
Algorithmen und Datenstrukturen
D1. Sortieren und Suchen in Strings

Gabi Röger und Marcel Lüthi

Universität Basel

20. Mai 2020

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 1 / 45

Algorithmen und Datenstrukturen
20. Mai 2020 — D1. Sortieren und Suchen in Strings

D1.1 Strings

D1.2 LSD-Sortierverfahren

D1.3 Quicksort

D1.4 Tries

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 2 / 45

String algorithmen oder generische Algorithmen?

I Alle Algorithmen zum Sortieren / Suchen wurden über
beliebige Schlüssel definiert.
I Können direkt auf Strings angewendet werden.

I Preis der Abstraktion / Allgemeinheit: Vorhandene Struktur
der Schlüssel wird nicht ausgenutzt.

Frage

Können wir Eigenschaften von Strings ausnutzen um noch
effizientere Algorithmen zu entwickeln?

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 3 / 45

Sortieralgorithmen

Algorithmus Laufzeit O(·) Speicherbedarf O(·) stabil
best/avg./worst best/avg./worst

Selectionsort n2 1 nein
Insertionsort n/n2/n2 1 ja
Mergesort n log n n ja
Quicksort n log n/n log n/n2 log n/log n/n nein
Heapsort n log n 1 nein

O(n log n) ist beweisbar der lower bound für allgemeine,
vergleichsbasierte Sortierverfahren. Geht es besser mit Strings?

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 4 / 45

Heutiges Programm

I Motivation

I Abstraktion: Alphabet

I LSD Sortierverfahren

I Quicksort für Strings

I Tries

Repetition und Erweiterung bereits bekannter Konzepte

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 5 / 45

D1. Sortieren und Suchen in Strings Strings

D1.1 Strings

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 6 / 45

D1. Sortieren und Suchen in Strings Strings

Strings als fundamentale Abstraktion

Strings / Text ist in vielen Bereichen grundlegende Repräsentation
von Informationen

I Programmcode

I Datenrepräsentation im Web (HTML / Json / CSS)

I Kommunikation (E-Mail, Textmessages)

I Gensequenzen

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 7 / 45

D1. Sortieren und Suchen in Strings Strings

Strings

String

Endliche Folge von Zeichen (Character)

I Strings sind unveränderlich (immutable). Einmal erzeugt
können Strings nicht mehr verändert werden.
I Ideale Schlüssel für Symboltabellen

I Intern häufig als Array von Zeichen implementiert.

0 1 2 3 4 5 6 7 8 9 10 11

A T T A C K A T D A W N

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 8 / 45

D1. Sortieren und Suchen in Strings Strings

Characters

Früher:

I 7 Bit Zeichensatz (ASCII)

I 8 Bit Zeichensatz (extended ASCII)

Heute:

I 8 oder 16 bit Unicode Zeichensatz (UTF-8, UTF-16)

Unterschied Java / Python

I Java Character entspricht 16 bit Unicode Zeichen (UTF-16)

I Python kennt keinen Charactertyp. Ausdruck s[i] ist (UTF-8)
String der Länge 1.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 9 / 45

D1. Sortieren und Suchen in Strings Strings

Abstraktion: Alphabet

I Unicode umfasst 1’112’064 Zeichen.

I Kleineres Alphabet reicht für viele Anwendungen aus

Name Radix (R) Bits (log2(R)) Zeichen
BINARY 2 1 0 1
DNA 4 2 A C G T
LOWERCASE 26 5 a - z
UPPERCASE 26 5 A-Z
ASCII 128 7 ASCII Characters
EXTENDED ASCII 256 8 EXTENDED ASCII
UNICODE 1’114’112 21 UNICODE

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 10 / 45

D1. Sortieren und Suchen in Strings Strings

Alphabet

Abstraktion Alphabet erlaubt uns Code unabhängig vom benutzten
Alphabet zu schreiben.

class Alphabet:

def __init__(s : List[char])

def toChar(index : Int) -> char

def toIndex(c : Char) -> int

def contains(c : Char) -> boolean

def radix() -> int

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 11 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

D1.2 LSD-Sortierverfahren

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 12 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

I Input: Array a, Output: Sortiertes array aux

N = len(a) # Anzahl zu sortierender Zeichen

count = [0] * (alphabet.radix () + 1)

aux = [None] * N

Zeichen zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 13 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

N = len(a) # Anzahl zu sortierender Zeichen in array a

count = [0] * (alphabet.radix () + 1)

Zeichen Zaehlen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

count[indexOfchar + 1] += 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 14 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Kummulative Summe

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 15 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

Verteilen

for i in range(0, N):

indexOfchar = alphabet.toIndex(a[i])

countForChar = count[indexOfchar]

aux[countForChar] = a[i]

count[indexOfchar] += 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 16 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren (1 Zeichen)

I Verfahren ist stabil

I Zeitaufwand: Proportional zu N + R, wobei R Grösse des
Alphabets ist

I Speicher: Proportional zu N + R (aux-Array und count Array)

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 17 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren

I Sortiere jedes Zeichen einzeln
beginnend mit letztem (least significant digit)

I Funktioniert, da Sortierung stabil ist

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 18 / 45

D1. Sortieren und Suchen in Strings LSD-Sortierverfahren

LSD-Sortierverfahren

N = len(a); aux = [None] * N ; d = numDigits - 1

while d >= 0:

count = [0] * (alphabet.radix () + 1)

for i in range(0, N):

indexOfcharAtPosdInA = alphabet.toIndex(a[i][d])

count[indexOfcharAtPosdInA + 1] += 1

for r in range(0, alphabet.radix ()):

count[r+1] += count[r]

for i in range(0, N):

indexOfCharAtPosdInA = alphabet.toIndex(a[i][d])

countForChar = count[indexOfCharAtPosdInA]

aux[countForChar] = a[i]

count[indexOfCharAtPosdInA] += 1

for i in range(0, N):

a[i] = aux[i]

d -= 1

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 19 / 45

D1. Sortieren und Suchen in Strings Quicksort

D1.3 Quicksort

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 20 / 45

D1. Sortieren und Suchen in Strings Quicksort

Erinnerung: Quicksort

I Wähle Pivot Element

I Partitioniere Array

I Rekursion auf linkes und rechtes Teilarray

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 21 / 45

D1. Sortieren und Suchen in Strings Quicksort

Quicksort: Gleiche Schlüssel

I Was passiert bei vielen gleichen Schlüsseln?

I Unnötige Partitionierung von gleichen Schlüsseln.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 22 / 45

D1. Sortieren und Suchen in Strings Quicksort

3-Wege Quicksort

I Gleiche Schlüssel sind bereits sortiert.
I Kein rekursiver Aufruf mehr nötig.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 23 / 45

D1. Sortieren und Suchen in Strings Quicksort

Quicksort für Strings

I 3-Wege Quicksort per
Buchstabe

I Bei gleichen
Anfangsbuchstaben,
vergleiche nächsten
Buchstaben.

Quelle: Sedgewick & Wayne,
Algorithmen, Abbildung 5.16

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 24 / 45

D1. Sortieren und Suchen in Strings Quicksort

Quicksort für Strings

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.18

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 25 / 45

D1. Sortieren und Suchen in Strings Quicksort

Laufzeit

Theorem
Um ein Array von N zufälligen Strings zu sortieren, benötigt der
3-Weg-Quicksort für Strings im Durchschnitt ∼ 2NlnN
Zeichenvergleiche.

I Gleiche Anzahl Vergleiche wie standard (3-Wege) Quicksort

I Aber: Wir haben Zeichenvergleiche und nicht
Schlüsselvergleiche

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 26 / 45

D1. Sortieren und Suchen in Strings Quicksort

Implementation

Jupyter Notebooks: Stringsort.ipynb

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 27 / 45

D1. Sortieren und Suchen in Strings Tries

D1.4 Tries

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 28 / 45

D1. Sortieren und Suchen in Strings Tries

Erinnerung: Symboltabellen

Abstraktion für Schlüssel/Werte Paar

Grundlegende Operationen

I Speichere Schlüssel mit dazugehörendem Wert.

I Suche zu Schlüssel gehörenden Wert.

I Schlüssel und Wert löschen.

Typische Beispiele

I DNS - Suche IP-Adresse zu Domainnamen

I Telefonbuch - Suche Telefonnummer zu Person / Adresse

I Wörterbuch - Suche Übersetzungen für Wort

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 29 / 45

D1. Sortieren und Suchen in Strings Tries

Übersicht

Worst-case Average-case
Implementation suchen einfügen suchen (hit) einfügen
Rot-Schwarz Bäume 2 log2(N) 2 log2(N) 1 log2(N) 1 log2(N)
Hashtabellen N N 1 1

I Frage: Geht es noch schneller?

I Antwort: Ja, wenn wir nicht ganzen String vergleichen müssen.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 30 / 45

D1. Sortieren und Suchen in Strings Tries

Symboltabelle für Strings

class StringST[Value]:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

Normale Symboltabellen Operationen, aber mit fixem Typ String
als Schlüssel

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 31 / 45

D1. Sortieren und Suchen in Strings Tries

Symboltabelle für Strings

class StringST[Value]:

def StringST ()

def put(key : String , value : Value) -> None

def get(key : String) -> Value

def delete(key : String) -> None

def keys() -> Iterator[String]

def keysWithPrefix(s : String) -> Iterator[String]

def keysThatMatch(s : String) -> Iterator[String]

def longestPrefixOf(s : String) -> String

Mittels Tries lassen sich viele nützliche, zeichenbasierte
Suchoperationen definieren.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 32 / 45

D1. Sortieren und Suchen in Strings Tries

Tries

Trie Von Retrieval.
I Ausgesprochen wie try

I Zeichen (nicht Schlüssel
werden in Knoten
gespeichert)

I Jeder Knoten hat R Knoten
(also einen pro möglichem
Zeichen)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung
5.19

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 33 / 45

D1. Sortieren und Suchen in Strings Tries

Repräsentation der Knoten

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.21

class Node:

value = None

children = [None] * alphabet.radix()

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 34 / 45

D1. Sortieren und Suchen in Strings Tries

Suche in Trie

Dem Zeichen
entsprechenden Link
folgen

I Erfolgreiche Suche:
Endet an Knoten mit
definiertem Wert

I Erfolglose Suche:
Endet an Knoten mit
undefiniertem Wert
(null)

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.20

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 35 / 45

D1. Sortieren und Suchen in Strings Tries

Suche in Tries

def get(key):

node = get_rec(root , key , 0)

if (node == None):

return None

else:

return node.value

def get_rec(node , key , d):

if (node == None):

return None

if d == len(key):

return node

c = alphabet.toIndex(key[d])

return get_rec(node.children[c], key , d + 1)

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 36 / 45

D1. Sortieren und Suchen in Strings Tries

Einfügen in Trie

Dem Zeichen
entsprechenden Link
folgen

I Erfolgreiche Suche:
Wert neu setzten

I Erfolglose Suche:
Neuen Knoten
erzeugen.

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.22

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 37 / 45

D1. Sortieren und Suchen in Strings Tries

Einfügen in Trie

def put(node , key , value , d):

if node == None:

node = Node(alphabet.radix ())

if d == len(key):

node.value = value

return node

c = alphabet.toIndex(key[d])

node.children[c] = put(node.children[c], key , value , d + 1)

return node

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 38 / 45

D1. Sortieren und Suchen in Strings Tries

Löschen von Schlüsseln

I Schlüssel finden und Knoten löschen.

I Rekursiv alle Knoten mit nur null-Werten und null-links
löschen

Quelle: Sedgewick & Wayne, Algorithmen, Abbildung 5.26

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 39 / 45

D1. Sortieren und Suchen in Strings Tries

Löschen von Schlüsseln

def delete(node , key , d):

if node == None:

return None

if d == len(key):

node.value = None

else:

c = alphabet.toIndex(key[d])

node.children[c] = delete(node.children[c], key , d + 1)

if node.value != None:

return node

nonNullChildren = [c for c in node.children if c != None]

if len(nonNullChildren) > 0:

return node

else:

return None

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 40 / 45

D1. Sortieren und Suchen in Strings Tries

Implementation und Beispielanwendung

Jupyter Notebook: Tries.ipynb

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 41 / 45

D1. Sortieren und Suchen in Strings Tries

Analyse: Form des Tries

Theorem

Die verkettete Struktur (Form) eines Trie ist nicht abhängig von
der Schlüsselreihenfolge beim Löschen/Einfügen: Für jede
gegebene Menge von Schlüsseln gibt es einen eindeutigen Trie.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 42 / 45

D1. Sortieren und Suchen in Strings Tries

Analyse: Einfügen

Theorem
Die Anzahl der Arrayzugriffe beim Suchen in einem Trie oder beim
Einfügen eines Schlüssels in einen Trie ist höchstens 1 plus der
Länge des Schlüssels.

Theorem
Die durchschnittliche Anzahl der untersuchten Knoten bei einer
erfolglosen Suche in einem Trie, der aus N Zufallsschlüsseln über
einem Alphabet der Grösse R erstellt wird, beträgt ∼ logR(N).

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 43 / 45

D1. Sortieren und Suchen in Strings Tries

Tries: Take-Home Message

Auch in riesigen Datenmengen können wir mit wenigen Vergleichen
jeden Wert finden.

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 44 / 45

D1. Sortieren und Suchen in Strings Tries

Zusammenfassung

I String-Algorithmen nutzen Struktur von Strings aus
I Vorteil: Erlaubt Implementation von schnelleren Algorithmen
I Nachteil: Algorithmen nur für Schlüssel mit Typ String

anwendbar.

I Strategie und Konzepte von bestehenden Algorithmen wurde
übernommen.

I LSD-Sort: Radixsort angewendet auf Zeichen

I Quicksort für Strings: Macht Vergleich für jedes Zeichen

I Tries: Suchbaum der durch Zeichen indiziert ist

M. Lüthi (Universität Basel) Algorithmen und Datenstrukturen 20. Mai 2020 45 / 45

	Strings
	

	LSD-Sortierverfahren
	

	Quicksort
	

	Tries
	

