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Conceptual Basis: Analysis by synthesis

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

Being able to synthesize data means we can understand how it was formed. 
− Allows reasoning about unseen parts.
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Analysis by Synthesis – Bayesian modelling

• Principled way of dealing with uncertainty.

Parameters 𝜃

Comparison: 𝑝 data 𝜃)

Update using 𝑝(𝜃|data) Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)
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Agenda

Parameters 𝜃

Comparison: 𝑝 data 𝜃)

Update using 𝑝(𝜃|data) Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)
1. Prior modelling

2. Likelihood function

3. Inference
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1. Shape modelling using GPs
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Starting point: Characterizing shape families
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Starting point: Characterizing shape families
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Probabilistic models of shapes

• Define how likely it is that a shape is part of the family

• Can generate new shapes
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Defining the shape model

1. Generating a shape

• Start with reference shape:
Γ𝑅 = 𝑥 𝑥 ∈ ℝ2}

• Describe shape difference as 
vector field 𝑢 ∶ Γ𝑅 → ℝ2

2. Defining shape model

• Induce probability distribution on 𝑢 ∼
𝐺𝑃(𝜇, 𝑘)
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Gaussian process: Formal definition

A Gaussian process 𝑝 𝑢 = 𝐺𝑃 𝜇, 𝑘

is a probability distribution over functions

𝑢 ∶ 𝒳 → ℝ𝑑

such that every finite restriction to function values  

𝑢𝑋 = (𝑢 𝑥1 , … , 𝑢 𝑥𝑛 )

is a multivariate normal distribution 

𝑝(𝑢𝑋) = 𝑁 𝜇𝑋, 𝑘𝑋𝑋 .
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Conceptual formulation:
Continuous: 𝐺𝑃(𝜇, 𝑘)

Practical implementation:
Discrete: 𝑁(𝜇, 𝐾)

From continuous to discrete
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ex

Defining a Gaussian process

A Gaussian process 𝐺𝑃 𝜇, 𝑘 is completely specified by a mean 
function 𝜇 and covariance function (or kernel) 𝑘.

• 𝜇:𝒳 → ℝ𝑑 defines how the average deformation looks like
• 𝑘:𝒳 ×𝒳 → ℝ𝑑×𝑑 defines how it can deviate from the mean

• Must be positive semi-definite
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Rules for combining covariance functions

Simple kernels are not powerful enough for modelling  realistic deformations.

Rules for constructing kernels:

1. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ + 𝑘2 𝑥, 𝑥′

2. 𝑘 𝑥, 𝑥′ = 𝛼𝑘1 𝑥, 𝑥′ , 𝛼 ∈ ℝ+

3. 𝑘 𝑥, 𝑥′ = 𝑘1 𝑥, 𝑥′ ∘ 𝑘2(𝑥, 𝑥
′)

4. 𝑘 𝑥, 𝑥′ = 𝑓 𝑥 𝑓 𝑥’ 𝑇 , 𝑓: 𝑋 → ℝ𝑑

5. k 𝑥, 𝑥′ = 𝐵𝑇𝑘 𝑥, 𝑥′ 𝐵, B ∈ ℝ𝑟×𝑑
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Combining kernels for shape modelling

• Spatially varying smooth deformations • Covariance function learned from examples
𝑘 𝑥, 𝑥′ = 𝜒 𝑥 𝜒 𝑥′ 𝑘1 𝑥, 𝑥′

+ 1 − 𝜒 𝑥 (1 − 𝜒 𝑥′ ) 𝑘2(𝑥, 𝑥
′)

𝑘𝑆𝑀 𝑥, 𝑥′ =
1

𝑛 − 1
෍

𝑖

𝑛

(𝑢𝑖 𝑥 − 𝑢(𝑥)) 𝑢𝑖 𝑥′ − 𝑢(𝑥′)
𝑇
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We can write  u ∼ 𝐺𝑃 𝜇, 𝑘

as 𝑢 ∼ 𝜇 + σ𝑖=1
∞ 𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

• 𝜙𝑖 is the eigenfunction with associated eigenvalue 𝜆𝑖 of the 
linear operator 

[𝑇𝑘𝑢](𝑥) = ∫ 𝑘 𝑥, 𝑠 𝑢 𝑠 𝑑𝑠

The Karhunen-Loève expansion
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Main idea: Represent process using only the first 𝑟 components
• We have a finite, parametric representation of the process.
• Any deformation 𝑢 is determined by the coefficients 
𝛼 = 𝛼1, … , 𝛼𝑟

𝑝 𝑢 = 𝑝 𝛼 =ෑ

𝑖=1

𝑟
1

2𝜋
exp(−𝛼𝑖

2/2)

𝑢 = 𝜇 +෍

𝑖=1

𝑟

𝛼𝑖 𝜆𝑖 𝜙𝑖 , 𝛼𝑖 ∼ 𝑁(0, 1)

Low-rank approximation
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Summary – Gaussian processes

• Gaussian processes are an extremely rich toolbox for modelling functions / deformation 
fields

• Possible to build complex models out of simple building blocks

• Defining good prior assumptions is on us => Difficult part

• Marginalization property and low-rank approximation allow for practical and efficient 
implementations



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE GRAVIS

2. Likelihood functions
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Likelihood functions

• The likelihood function 𝑝(𝐷|𝜃) captures how we think the observation 𝐷 arises from a 
given model instance defined by 𝜃.

• Split into synthesis function (deterministic) and probabilistic model
𝑝 𝐷 𝜃 = 𝑝(𝐷|𝜑 𝜃 )

Parameters 𝜃

Likelihood function 𝑝(𝐷|𝜃)

Update 𝜃 Synthesis 𝜑(𝜃)
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Likelihood functions
• Synthesis function can be very simple

• Example: 3D Landmarks in correspondence

Parameters 𝜃

Comparison: 𝑝 D 𝜃)

Update 𝜃 Synthesis 𝜑(𝜃)

Prior 𝑝(𝜃)

right.eye.corner left.eye.corner_

right.lips.corner left.lips.corner
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Likelihood functions

Parameters 𝜃

Comparison

Update 𝜃 Synthesis 𝜑(𝜃)

Computer graphics

• Synthesis function can be very complex

• Example: Complete computer graphics rendering pipeline
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Typical approach to define likelihood

Quantify uncertainty after synthesizing individual landmark 𝜑 𝜃 (𝑙𝑖
𝑅)

𝑝 𝑙𝑖
𝑇 𝜃, 𝑙𝑖

𝑅 = 𝑁 𝜑 𝜃 𝑙𝑖
𝑅 , 𝐼3𝑥3𝜎

2

Assume independence

𝑙1
𝑇 , … , 𝑙𝑛

𝑇 𝜃, 𝑙1
𝑅 , … , 𝑙𝑛

𝑅 =ෑ

𝑖

𝑁 𝜑 𝜃 𝑙𝑖
𝑅 , 𝐼2𝑥2𝜎

2

right.eye.corner left.eye.corner_

right.lips.corner left.lips.corner

Landmarks match target position up to zero-mean Gaussian 
noise.
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Reminder: Likelihood functions

Noise on landmark
points

Noise on point
position

Deviation of image
intensity from 
learned profiles

Stochastic component

Likelihood function: 𝑝 𝐼𝑇 𝜃, 𝐼𝑅)

Comparison Landmarks / 
landmark

Points / contour
Contour to image
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3. Inference
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Statistical shape model
2nd Principal component 1st Principal 

component
(Axis of main 
variance) 

𝛼1

𝛼2
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Prior probability of observing 
shape s:

p s = 𝑝 𝛼

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 

Probability before seeing data

𝛼1

𝛼2
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Probability before seeing data

𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 

A-priori 
likely shape
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Probability before seeing data

A-priori 
less likely shape

𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 
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Probability before seeing data

𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 

A-priori 
unlikely shape
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Observing Data

𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 
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𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 

Probability after observing data

Posterior probability of observing 
shape s given image:

𝑝 𝛼|Data
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𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 

Probability after observing data

A-posteriori 
unlikely shape
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𝛼1

𝛼2

2nd Principal component 1st Principal 
component
(Axis of main 
variance) 

Probability after observing data

A-posteriori 
likely shape
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Model-based data analysis – a Bayesian approach 

𝑃 𝛼|Data =
𝑃 Data|𝛼 𝑃 𝛼

𝑃 Data

Prior belief: 
Statistical shape 

model

How well did we 
explain the data with 

the model 
(parameters)

Posterior belief
Normalization term 
(marginal likelihood)
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Model-based data– a Bayesian approach

Can introduce new data one by one.

• Uncertainty is reduced in every step.

• Bayesian inference gives mathematically sound way of updating our knowledge.  

𝑃 𝛼 𝑃 𝛼 Annotations 𝑃 𝛼 Annotation,Image
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Model-based data– a Bayesian approach

Can introduce new data one by one.

𝑃 𝛼 𝑃 𝛼 Annotations 𝑃 𝛼 Annotation,Image

• Challenges

• How do we model shape variations?

• How do we update probabilities?

• How do we make this applicable and useful in 
practice?

Computational problem:

𝑃 𝛼|Data =
𝑃 Data|𝛼 𝑃 𝛼

∫ …∫ 𝑃 Data|𝛼1, … , 𝛼𝑛 𝑃 𝛼1, … , 𝛼𝑛 𝑑𝛼1, … , 𝑑𝛼𝑛
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• Formalizes propose-and-verify

• Very useful concept to integrate unreliable proposals!

• Can deal with heuristics which are not always right

• Can deal with unreliable data

• All assumptions about the problem in proposals ⇒ Extremely important to design 
them well

Draw a sample 𝑥′ from 𝑄(𝑥′|𝑥) Propose

With probability 𝛼 = min
𝑃 𝑥′

𝑃 𝑥

𝑄 𝑥|𝑥′

𝑄 𝑥′|𝑥
, 1 accept 𝒙′ as new sample Verify

Metropolis-Hastings algorithm
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Conclusion

Analysis by synthesis is a generic approach to shape and image analysis

• Based on Bayesian framework

1. Model prior (which shape do we expect to see)

2. Model likelihood (how do we expect it to appear in an image)

3. Compute posterior (what are the likely shapes given the image)

• Extremely flexible main components

• Gaussian process (prior)

• Metropolis Hastings (fitting / sampling from the posterior)

• Rigorous theoretical framework, which helps us to navigate in the space
But: Finding good solutions for practical image analysis is hard work!
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There is nothing more practical than a 
good theory
V. Vapnik


