## graphics and vision gravis



### Probabilistic Shape Modelling

Summary

Marcel Lüthi

### Conceptual Basis: Analysis by synthesis



Being able to synthesize data means we can understand how it was formed.

Allows reasoning about unseen parts.

### Analysis by Synthesis – Bayesian modelling



• Principled way of dealing with uncertainty.

UNIVERSITÄT BASEL

#### > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE



> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

### 1. Shape modelling using GPs

### Starting point: Characterizing shape families



### Starting point: Characterizing shape families



### Probabilistic models of shapes

- Define how likely it is that a shape is part of the family
- Can generate new shapes



### Defining the shape model

- 1. Generating a shape
  - Start with reference shape:  $\Gamma_R = \{x \mid x \in \mathbb{R}^2\}$
  - Describe shape difference as vector field  $u : \Gamma_R \to \mathbb{R}^2$
- 2. Defining shape model
  - Induce probability distribution on  $u \sim GP(\mu, k)$



### Gaussian process: Formal definition

A Gaussian process 
$$p(u) = GP(\mu, k)$$

is a probability distribution over functions  $u: \ \mathcal{X} \to \mathbb{R}^d$ 

such that every finite restriction to function values  $u_X = (u(x_1), \dots, u(x_n))$ 

is a multivariate normal distribution

$$p(u_X) = N(\mu_X, k_{XX}).$$

Practical implementation:

Discrete:  $N(\mu, K)$ 





### Defining a Gaussian process

A Gaussian process  $GP(\mu, k)$  is completely specified by a mean function  $\mu$  and covariance function (or kernel) k.

- $\mu: \mathcal{X} \to \mathbb{R}^d$  defines how the average deformation looks like
- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}^{d \times d}$  defines how it can deviate from the mean
  - Must be positive semi-definite

### Rules for combining covariance functions

Simple kernels are not powerful enough for modelling realistic deformations.

Rules for constructing kernels:

1.  $k(x, x') = k_1(x, x') + k_2(x, x')$ 2.  $k(x, x') = \alpha k_1(x, x'), \alpha \in \mathbb{R}_+$ 3.  $k(x, x') = k_1(x, x') \circ k_2(x, x')$ 4.  $k(x, x') = f(x) f(x')^T, f: X \to \mathbb{R}^d$ 5.  $k(x, x') = B^T k(x, x') B, B \in \mathbb{R}^{r \times d}$ 



### Combining kernels for shape modelling



- Spatially varying smooth deformations  $k(x, x') = \chi(x)\chi(x')k_1(x, x')$  $+(1 - \chi(x))(1 - \chi(x'))k_2(x, x')$
- Covariance function learned from examples  $k_{SM}(x,x') = \frac{1}{n-1} \sum_{i}^{n} (u^{i}(x) - \overline{u}(x)) (u^{i}(x') - \overline{u}(x'))^{T}$



### The Karhunen-Loève expansion

We can write 
$$u \sim GP(\mu, k)$$

as 
$$u \sim \mu + \sum_{i=1}^{\infty} \alpha_i \sqrt{\lambda_i} \phi_i, \ \alpha_i \sim N(0, 1)$$

•  $\phi_i$  is the eigenfunction with associated eigenvalue  $\lambda_i$  of the linear operator

$$[T_k u](x) = \int k(x,s)u(s)ds$$

### Low-rank approximation

$$u = \mu + \sum_{i=1}^{r} \alpha_i \sqrt{\lambda_i} \phi_i, \qquad \alpha_i \sim N(0, 1)$$

Main idea: Represent process using only the first r components

- We have a finite, parametric representation of the process.
- Any deformation u is determined by the coefficients  $\alpha = (\alpha_1, \dots, \alpha_r)$

$$p(u) = p(\alpha) = \prod_{i=1}^{r} \frac{1}{\sqrt{2\pi}} \exp(-\alpha_i^2/2)$$

### Summary – Gaussian processes

- Gaussian processes are an extremely rich toolbox for modelling functions / deformation fields
  - Possible to build complex models out of simple building blocks
  - Defining good prior assumptions is on us => Difficult part
- Marginalization property and low-rank approximation allow for practical and efficient implementations

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

### 2. Likelihood functions

### Likelihood functions

- The likelihood function  $p(D|\theta)$  captures how we think the observation D arises from a given model instance defined by  $\theta$ .
  - Split into synthesis function (deterministic) and probabilistic model

 $p(D|\theta) = p(D|\varphi[\theta])$ 



### Likelihood functions

- Synthesis function can be very simple
  - Example: 3D Landmarks in correspondence



### Likelihood functions

- Synthesis function can be very complex
  - Example: Complete computer graphics rendering pipeline



### Typical approach to define likelihood

Quantify uncertainty after synthesizing individual landmark  $\varphi[\theta](l_i^R)$ 

$$p(l_i^T | \theta, l_i^R) = N(\varphi[\theta](l_i^R), I_{3x3}\sigma^2)$$

Assume independence

$$\left(l_{1}^{T},\ldots,l_{n}^{T}\middle|\theta,l_{1}^{R},\ldots,l_{n}^{R}\right)=\prod_{i}N(\varphi[\theta](l_{i}^{R}),I_{2x2}\sigma^{2})$$

Landmarks match target position up to zero-mean Gaussian noise.



### Reminder: Likelihood functions

#### Likelihood function: $p(I_T | \theta, I_R)$



Comparison

Stochastic component

Landmarks / landmark

Noise on landmark points

Points / contour

Noise on point position

Contour to image

Deviation of image intensity from learned profiles > DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

### 3. Inference

### Statistical shape model











### Observing Data



### Probability after observing data



### Probability after observing data



### Probability after observing data



Model-based data analysis – a Bayesian approach



### Model-based data— a Bayesian approach

#### Can introduce new data one by one.



- Uncertainty is reduced in every step.
- Bayesian inference gives mathematically sound way of updating our knowledge.

### Model-based data— a Bayesian approach

#### Can introduce new data one by one.



- Challenges
- How do we model shape variations?
- How do we update probabilities?
- How do we make this applicable and useful in practice?

#### Computational problem:

 $P(\alpha | \text{Data}) = \frac{P(\text{Data} | \alpha) P(\alpha)}{\int \dots \int P(\text{Data} | \alpha_1, \dots, \alpha_n) P(\alpha_1, \dots, \alpha_n) d\alpha_1, \dots, d\alpha_n}$ 

### Metropolis-Hastings algorithm

• Formalizes propose-and-verify

Draw a sample x' from Q(x'|x) Propose With *probability*  $\alpha = \min\left\{\frac{P(x')}{P(x)}\frac{Q(x|x')}{Q(x'|x)}, 1\right\}$  accept x' as new sample Verify

- Very useful concept to integrate unreliable proposals!
  - Can deal with heuristics which are not always right
  - Can deal with unreliable data
- All assumptions about the problem in proposals ⇒ Extremely important to design them well

### Conclusion

Analysis by synthesis is a generic approach to shape and image analysis

- Based on Bayesian framework
  - 1. Model prior (which shape do we expect to see)
  - 2. Model likelihood (how do we expect it to appear in an image)
  - 3. Compute posterior (what are the likely shapes given the image)
- Extremely flexible main components
  - Gaussian process (prior)
  - Metropolis Hastings (fitting / sampling from the posterior)
- Rigorous theoretical framework, which helps us to navigate in the space But: Finding good solutions for practical image analysis is hard work!

> DEPARTMENT OF MATHEMATICS AND COMPUTER SCIENCE

# There is nothing more practical than a good theory

V. Vapnik