaw = 0.041 (2.4°) 6y, = 0.8 mm Oq, = 0.35
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Posterior: Pose & Shape, 10mm

N

fyaw = 0.49 flt, = —> mm Hay =

Oyaw = 0.11 (7°) 0y, = 10 mm Oq, = 0.6
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Summary: MCMC for 3D Fitting

Probabilistic inference for fitting probabilistic models
e Bayesian inference: posterior distribution

Probabilistic inference is often intractable
* Use approximate inference methods

MCMC methods provide a powerful sampling framework
* Metropolis-Hastings algorithm
* Propose update step
* Verify and accept with probability

Samples converge to true distribution: More about this later!
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