Algorithmen und Datenstrukturen
D1. Sortieren und Suchen in Strings

Gabi Réger und Marcel Liithi
Universitat Basel

20. Mai 2020

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 1/45

Algorithmen und Datenstrukturen
20. Mai 2020 — D1. Sortieren und Suchen in Strings

D1.1 Strings
D1.2 LSD-Sortierverfahren
D1.3 Quicksort

D1.4 Tries

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020

2/

45

String algorithmen oder generische Algorithmen?

» Alle Algorithmen zum Sortieren / Suchen wurden iiber
beliebige Schliissel definiert.

> Konnen direkt auf Strings angewendet werden.

» Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schliissel wird nicht ausgenutzt.

Frage
Kénnen wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 3 /45

Sortieralgorithmen

Algorithmus Laufzeit O(-)
best/avg./worst

Speicherbedarf O(-) stabil
best/avg. /worst

Selectionsort n? 1 nein
Insertionsort n/n?/n? 1 ja
Mergesort nlogn n ja
Quicksort nlogn/nlogn/n®> logn/logn/n nein
Heapsort nlogn 1 nein

O(nlog n) ist beweisbar der lower bound fiir allgemeine,
vergleichsbasierte Sortierverfahren. Geht es besser mit Strings?

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020

4

/ 45

Heutiges Programm

» Motivation

> Abstraktion: Alphabet
» LSD Sortierverfahren

» Quicksort fiir Strings

>

Tries

Repetition und Erweiterung bereits bekannter Konzepte

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 5 /45

D1. Sortieren und Suchen in Strings

D1.1 Strings

Strings

D1. Sortieren und Suchen in Strings Strings

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Reprasentation
von Informationen

» Programmcode
» Datenreprasentation im Web (HTML / Json / CSS)
» Kommunikation (E-Mail, Textmessages)

» Gensequenzen

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 7 /45

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 6 /45
D1. Sortieren und Suchen in Strings Strings
Strings
String
Endliche Folge von Zeichen (Character)
» Strings sind unverdnderlich (immutable). Einmal erzeugt
kdnnen Strings nicht mehr verandert werden.
> Ideale Schliissel fiir Symboltabellen
» Intern hiufig als Array von Zeichen implementiert.
0 1 2 3 4 5 6 7 8 9 10 11
AT T A CK A TD AW N
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 8 /45

D1. Sortieren und Suchen in Strings Strings

Characters

Friiher:
» 7 Bit Zeichensatz (ASCII)
» 8 Bit Zeichensatz (extended ASCII)
Heute:
» 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python
» Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

» Python kennt keinen Charactertyp. Ausdruck s]i] ist (UTF-8)
String der Lange 1.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 9 /45

D1. Sortieren und Suchen in Strings Strings

Abstraktion: Alphabet

» Unicode umfasst 1'112'064 Zeichen.
> Kleineres Alphabet reicht fiir viele Anwendungen aus

D1. Sortieren und Suchen in Strings Strings

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhangig vom benutzten
Alphabet zu schreiben.

class Alphabet:
def __init__(s : List[char])
def toChar(index : Int) -> char
def toIndex(c : Char) -> int
def contains(c : Char) -> boolean
def radix() -> int

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 11 / 45

Name Radix (R) Bits (log,(R)) Zeichen

BINARY 2 1 01

DNA 4 2 ACGT

LOWERCASE 26 5 a-z

UPPERCASE 26 5 A-Z

ASCII 128 7 ASCII Characters

EXTENDED_ASCII | 256 8 EXTENDED_ASCII

UNICODE 1'114'112 21 UNICODE

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 10 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

D1.2 LSD-Sortierverfahren

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 12 / 45

D1. Sortieren und Suchen in Strings

LSD-Sortierverfahren (1 Zeichen)

> Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen
count = [0] * (alphabet.radix() + 1)
aux = [Nonel * N

Zeichen zaehlen

for i in range(0, N):
index0Ofchar = alphabet.toIndex(alil)
count [index0Ofchar + 1] += 1

Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count[r]

Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil])
countForChar = count[index0fchar]
aux [countForChar] = al[il
count [indexOfchar] += 1

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020

LSD-Sortierverfahren

D1. Sortieren und Suchen in Strings

LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a
count = [0] * (alphabet.radix() + 1)

Zeichen Zaehlen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
count [index0Ofchar + 1] += 1

oNENoN
o
ail d a c f f b db f b e a count(r] 0231213

01 2 3 4 5 6 7 8 9 10 11 ///
Lf [« [7]

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 14 / 45

D1. Sortieren und Suchen in Strings

LSD-Sortierverfahren (1 Zeichen)

Kummulative Summe
for r in range (0, alphabet.radix()):
count [r+1] += count [r]

‘ #<a N\#<cN\#<e ‘\ D\

count[r] 0 2 5 6 8 9 12
3 Schlussel >=2<5 - 1T x_

Position 2, 3, 4 / . 2Schlissel >=6< 8

#<b #<d #<f -> Position 6, 7

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020

LSD-Sortierverfahren

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Verteilen

for i in range (0, N):
index0Ofchar = alphabet.toIndex(alil)
countForChar = count[index0fchar]
aux [countForChar] = alil
count [indexOfchar] += 1

ail d a ¢ f f b d b f b e a

01 2 3 4 5 6 7 8.9 1011
count[r] 0 2 5 6 8 9 12
.

auxliij a a b b b ¢ d d e f f f

01 2 3 4 5 6 7 8 9 10 11

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 16 /

LSD-Sortierverfahren

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

» Verfahren ist stabil

» Zeitaufwand: Proportional zu N + R, wobei R Grosse des
Alphabets ist

» Speicher: Proportional zu N + R (aux-Array und count Array)

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 17 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren

sortieren (d=2) sortieren (d=1) sortieren (d=0)
dla |b dla |b dl{a |[b alc |e
a|d [d cla |b cla |b a|d |d
cla |b e|lb |b fla|d bla |d
fla|d aja|d |d bfa |d ble |d
fle |e “lfla|d dla |d bla |e
bla |d *|bla [d e|b |b cla |b
dla |[d ,|dla |d alc |e dla [b
ble |e L |fle |d a|d [d dl|a |d
fle |d . |ble |d fle|d e|b |b
ble |d fle|e ble |d fla|d
e|b |b ble |e fle|e fle|d
alc |e alc |e ble |e fle|e

Stabil — Pfeile kreuzen sich nicht

> Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)
» Funktioniert, da Sortierung stabil ist

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 18 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren

N = len(a); aux = [Nome] * N ; d = numDigits - 1
while d >= O0:
count = [0] * (alphabet.radix() + 1)

for i in range(0, N):
index0fcharAtPosdInA = alphabet.toIndex(alil[d])
count [index0OfcharAtPosdInA + 1] += 1

for r in range (0, alphabet.radix()):
count [r+1] += count[r]

for i in range(0, N):
index0fCharAtPosdInA = alphabet.toIndex(alil[d])
countForChar = count[index0fCharAtPosdInA]
aux [countForChar] = al[il
count [index0fCharAtPosdInA]l += 1

for i in range (0, N):
alil = aux[il

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 19 / 45

D1. Sortieren und Suchen in Strings Quicksort

D1.3 Quicksort

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 20 / 45

D1. Sortieren und Suchen in Strings

Erinnerung: Quicksort

Quicksort

pivot

0 1 2 3 4 5 6 7 8
a u | C K S 0] R T
0 1 2 3 4 5 6 7 8
I C K 0] Q V) S R T
| ‘r "v‘
< pivot > pivot

» Waihle Pivot Element
> Partitioniere Array
» Rekursion auf linkes und rechtes Teilarray

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen

20. Mai 2020 21 /45

D1. Sortieren und Suchen in Strings

3-Wege Quicksort

ﬂ . .
uﬂAb\
T |
< pivot = pivot

> pivot

» Gleiche Schlissel sind bereits sortiert.
» Kein rekursiver Aufruf mehr nétig.

M. Liithi (Universitdt Basel) Algorithmen und Datenstrukturen

Quicksort

LJ L

20. Mai 2020 23 / 45

D1. Sortieren und Suchen in Strings Quicksort
Quicksort: Gleiche Schlissel
0 1 2 3 4 5 6 7 8 9 10
/‘ A ‘ B ‘ R ‘ A ‘ C ‘ A ‘ D ‘ A ‘ B | R ‘ A
0 1 2 3 4 5 6 7 8 9 10
A A A A B R C D B R A
|
< pivot > pivot
» Was passiert bei vielen gleichen Schliisseln?
» Unnétige Partitionierung von gleichen Schliisseln.
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 22 / 45
D1. Sortieren und Suchen in Strings Quicksort

Quicksort fiir Strings

) sortiert Teilarrays
verwendet ersten Zeichenwert,
um in Kleiner-, Gleich- und
Grofer-Teilarrays zu
partitionieren

das erste Zeichen

vom Gleich-Teilarray)

rekursiv (ausgenommen

> 3-Wege Quicksort per
Buchstabe -

. . v 4

> Bei gleichen - !

Anfangsbuchstaben, y v
vergleiche nichsten
Buchstaben. =
>V

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 24 / 45

Algorithmen. Abbildune 5.16

D1. Sortieren und Suchen in Strings Quicksort

Quicksort fiir Strings

graue Balken reprisentieren zwei weitere Durchliiufe,
s b a are leere Teilarrays bis das Ende erreicht wird
s a b| by
s S| e al ﬂ \
b s ¢ a h[: B 1 1
It S €| El h e|:| 1|:| 1|:|
s s €| L 'I’—\ s sells sells
s s €| 1 1 SD sells sells
It s h €| she
s s h €| she
s S u € ! shells keine rekursiven Aufrufe
s 5 h R) shore (Ende des Strings)
a S| h surely
s [t t h € the
s It | ‘ h‘ | €| the

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 25 / 45

D1. Sortieren und Suchen in Strings Quicksort

Laufzeit

Theorem

Um ein Array von N zufilligen Strings zu sortieren, benétigt der
3-Weg-Quicksort fiir Strings im Durchschnitt ~ 2NInN
Zeichenvergleiche.

» Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

> Aber: Wir haben Zeichenvergleiche und nicht
Schliisselvergleiche

D1. Sortieren und Suchen in Strings Quicksort

Implementation

ZJupyter Untited wosmea
File Edt View Inset Cell Kemel Help # | Python [Root] ©

B+ 3 @B 4V M EC code | = Celfoobar @& & @

Algorithmen und Datenstrukturen

Interaktive Experimente

0ut[7]: [<matplotlib.lines.Line;

1000000

800000

0000

400000

200000

0 w0 &0 0 000

Jupyter Notebooks: Stringsort.ipynb

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 27 / 45

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 26 / 45
D1. Sortieren und Suchen in Strings Tries
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 28 / 45

D1. Sortieren und Suchen in Strings Tries

Erinnerung: Symboltabellen

Abstraktion fiir Schliissel /Werte Paar

Grundlegende Operationen
> Speichere Schliissel mit dazugehdrendem Wert.
» Suche zu Schliissel gehérenden Wert.
» Schliissel und Wert l6schen.

Typische Beispiele
» DNS - Suche IP-Adresse zu Domainnamen
» Telefonbuch - Suche Telefonnummer zu Person / Adresse
> Worterbuch - Suche Ubersetzungen fiir Wort

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 29 / 45

D1. Sortieren und Suchen in Strings

Ubersicht

Worst-case
Implementation suchen einfiigen
Rot-Schwarz Biume 2log,(N) 2log,(N) 1log,(N)
Hashtabellen N N 1

Average-case
suchen (hit) einfiigen
Llog,(NV)
1

» Frage: Geht es noch schneller?

» Antwort: Ja, wenn wir nicht ganzen String vergleichen miissen.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020

30 /

Tries

45

D1. Sortieren und Suchen in Strings Tries

Symboltabelle fiir Strings

class StringST([Valuel:
def StringST()
def put(key String, value : Value) -> Nomne
def get (key String) -> Value
def delete (key String) -> None

def keys() -> Iterator[String]

Normale Symboltabellen Operationen, aber mit fixem Typ String
als Schliissel

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 31 /45

D1. Sortieren und Suchen in Strings

Symboltabelle fiir Strings

class StringST[Valuel:
def StringST ()
def put(key String, value : Value) -> None
def get (key String) -> Value
def delete(key String) -> None
def keys() -> Iterator[String]
def keysWithPrefix(s String) -> Iterator [String]
def keysThatMatch(s String) -> Iterator[String]

def longestPrefix0f (s String) -> String

Mittels Tries lassen sich viele niitzliche, zeichenbasierte

Suchoperationen definieren.
20. Mai 2020

M. Liithi (Universitdt Basel) Algorithmen und Datenstrukturen

32/

Tries

45

D1. Sortieren und Suchen in Strings Tries
Tries
Trie Von Retrieval.
» Ausgesprochen wie try
Waurzel
ie fiir all.
Sehbhesl et & hegtmen
R%?Z“S{h?é‘{sf[ﬁ{f '
. . .. mit she beginnen
» Zeichen (nicht Schliissel ¢
werden in Knoten
gespeichert)
Schliissel Wert
» Jeder Knoten hat R Knoten by 4
. T 2
(also einen pro méglichem oms 1
B jeder Knoten .wird . she 0
Zeichen) e O s
mit der auf ihn the 5
H/L'ISEﬂdL’n R(?IL’T?VVZ
assoziiert ist.
Quelle: Sedgewick & Wayne, Algorithmen, Abbildung
5.19
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 33 /45
D1. Sortieren und Suchen in Strings Tries
Suche in Trie
erfolgreiche Suche erfolglose Suche
serCshentsn () gerCsnen ()
Dem Zeichen @ @
entsprechenden Link © ®
folgen 7 T
g ©) @
» Erfolgreiche Suche: P \
. ®s
Endet an Knoten mit N et e e,
. . - Piies ist nu nul7 zuriickliefern
definiertem Wert wew o | sccsore
[
» Erfolglose Suche: © /
. 0}
Endet an Knoten mit ¢l \
undefiniertem Wert e —
also nu1 T zuriickliefern
(null)
Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.20
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 35 / 45

D1. Sortieren und Suchen in Strings Tries
Reprasentation der Knoten
| o
:I Zeichen werden implizit -
- durch den Referenzindex [I‘I‘I‘ITI‘I‘F!IFITTITITITITTWTT'
/ \ definiert -
A | [T
[\]
a)2 (1 € i 5 X “ \
] |2 | | o | o O
\ \
| I y =] jeder Knoten hat ein
g / Array von Referenzen
|1E|IEDIEEEEEEEEEEEIIIIIIEDJ und einen Wert
Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.21
class Node:
value = None
children = [None] * alphabet.radix()
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 34 / 45
D1. Sortieren und Suchen in Strings Tries
Suche in Tries
def get(key):
node = get_rec(root, key, 0)
if (node == Nomne):
return None
else:
return node.value
def get_rec(node, key, d):
if (node == None):
return None
if d == len(key):
return node
c = alphabet.toIndex(key[d])
return get_rec(node.children[c], key, d + 1)
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 36 / 45

D1. Sortieren und Suchen in Strings Tries

Einfligen in Trie

Dem Zeichen put(“shore”, 7) O
entsprechenden Link
folgen

» Erfolgreiche Suche:
Wert neu setzten

» Erfolglose Suche:
Neuen Knoten
erzeugen.

-

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.22

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 37 / 45

D1. Sortieren und Suchen in Strings Tries

Einfligen in Trie

def put(node, key, value, d):
if node == None:
node = Node (alphabet.radix())
if d == len(key):
node.value = value
return node
c = alphabet.tolIndex (keyl[d])
node.children[c] = put(node.children[c], key, value, d + 1)
return node

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 38 / 45

D1. Sortieren und Suchen in Strings Tries

Loschen von Schlisseln

» Schliussel finden und Knoten |8schen.

» Rekursiv alle Knoten mit nur null-Werten und null-links
[6schen

delete("shells");
? v
© Q_

© O
o Wert auf O
Q) , il O T
/Serzm P .
Wert ist nicht null; na
9 3 | _ Knoten nicht entfernen Referenz ist nicht null;
(Referenz auf Knoten zuriickliefern) Krioten nicht entfernen
(Referenz auf Knoten zuriickliefern)
null-Wert und null- /

Referenzen; Knoten entfernen
(null-Referenz zuriickliefern)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.26

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 39 /45

D1. Sortieren und Suchen in Strings Tries

Loschen von Schlisseln

def delete(node, key, d):

if node == None:
return None

if d == len(key):
node.value = None

else:
¢ = alphabet.toIndex (keyl[d])
node.children[c] = delete(node.children[c], key, d + 1)

if node.value != None:
return node

nonNullChildren = [c for ¢ in node.children if c != Nonel]
if len(nonNullChildren) > O:

return node
else:

return None

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 40 / 45

D1. Sortieren und Suchen in Strings

D1. Sortieren und Suchen in Strings

Tries
Implementation und Beispielanwendung
ZJupyter untited wosme
File Edit View Inset Cell Kemel Help # | Python [Root] O
B+ x @B 44 % N B C Coe © & CellToobar & & @
Algorithmen und Datenstrukturen
Interaktive Experimente
In [3]
(& **R))
ut
Jupyter Notebook: Tries.ipynb
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 41 / 45
D1. Sortieren und Suchen in Strings Tries
Analyse: Einfligen
Theorem
Die Anzahl der Arrayzugriffe beim Suchen in einem Trie oder beim
Einfiigen eines Schliissels in einen Trie ist héchstens 1 plus der
Lange des Schliissels.
Theorem
Die durchschnittliche Anzahl der untersuchten Knoten bei einer
erfolglosen Suche in einem Trie, der aus N Zufallsschliisseln iiber
einem Alphabet der Grésse R erstellt wird, betrigt ~ logr(N).
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 43 / 45

Tries
Analyse: Form des Tries
Theorem
Die verkettete Struktur (Form) eines Trie ist nicht abhangig von
der Schliisselreihenfolge beim Léschen/Einfiigen: Fiir jede
gegebene Menge von Schliisseln gibt es einen eindeutigen Trie.
M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 42 / 45
D1. Sortieren und Suchen in Strings Tries

Tries: Take-Home Message

Auch in riesigen Datenmengen konnen wir mit wenigen Vergleichen
jeden Wert finden.

M. Liithi (Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 44 / 45

D1. Sortieren und Suchen in Strings

Zusammenfassung

v

M. Liithi

String-Algorithmen nutzen Struktur von Strings aus

» Vorteil: Erlaubt Implementation von schnelleren Algorithmen
> Nachteil: Algorithmen nur fiir Schliissel mit Typ String
anwendbar.

Strategie und Konzepte von bestehenden Algorithmen wurde
tibernommen.

LSD-Sort: Radixsort angewendet auf Zeichen
Quicksort fiir Strings: Macht Vergleich fiir jedes Zeichen

Tries: Suchbaum der durch Zeichen indiziert ist

(Universitit Basel) Algorithmen und Datenstrukturen 20. Mai 2020 45

Tries

/ 45

	Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	

	Tries
	

