

Seminar Bayesian Scientific Computing

Marcus Grote, Monika Nagy-Huber, Volker Roth

Department of Mathematics & Computer Science
University of Basel

17th February 2020

Administrative Details

- Weekly presentations, approx 40-45 minutes.
- Every presenter has to write a summary (2-3 pages)
- Every “**opponent**” has to prepare 5 questions
~~ stating point for discussion.
- Mandatory rehearsal talks: one week before the presentation.
- Teaching material, presentations etc. on ADAM.
- Additional 3 credit points for programming project.

2

Surveys and Tutorials in the Applied Mathematical Sciences

Introduction to Bayesian Scientific Computing

Ten Lectures on
Subjective Computing

Daniela Calvetti
Erkki Somersalo

 Springer

Timetable

- 20.02. ...introduction
- 27.02. ...preparation phase
- 05.03. Fasnacht break
- 12.03. Chapter 1
- 19.03. Chapter 2
- 26.03. Chapter 3
- 02.04. Chapter 4
- 09.04. Easter break
- 16.04. Chapter 5
- 23.04. Chapter 6
- 30.04. Chapter 7
- 07.05. Chapter 8
- 14.05. Chapter 9
- 21.05. Chapter 10
- 28.05. Postponed presentations etc. (?)

Chapter 1: Inverse problems and subjective computing

- Inverse problems
- Statistical Inference
- Random variables / probability space /distribution / density etc.
- Bayesian /Frequentist interpretation of probabilities
- Expectation, variance, covariance & correlation
- Joint and conditional probabilities
- Multivariate Gaussian distribution
- Central Limit Theorem

Additional literature:

Chapter 13 in **Russell & Norvig**, Artificial Intelligence: A Modern Approach, Pearson.

Sections 2.1-2.6 in K. Murphy, Machine Learning: A Probabilistic Perspective, MIT press

Artificial Intelligence
A Modern Approach
Third Edition

Machine Learning
A Probabilistic Perspective

Kevin P. Murphy

Chapter 2: Basic Problem of Statistical Inference

- Statistical modeling and analysis
- Parametric and non-parametric approach
- Averaging - law of large numbers
- estimators: empirical mean and covariance
- credibility intervals / ellipses
- Maximum Likelihood estimation
- Multivariate Gaussian \rightsquigarrow weighted least squares

Additional literature:

Sections 4.1, 4.3, 4.4 in **K. Murphy**, Machine Learning: A Probabilistic Perspective, MIT press

3: Ignorance- Randomness as a lack of information

- Conditioning and marginalization
- Construction of the likelihood function
- Additive noise model
- Choice/construction of priors
- Empirical Bayes methods
- Posterior densities as solutions of statistical inverse problems
- Tikhonov regularization, MAP estimator

Additional literature: (general Bayesian statistics, empirical Bayes etc.)

Chapter 13 in **Russell & Norvig**, Artificial Intelligence: A Modern Approach, Pearson.

Chapter 5 in **K. Murphy**, Machine Learning: A Probabilistic Perspective, MIT press

4: Basic problem in numerical linear algebra

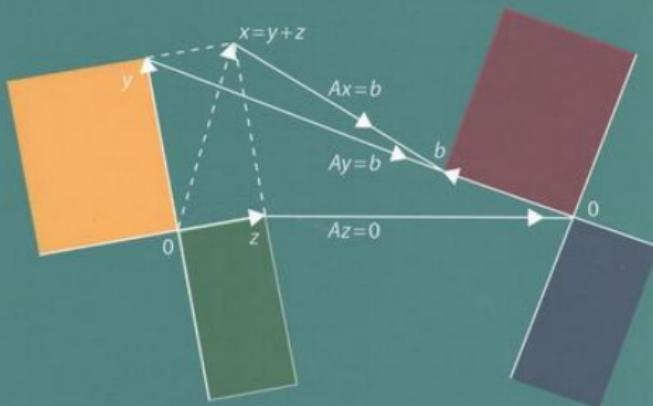
- Solution - undetermined, formally determined, over-determined
- Minimum norm / Least squares solutions
- Direct linear system solvers, Cholesky decomposition
- Conditioning
- Singular Value Decomposition
- Iterative solvers
- Fast Fourier Transform
- Krylov subspace, Conjugate gradient methods etc.
- Model selection - overregularization and underregularization

Additional literature: ...many (applied) LA books, for instance

Gilbert Strang, Introduction to Linear Algebra, Wellesley Cambridge Press.

Introduction to LINEAR ALGEBRA

FIFTH EDITION



GILBERT STRANG

5: Sampling

- Monte Carlo Integration
- Random number generation (normal and uniform distribution)
- Inverse Cumulative distribution rule
- Rejection sampling
- Markov chain Monte Carlo, Metropolis Hasting Algorithm

Additional literature:

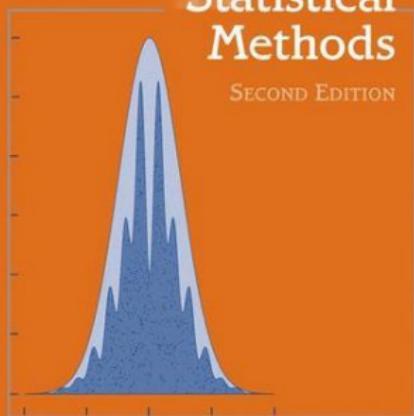
Section 2.7 in **K. Murphy**, Machine Learning: A Probabilistic Perspective, MIT press.

Chapter 2 in **Robert & Casella**. Monte Carlo Statistical Methods, Springer.

SPINGER TEXTS IN STATISTICS

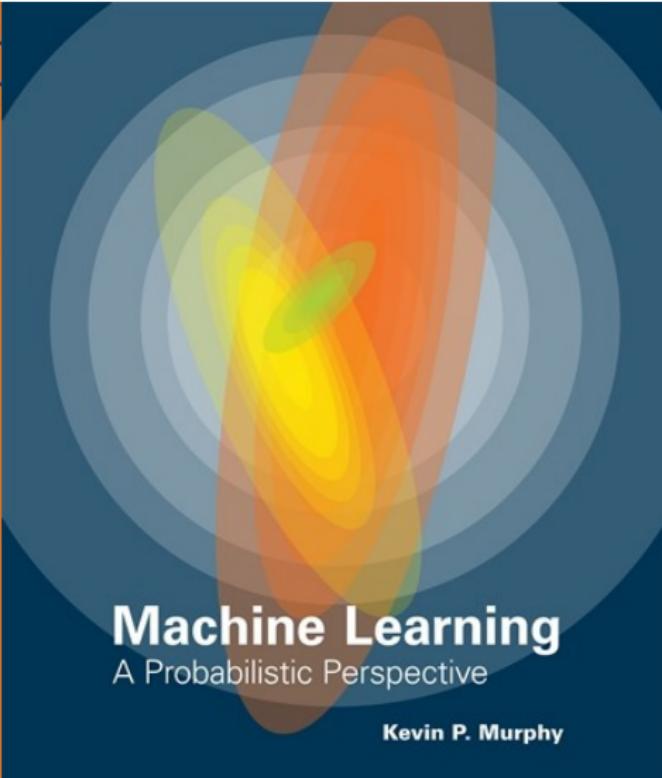
Monte Carlo Statistical Methods

SECOND EDITION



Christian P. Robert
George Casella

 Springer



6: Statistically Inspired Preconditioners

- Prior conditioners - Conjugate gradients (CGLS), Generalized Minimal RESidual (GMRES), MAP
- Sample based preconditioners, PCA model reduction
- How to estimate a quantity x from observations b that are related via a computational model?
- Gaussian approximation
- Anomaly detection
- PCA applications

7: Conditional Gaussian densities and predictive envelopes

- Gaussian conditional densities
- Schur complements
- Interpolation, splines and conditional densities
- Predictive envelopes - extrapolation problems

Additional literature:

Sections 4.3 & 4.4 in **K. Murphy**, Machine Learning: A Probabilistic Perspective, MIT press

8: More applications of Gaussian conditioning

- Linear Gaussian models with additive noise
- Optimal (Wiener) filtering
- Boundary conditions
- Deconvolution problems
- Smoothness priors - Dirichlet, Aristotelian etc.

9: Sampling

- MCMC
- Discrete time stochastic processes - Markov processes
- Random walk
- Markov chains, invariant distribution
- Convergence: detailed balance
- Practical problems: burn-in phase, acceptance ratio, auto-correlation etc.

Additional literature:

Section 24 in **K. Murphy**, Machine Learning: A Probabilistic Perspective, MIT press

Chapters 6,7 in **Robert & Casella**, Monte Carlo Statistical Methods, Springer.

10: Hypermodels, dynamic priorconditioners and Bayesian learning

- Priors usually depend themselves on parameters: how to chose them?
- (Hierarchical) construction of priors
- Bayesian hypermodel: hyperprior, posterior etc.
- Inference: MAP or marginalization?
- Bayesian hypermodels and priorconditioners

Additional literature: (hierarchical Bayesian models etc.)

Chapter 5 in **K. Murphy**, Machine Learning: A Probabilistic Perspective,
MIT press